
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 281–288, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Study on TCP Buffer Management Algorithm
for Improvement of Network Performance

in Grid Environment

Yonghwan Jeong1, Minki Noh2, Hyewon K. Lee1, and Youngsong Mun1

1 School of Computing, Soongsil University
1-1, Sando 5Dong, Dongjak-Gu, Seoul, 156-743, Korea (South)

{paul7931,kerenlee}@sunny.ssu.ac.kr, mun@computing.ssu.ac.kr
2 Korea Institute of Science and Technology Information (KISTI)

Eoeun-dong 52, Yuseong-gu, Daejeon city, Korea (South)
mknoh@kisti.re.kr

Abstract. The Grid is the environment that connects high performance
computing resource, which are scattered geographically as related network. The
Grid, which started in the mid of 1990, has studied and laid across in BT, NT,
and ET fields. The Grid applications are developed to act as global
infrastructure, especially, linked as high performance network. Nevertheless,
the Grid network envionment are consists of high speed researches, it uses
network management method of former old internet envionment, and it cannot
take the full advantage of high performance network. This research suggests
TCP buffer control mechanism that is more appropriate in high performance
network for better performance in The Grid network. In addition, controlled
method analyzes the network performance using the Globus Toolkit 3.0, which
is the most recent Grid middleware.

1 Introduction

The Grid is the environment that connects high performance computing resource,
which are scattered geographically as related network. Grid, which started in the mid
of 1990, has studied and laid across in BT, NT, and ET fields. The Grid computing
has concepts that it makes geographycally distributed and unused high perfomance
computing resourcese into available things. Its resource sharing and cooperation is
accomplished by Grid network. American Abilene and vBNS, European TEN-155,
SINET of Japan and KREONet of Korea achieve Grid network's functions. These
networks affect high performance network's form.

In order to guarantee the network QoS of Grid application in high performance
network, Grid environment provides GARA (General Purpose Architecture for
Reservation). GARA provide uniform API to various types of resources to network
QoS. Also, GARA adopts Differentiated Service (DiffServ) infrastructure in IETF.
DiffServ guarantees Grid application's end-to-end network QoS by establishing ToS
field in IP header. Nevertheless, the Grid network envionment are consists of high
speed researches, Which uses network management method of former (old) internet
envionment, and it cannot take the full advantage of high performance network.

282 Y. Jeong et al.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10
TCP connection

 number

Kbytes/ sec

default 300K

Fig. 1. TCP transmission rate variation according to number of connection

Fig. 1. shows the data transmission amount by the increasing number of TCP
connection in case of configuring TCP buffer size to default size, 64 Kbytes or default
size, 300Kbytes. Each case is represented as a solid line and dotted line respectively.
According to Fig. 1., TCP buffer size is necessary to be modified to adopt the state of
network in the high performance network such as Grid environment. As a result the
data transmission rates can be improved.

This research suggests that TCP buffer control mechanism is more appropriate in
high performance network for better Grid network performance. In addition,
controlled method analyzes the network performance using the Globus Toolkit 3.0,
which is the most recent Grid middleware.

2 Related Works

2.1 GridFTP

In Grid environment, access to distributed data is typically as important as access to
distributed computational resources. Distributed scientific and engineering
applications require two factors. The first factor is to transfer of large amounts of
data, such as in terabytes or petabytes length data between storages systems. And the
second factor is to access to large amounts of data, such as in gigabytes or terabytes
data by many geographically distributed applications and users for analysis and
visualizations. The lack of standard protocols for transfer and access of data in Grid
has led to a fragmented Grid storage community. Users who wish to access different
storage systems are forced to use multiple APIs and protocols. The performance of
data transmission between these different storage systems shows a drop in efficiency;
drop off in efficiency.

GridFTP, which has functionality of command data transfer and access protocol,
provides secure and efficient data transmission in Grid environment. This protocol,
which extended the standard FTP protocol, provides a superset of the features offered
by the various Grid storage systems currently in use. The GridFTP protocol includes
following features:

A Study on TCP Buffer Management Algorithm 283

− Grid Security Infrastructure (GSI) and Kerberos support
− Third-party control of data transfer
− Parallel data transfer
− Support for reliable and restartable data transfer
− Integrated instrumentation

2.2 TCP Buffer Tuning

Buffer Tuning Overview. In order to decide how many packets can be sent, TCP
uses "cwnd(congestion window)" parameter. The larger window size is, it is more
throughputs at once. Both TCP slow start mechanism and congestion avoidance
algorithm decide congestion window size. The maximum window size has relation
with the buffer size of each socket. The buffer size of each socket is assigned by
Kernel and has default value; this value can be modified by application before socket
establishment. The application can be one of the programs using system library call.
The Kernel forcese to use maximum buffer size. The buffer size can be modified by
both sender and receiver.

In order to get maximum throughput, it is important to use adequate TCP
sender/receiver buffer size for link. If buffer size is too small, the TCP congestion
window will not open enough. On the contrary, if buffer size is too large, the TCP
congestion window will close, and receiver's buffer will be overflow. The same
results will be happen if sender is faster than receiver. However, whether sender’s
window is too large size doesn't affair in the case of enough memory. (1) means
adequate buffer size.

Buffer size = 2 * bandwidth * delay (1)

Buffer size = bandwidth * RTT (2)

"ping" application is used to get delay value, and "pipechar" or "pchar" is used to
get the last link bandwidth. (2) is identical to the (1) because RTT (round trip time) is
obtained by "ping" application.

If ping time is 50ms on end-to-end network, which is composed of 100BT and
OC3 (155Mbps), adequate TCP buffer size is 0.05sec * (100Mbits / 8bits) = 625
Kbytes for this connection.

There are two things to notice. They are default TCP sender/receiver buffer size,
and maximum TCP sender/receiver buffer size. For the most UNIX OS, default
maximum TCP buffer size is 256KB. Table 1 shows default maximum buffer size and
default TCP socket buffer size at various OSs.

Table 1. Buffer size comparison at various to OSs

Type of Operating System Default max socket buffer size Default TCP socket buffer size

FreeBSD 2.1.5 256 Kbytes 16 Kbytes
Linux 2.4.00 64 Kbytes 32 Kbytes
Sun Solaris 7 256 Kbytes 8 Kbytes
MS Win2000 or Win XP 1 Gigabyte 8 Kbytes

284 Y. Jeong et al.

Buffer Share Algorithm. At the first stage of TCP Auto-tuning implementation, each
connection decides expected socket buffer size by increasing window size
appropriately. Memory pool is used to assign resources to each connection. The
connection that requires smaller buffer size than "Fair share" reserves expected buffer
size. The remaining memory is assigned to connections that require larger size fairly.
In order to assign buffer size at next negotiation, this fair share algorithm is
configured as "current share.”

3 TCP Buffer Management Algorithms

3.1 Buffer_size_negotiator

This research is focus on the Access Grid and the Data Grid, and both they require
large data transmission such as gigabytes or terabytes level transmission in Grid
application. Grid network affects high speed/high performance network’s form, so
TCP connection management algorithm is required, which is differentiated with large
data transmission method of general internet environment using TCP. In this paper, If
large TCP data transmission is generated by Grid application, analysis the
characteristic of each TCP connection and compose module that can improve
performance by automatic reconfiguration of The TCP buffer size, which appropriate
for characteristic of The connection.

Fig. 2. shows buffer_size_negotiator's function on option. Traffic Analyzer
achieves function that uses system commands (“netstat” or “lsof”) or system
information (“/proc” in system) to get information about each TCP connection. These
information are entered into "buffer_size_negotiator" by "Information Provider" in
Globus and then negotiate the send buffer size of each TCP connections according to
setting option. Actually, GridFTP that takes charge Grid application's data
transmission applies the negotiated buffer size to each TCP connections.
Buffer_size_negotiator has four options as follows;

− default: none
− Max-min fair share: –m
− Weighted fair share: –w
− Minimum threshold: –t

3.2 Buffer_size_negotiator

This section explains buffer management algorithm that corresponds to
buffer_size_negotiator's each option. This buffer_size_negociator accepts information
form the MDS, which is resource information provider. And then, it negociate each
TCP connections’ receiving buffer size. The following subsections are the buffer
management algorithm provided by buffer_size_negotiator.

A Study on TCP Buffer Management Algorithm 285

Fig. 2. Buffer_size_negotiator's options

Max-min Fair Share Algorithm. Max-min fair share algorithm is a method that
equally establishes re-assignable buffer size to each TCP connection. Table 2 shows
the results of the negotiated buffer size using max-min fair share algorithm.

Table 2. Buffer allocation result using –m option

 Unit : Kbytes
P N Connection A Connection B Connection C

D(i) 64 1024 768 1024 3
B(i) 64 480 480

Weighted Fair Share Algorithm. Weighted fair share algorithm is a method that
establishes re-assignable buffer size to be proportional to the requested buffer size of
TCP connections. Table 3 shows results of the negotiated buffer size using weighted
fair share algorithm.

Table 3. Buffer allocation result using –w option

 Unit : Kbytes
P N Connection A Connection B Connection C

D(i) 64 1024 768 1024 3
B(i) 64 500 460

Minimum Threshold Algorithm. If one TCP connection’s the requested buffer size
is smaller than 5% of the requested buffer size’s sum of all TCP connections,
minimum threshold algorithm guarantees the connection’s buffer size to be 5% of all
available buffer size (P). Table 4 shows results of the negotiated buffer size using
minimum threshold algorithm.

Table 4. Buffer allocation result using –m option

 Unit : Kbytes
P N Connection A Connection B Connection C

D(i) 64 1024 768 1024 3
B(i) 53 520 451

286 Y. Jeong et al.

4 Tests and Analyses

4.1 GridFTP Data Transmission Tests

In this paragraph, the large data transmitting tests using GridFTP are experimented
with executed buffer_size_negotiator on each option. We measured the amount of
data transmission per second for 3 TCP connections that demand different bandwidth
during.

Fig. 3. shows data transmitted amount which measured by GridFTP per second
when buffer_size_negotiator configures each option (default, -m, -w and –t).

default option

0

200

400

600

800

0 30 60 90 120 150 sec

Kbytes/sec

Connecton 1 Connecton 2 Connecton 3

-m option

0

200

400

600

800

0 30 60 90 120 150
sec

Kbytes/sec

Connecton 1 Connecton 2 Connecton 3

-w option

0

200

400

600

800

0 30 60 90 120 150 sec

Kbytes/sec

Connecton 1 Connecton 2 Connecton 3

-t option

0

200

400

600

800

0 30 60 90 120 150 sec

Kbytes/sec

Connecton 1 Connecton 2 Connecton 3

Fig. 3. Results of data transmission test using each option

4.2 Result Analysis

Negotiated Buffer size Comparative Analysis. Through experiment result of 4.1,
the requested buffer size of connections and the negotiated buffer size by each buffer
management’s algorithm are presented at Tab. 5.

Table 5. Comparison of negotiated buffer size using each option

 Unit : Kbytes
-m option -w option -t option Option

Conn.
name

Requested
size Negotiated

size
Rate of
increase

Negotiated
size

Rate of
increase

Negotiated
size

Rate of
increase

Conn. 1 64 64 0 % 64 0 % 53 -17 %
Conn. 2 1024 480 -53 % 500 -51 % 520 -49 %
Conn. 3 768 480 -37 % 460 -40 % 451 -41 %

A Study on TCP Buffer Management Algorithm 287

The following express three kinds of connection features are:

− Conn. 1: TCP connection that requires the small buffer size
− Conn. 2: TCP connection that requires overbalance of maximum buffer size
− Conn. 3: TCP connection that does not exceed maximum buffer size

The buffer size entered into an agreement is established within maximum buffer
size when tested TCP connections on each option. When use “-m” and “-w” option,
“Conn. 1” allocates the requested buffer size to the negotiated buffer size. However,
in case of using ”-t” option, it setablished by 53Kbytes, decreased 17% than the
requested buffer size of original.

“Connection 2” and “Connection 3” shows that the negotiated buffer size for all
options is established lower than the requested buffer size. There is advantage that “-
w” and “-t” options could assign more buffer size for connections that could send
large data per second than “-m” option. Also, in case of “-t” option, as sum of the
requested buffer size (S) is changed. There is advantage that the negotiated buffer size
of the connection which requires small buffer size, could be dynamically changed.

Data Transmission Rate Comparative Analysis. The data transmission amount by
GridFTP is same with Table 6 in each option.

Table 6. Comparison of data transmission amount using each option

 Unit : Kbytes
-m -w -t Option

Conn.
name

None Transmission
amount

Rate of
increase

Transmission
amount

Rate of
increase

Transmission
amount

Rate of
increase

Conn. 1 7,872 14,400 +82.9% 17,664 +124.4% 12,864 +63.4%
Conn. 2 93,760 80,673 -14.0% 90,688 -3.3% 93,440 -0.3%
Conn. 3 67,712 80,736 +19.2% 66,752 -1.4% 68,224 +0.8%

Sum 169,344 175,808 + 3.8% 175,104 +3.4% 174,528 +3.1%

Such as table 6, if established send buffer size of each TCP connections in
GridFTP to the negotiated buffer size by buffer_size_negotiator buffer size, data
transfer rate increases in data transmission. Could heighten transfer efficiency of
about 3.8% when used "-m" option, and case of 3.4% when used “-w” options and
improved performance of 3.1% when used "-t" option

5 Conclusions

In the traditional Internet environment, there was no change in transmission amount
of data even on the modified TCP buffer size in case of transmitting large data. On the
other hand, the high-performance networks, such as STAR-TAP, KREONET, Grid
networks make a profit on the change of TCP buffer size according to network
environment. Therefore, Grid Applications in high-performance network is needs
dynamic configuration of TCP send/receive buffer size.

288 Y. Jeong et al.

This study is improving performance of traffic transfer for GridFTP in grid
network of high performance and TCP buffer management for many concurrent TCP
connection controls. We implement buffer_size_negotiator for dynamic configuration
of send buffer size among TCP connections in GridFTP. In case of transmitting data
of The Grid applications by GridFTP, each TCP connection transmits data using
buffer size which set by “buffer_size_negotiator.” Improved GridFTP performs much
better than standard general GridFTP, Which achieves an improvement of 3~4%.

References

1. Hasegawa, T. Terai, T. Okamoto and M. Murata, "Scalable socket buffer tuning for high
performance Web servers," Proc. of IEEE ICNP 2001, Nov. 2001.

2. Hethmon, P. and Elz, R., "Feature negotiation mechanism for the File Transfer Protocol",
RFC 2389, August 1998.

3. J.Semke, J. Mahdavi, and M. Mathis, "Automatic TCP Buffer Tuning", ACM Sigcomm
'98/Computer communications Review, Volume 28, Oct. 1998.

4. Jeffrey Semke, "Implementation Issues of the Autotuning Fair Share Algorithm", PSC
Technical Report, May 2000.

5. Qingming Ma, Petter Steenkiste and Huizhang, " Routing High bandwidth Traffic in Max-
min Fair Share Networks", ACM Sigcomm '96/Computer communications Review,
Volume 26, Aug. 1996.

6. T. Dunigan, M. Mathis and B. Tierney, "A TCP Tuning Daemon", Proceeding of IEEE
Supercomputing 2002 Conference, Nov. 2002.

7. V. Jacobson, R. Braden and D. Borman, "TCP Extensions for High Performance", IETF
RFC 1323, May.1992.

8. W.Allcock, J.Bester, J.Bresnahan, A.Chervenak, L.Limin, S.Tuecke, "GridFTP: Protocol
Extensions to FTP for the Grid", GGF draft, March 2001.

9. http://www-didc.lbl.gov/TCP-tuning
10. http://www.psc.edu/networking/auto.html, "Automatic TCP Buffer

Tuning Research", web page.

	Introduction
	Related Works
	GridFTP
	TCP Buffer Tuning

	TCP Buffer Management Algorithms
	Buffer_size_negotiator
	Buffer_size_negotiator

	Tests and Analyses
	GridFTP Data Transmission Tests
	Result Analysis

	Conclusions

