
Federate Migration in HLA-Based Simulation

Zijing Yuan1, Wentong Cai1, Malcolm Yoke Hean Low2, and
Stephen J. Turner1

1 School of Computer Engineering
Nanyang Technological University, Singapore 639798

{p144328830,aswtcai,assjturner}@ntu.edu.sg
2 Singapore Institute of Manufacturing Technology

71 Nanyang Drive, Singapore 638075
yhlow@simtech.a-star.edu.sg

Abstract. The High Level Architecture promotes simulation interoper-
ability and reusability, making it an ideal candidate to model large-scale
systems. However, a large-scale simulation running in a distributed
environment is often affected by the imbalance of load level at different
computing hosts. Migrating processes from heavily-loaded hosts to
less-loaded hosts can overcome this shortcoming. We have previously
developed a SimKernel framework to execute HLA-based simulations
in the Grid environment with migration support as a prominent design
feature. In this paper, we will introduce a transparent migration protocol
for SimKernel-based federates that minimizes migration overhead.

Keywords: HLA-based simulation, federate migration, load manage-
ment, Grid computing

1 Introduction

The High Level Architecture (HLA) was developed by the U.S. Defence Mod-
eling and Simulation Office (DMSO) to provide simulation interoperability and
reusability across all types of simulations and was adopted as an IEEE stan-
dard [1]. The Runtime Infrastructure (RTI) is an implementation of the HLA
standard that provides the platform for simulation.

In HLA, a simulation is called a federation and a simulation component is
called a federate. Federates communicate with their peers by sending interactions
or updating object attributes. The interaction is the formal HLA definition of a
transient message of parameter compounds. In this paper, we will use interaction,
event and message interchangeably. Federates do not communicate directly with
each other and all communication is administrated by the RTI based on each
individual federate’s interest.

While HLA/RTI aims to provide a software platform for simulation inter-
operability, the Grid [2] provides an ideal hardware infrastructure for the high
performance computing community. There has been research effort to integrate
the HLA simulations with the Grid environment to solve large-scale compute-
intensive problems [3,4,5,6].

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 856–864, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Federate Migration in HLA-Based Simulation 857

Large-scale simulations running in a distributed environment are often af-
fected by the imbalance of dynamic load level at individual participating hosts,
and this leads to poor performance. Load balancing is a technique that can im-
prove hardware utilization and shorten the execution time. To achieve a balanced
load, a process is migrated from a heavily-loaded host to a less-loaded one.

However, process migration generally incurs a large overhead mainly due to
poor migration protocol design. This is especially true with HLA-based sim-
ulations where not only analyzing and extracting the federate execution state
requires tremendous effort, but also migration coordination may undesirably
halt non-migrating federates in the simulation. Hence, it would be particularly
beneficial to minimize the undesirable large migration overhead.

We have previously developed a SimKernel framework for modelers to design
and deploy parallel and distributed simulations in the Grid environment using
HLA/RTI. In this paper, we will introduce a migration mechanism based on
SimKernel that could minimize migration overhead.

2 Related Works

Federate migration can be achieved at various levels. Obviously, general purpose
process migration schemes could also be used to migrate HLA federates. In this
paper, however, we focus only on application level federate migration.

The easiest approach to migrate a federate is to utilize the HLA standard
interfaces: federationSave and federationRestore. The drawback is apparent: fed-
eration wide synchronization is required. Another side-effect is that all non-
migrating federates are required to participate in the federation save and restore
process for every migration request. As seen in [5], the migration overhead in-
creases almost proportionally with the number of federates in the simulation.

Other implementations generally adopt the checkpoint-and-restore approach.
In both [3,4], the migrating federate’s essential state is checkpointed and up-
loaded to an FTP server. The restarted federate will reclaim the state infor-
mation from the FTP server and perform a restoration. These implementations
introduce further latency since communicating with the FTP server is more time
consuming.

Hence, minimizing the migration latency would be of great interest. As mi-
gration overhead stems mainly from synchronization and communication with a
third party (such as FTP), mechanisms avoiding these issues would be desirable.
Such algorithms exist in other migration studies. An interesting freeze free algo-
rithm for general purpose process migration was proposed by Roush [7]. In this
algorithm, the source host receives messages before the communication links are
transferred. Any message arriving while the communication links are in transit
will be held temporarily and will be sent to the destination when the links are
ready at the new host. Message receipt is only delayed while the communication
links are in transit. This greatly reduces process freeze time since non-migrating
processes are not involved in the migration. The migration mailbox is another
approach [8] where a predefined address called a migration mailbox receives mes-



858 Z. Yuan et al.

sages for the migrating process. After the process is successfully migrated, it will
retrieve the messages from the mailbox and inform other processes to send mes-
sages directly to it. The shadow object approach used in avatar migration [9] also
achieves the same target. In this approach, each server monitors an interest area
and neighboring servers’ interest areas overlap in a migration region. An avatar
is maintained by a server. When an avatar moves into the migration region, a
shadow object is created on the neighboring server. Once the avatar is out of
the original server’s scope, the shadow object is upgraded to an avatar on the
neighboring server and the old avatar at the original server is destroyed.

We adopt a similar approach to the shadow object concept. However, we need
to ensure that the restarted federate should be identical to the original federate
when a successful migration is achieved. The main concern is to ensure that no
event is lost or duplicated. Federate cloning addresses the same problem, and
relies on event history logging [10] to ensure the integrity. The approach requires
logging every event and may result in a large overhead. We will use an alternative
method for message integrity enforcement.

3 Federate Migration

We proposed a SimKernel framework for easy development of parallel and dis-
tributed simulation using RTI and for deployment of simulation in the Grid en-
vironment in [11]. The framework consists of three major components, a federate
execution model named SimKernel, a GUI that allows modelers to specify essen-
tial simulation information at process level and an automatic code generation
tool that translates the modeler’s design into executable Java codes for deploy-
ment. The SimKernel framework is designed with the following characteristics:

– Simulation design is allowed to be specified at the Logical Process (LP) level.
– Each federate is abstracted to a main simulation loop with event queues inQ

and outQ holding incoming and outgoing events respectively (Figure 1).
– All federates adopt the same execution pattern.
– Event interest of a particular federate is specified in a configuration file.
– Event processing detail is defined in a user-defined consume() routine.
– Each federate is identified by a unique literal name at the LP level.

These features facilitate easy federate migration at a higher abstraction level.
As the SimKernel is application independent, information transferred at migra-
tion time is drastically reduced. In the aspect of code transfer, if the standard
library of the SimKernel framework is placed at the destination hosts, the mi-
grating federate can be dynamically reconstructed at the destination with the
LP specifications and the received events restored.

Migrating a federate, or process in general, requires the transfer of the pro-
gram executable and essential execution state. With reference to the features
identified above, migrating a SimKernel-based federate can reduce the size of
the program executable to be transferred at migration time since the SimKernel
code library is application independent. Essential execution state includes any



Federate Migration in HLA-Based Simulation 859

Fig. 1. SimKernel Federate Model Fig. 2. Migration Architecture

local variables and events in both inQ and outQ. At migration time, the events
in outQ will be delivered to the RTI and thus will not be transferred. Hence, only
the inQ information and the local attributes need to be transferred to the desti-
nation. This also reduces the amount of data to be transferred. In this section, we
will describe the system architecture and protocol to migrate SimKernel-based
federates. In the following text, we will refer to the federate before a particular
migration operation as the original federate or migrating federate and the feder-
ate created at the destination for migration purpose as the restarting federate.

3.1 Architecture

Our simulation execution support system consists of two subsystems, namely
simulation subsystem and load management subsystem. A SimKernel compo-
nent performs the simulation activity using the HLA/RTI and the Load Man-
ager (LM), with the LMClients at each individual hosts, performs the load man-
agement activity (Figure 2).

The LM determines the destination host for the federate to be migrated.
The LMClients at the source and destination hosts will communicate until a
successful migration is achieved.

The LMClient at each host performs three major tasks. First, it monitors the
load level at the host and reports the information to the LM. The information
will be used by the LM to determine the federate and hosts involved in migration.
Second, on receiving a migration request from the LM, the LMClient will migrate
the selected federate using the protocol described in the next subsection. Third,
the LMClient will create, suspend, communicate with, and destroy the federate
when necessary.

To support migration, the SimKernel main simulation loop is adapted to a
state-based process model (Algorithm 1). A set of valid states is illustrated in
Figure 3. Most state names are self-explanatory except that state “collected”
means that the execution state information is already extracted and transferred
to the destination. State “joined” means that the restarting federate has joined
the federation execution and has successfully subscribed all events of its interests.
State transition is described in the migration protocol. The state “restarting”
is not shown in the loop because a restarting federate will join the federation,
subscribe and publish its event interests and set the state to “joined” before
executing the main simulation loop.



860 Z. Yuan et al.

Algorithm 1 SimKernel Main Simulation Loop
while (notEndOfSimulation()){

switch(fedStatus) {
case running: processEvent(); // identical to main loop in [11]

break;
case suspended: flushOutgoingEvents();

waitForExecutionStateRequest();
performFlushQueueRequest();
collectStateInfo();
setFedState("collected"); break;

case collected: waitForSuccessfulMigrationAck();
setFedState("terminating"); break;

case joined: waitForExecStateInfo();
setFedState("restoring"); break;

case restoring: performFlushQueueRequest();
checkAndRemoveDuplicates();
restoreStateInfo();
setFedState("running"); break;

case terminating: break;
default: System.out.println("invalid state.");

} }

3.2 Migration Protocol

Our migration protocol (Figure 4) begins with the LM issuing a migration re-
quest to the LMClients at both source and destination hosts. The LMClient
at the source host will set the federate state to “suspended”. After the current
event if any is processed, the migrating federate sends out all outgoing events in
its outQ. Then, the federate waits for the LMClient at the destination host to
request transfer of execution state. The LMClient will request execution state
from the federate only when its peer at the migration destination sends a “re-
questInformation” request. The LMClient at the destination host will create a
new instance of the federate with state “restarting” upon receiving the migra-
tion request from LM. The restarting federate will proceed to join the federation
execution and subscribe and publish any event of its interests with the same
configuration of the original federate. After the new federate successfully com-
pletes the event subscription (i.e., “joined”), the new federate starts to receive
messages of its interest. Note that the new federate is identical to the original
one. After the new federate subscribes to the events, both federates will receive
messages from the same set of federates. The LMClient at the destination will
send “requestInformation” to its peer at the source host when the restarting
federate reaches the “joined” state.

When the migrating federate is instructed to collect execution state, it first
invokes flushQueueRequest() with the parameter of its current logical time, caus-
ing the RTI to deliver all messages by calling its receivedInteraction() callback
regardless of time management constraints. Received events will be stored in the
federate’s inQ.



Federate Migration in HLA-Based Simulation 861

Fig. 3. Federate States Fig. 4. Federate Migration Protocol

Upon the completion of flush queue request, the migrating federate encodes
its internal execution state including events in the inQ and local attributes in
the attribute table into a formatted string and in the meantime, sets a flag to
indicate that execution state data is ready for migration. The federate state
is also set to “collected”. The LMClient at the host periodically checks the
federate until the flag is set and starts to transfer the information to its peer
at the destination host. The “collected” migrating federate will set its state to
“terminating” after its migrationSucceededFlag is set by the LMClient at the host
on receiving a “migrationSucceeded” message. Later the information transferred
to the destination host is restored by the restarting federate.

The restarting federate begins restoration after it receives the state infor-
mation. A dynamic class loading technique [12] is used to reconstruct event
objects from the string specification transferred from the source host. Recon-
structed event objects are inserted to inQ. Subsequently, the restarting federate
invokes flushQueueRequest() with parameter of its current logical time to obtain
all events sent by RTI since it registered its event interests. When restoring the
received information, duplicates are removed.

When the restarting federate has successfully restored its execution state,
normal simulation execution resumes. The LMClient at the destination will no-
tify the LM and its peer at the source that the federate is successfully migrated.

Note that the LMClient at each host is regularly updating the load level infor-
mation to the LM. When an LMClient fails to do so, the host is assumed inactive
and not eligible for migration. If the selected destination host is down after the
migration decision is made, no socket channel to the host can be successfully
created and the LM has to select another destination for migration.



862 Z. Yuan et al.

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6

no. federates

ti
m

e
 (

s
e
c
)

federation
save/restore
our protocol

(a) Benchmark Used in [5]

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6

no. federates

ti
m

e
 (

s
e
c
)

federation
save/restore
our protocol

(b) Two-way Super-ping

Fig. 5. Migration Latency Comparison

4 Implementation Results and Discussion

To evaluate the protocol’s performance, experiments were carried out in a LAN
environment using 2.20GHz Pentium 4 PCs with 1GB RAM. Two test cases were
investigated. The first case implemented a two way super-ping, with the total
number of nodes (federates) varied from 2 to 6. The second case was identical
to the one used in [5], where a federate publishes events, and all other federates
subscribe and consume the received events. In both setups, migration requests
were issued by the LM every 30 seconds and the event processing time was
simulated using random delay. Similar results were obtained in both cases. The
migration latency using our protocol was plotted in Figure 5 in comparison to the
federation save/restore approach provided by the HLA/RTI standard interface.

Unlike the federation save/restore approach, the time taken for the migration
process using our protocol remains constant with increasing number of federates.
Migration overhead spans from the time when the original federate is suspended
to the time when the migrated federate resumes normal execution. In compar-
ison to other migration approaches, our protocol results in reduced migration
overhead due to the following factors:

No explicit federation-wide synchronization is required. Federate mi-
gration that employs federation-wide synchronization suffers from poor per-
formance since federates not involved in the migration must also be synchro-
nized.

No communication with third party is required. In our design, migrat-
ing a federate requires only peer to peer communication between the source
and the destination hosts. This greatly reduces the migration time.

Our framework for simulation design is completely transparent to modelers.
Modelers only need to specify at LP level the LPs in the simulation, the events
between LPs and the processing details of each event. The design is translated
into Java codes by our automatic code generator. This allows modelers to con-
centrate on the simulation model rather than low level implementation.



Federate Migration in HLA-Based Simulation 863

Our protocol further benefits the non-migrating federates with complete mi-
gration transparency. During the entire migration period, non-migrating fed-
erates that interact with the migrating federate continue to send and receive
events. These federates have no knowledge whether the federate is processing a
message or migrating to another host.

5 Conclusion

In this paper, we have presented a migration protocol for federates based on our
SimKernel framework. The protocol adopts a shadow-object like model and re-
duces the influence on other non-migrating federates to the minimum. Our proto-
col also achieves complete transparency and reduces overhead without violating
the simulation constraints. Although the protocol reduces migration overhead, it
still needs to be improved to guarantee complete message consistency. There is
a potential problem of message loss if the network is heavily congested. We are
working on an improved algorithm to guarantee complete message consistency
by providing a counter for each interaction class and verifying the continuity
of the counter values. The improved algorithm will be presented in our future
publication.

References

1. IEEE: P 1516, Standard for Modeling and Simulation (M&S) High Level Archi-
tecture (HLA) - IEEE Framework and Rules (1998)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

3. Cai, W., Turner, S.J., Zhao, H.: A Load Management System for Running HLA-
based Distributed Simulations over the Grid. In: Proceedings of the Sixth IEEE
International Symposium on Distributed Simulation and Real Time Applications
(DS-RT ’02). (2002) 7–14

4. Lüthi, J., Großmann, S.: The Resource Sharing System: Dynamic Federate Map-
ping for HLA-based Distributed Simulation. In: Proceedings of Parallel and Dis-
tributed Simulation, IEEE (2001) 91–98

5. Zaja̧c, K., Bubak, M., Malawski, M., Sloot, P.: Towards a Grid Management Sys-
tem for HLA-based Interactive Simulations. In: Proceedings of the Seventh IEEE
International Symposium on Distributed Simulation and Real Time Applications
(DS-RT ’03), Delft, The Netherlands (2003) 4–11

6. Zaja̧c, K., Tirado-Ramos, A., Zhao, Z., Sloot, P., Bubak, M.: Grid Services for
HLA-based Distributed Simulation Frameworks. In: Proceedings of the First Eu-
ropean Across Grids Conference. (2003)

7. Roush, E.T.: The Freeze Free Algorithm for Process Migration. Technical Report
UIUCDCS-R-95-1924, UIUC (1995) Available online at http://www.cs.uiuc.edu/
Dienst/UI/2.0/Describe/ncstrl.uiuc cs/UIUCDCS-R-95-1924.

8. Heymann, E., Tinetti, F., Luque, E.: Preserving Message Integrity in Dynamic
Process Migration. In: Proceedings of Euromicro Workshop on Parallel and Dis-
tributed Processing (PDP-98). (1998) 373–381



864 Z. Yuan et al.

9. Huang, J., Du, Y., Wang, C.: Design of the Server Cluster to Support Avatar
Migration. In: Proceedings of The IEEE Virtual Reality 2003 Conference (IEEE-
VR2003), Los Angeles, USA (2003) 7–14

10. Chen, D., Turner, S.J., Gan, B.P., Cai, W., Wei, J.: A Decoupled Federate Archi-
tecture for Distributed Simulation Cloning. In: Proceedings of the 15th European
Simulation Symposium (ESS 2003), Delft, The Netherlands (2003) 131–140

11. Yuan, Z., Cai, W., Low, M.Y.H.: A Framework for Executing Parallel Simula-
tion using RTI. In: Proceedings of the Seventh IEEE International Symposium
on Distributed Simulation and Real Time Applications (DS-RT ’03), Delft, The
Netherlands (2003) 12–19

12. Liang, S., Bracha, G.: Dynamic Class Loading in the Java Virtual Machine. In:
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’98). (1998) 36–44


	Introduction
	Related Works
	Federate Migration
	Architecture
	Migration Protocol

	Implementation Results and Discussion
	Conclusion



