
Placement of File Replicas in Data Grid
Environments

J.H. Abawajy

Carleton University, School of Computer Science, Ottawa, Ontario,
Canada, K1S 5B6

abawjem@scs.carleton.ca

Abstract. In this paper, we address the problem of file replica place-
ment in Data Grids given a certain traffic pattern. We propose a new file
replica placement algorithm and compare its performance with a stan-
dard replica placement algorithm using simulation. The results show that
file replication improve the performance of the data access but the gains
depend on several factors including where the file replicas are located,
burstness of the request arrival, packet loses and file sizes.

1 Introduction

Grid computing is a type of parallel and distributed system that enables shar-
ing, selection, and aggregation of geographically distributed resources. One class
of grid computing and the focus of this paper is Data Grids that provide geo-
graphically distributed storage resources to large computational problems that
require evaluating and mining large amounts of data [5],[8]. In a multi-user and
multi-owned systems such as Grids, the resource managers (RMS) are expected
to provide good resource utilization and application response time. There is an
added problem of managing several petabytes of data in Data Grid environments
with high availability and access optimization being some of the key challenges
to be supported. This is because, in addition to the high latency of wide-area
network, Data Grid environments are prone to node and link failures [2], [5].

One way of coping with some of these problems is to distribute multiple copies
of a file across different sites in the system. It has been shown that file replication
can improve the performance of the applications [8], [6], [5], [12]. There is a fair
amount of work on file replication in Grid environments. However, most of the
work done so far relates to creating the underlying infrastructure for replication
and mechanisms for creating/deleting replicas [12]. We believe that, in order to
obtain the maximum possible gains from file replication, a strategic placement
of the file replicas in the system is the key. To this end, we propose a replica
placement service called Proportional Share Replication (PSR) algorithm. PSR
places file replicas in sites such that failures are masked and network load is
minimized. Moreover, it distributes the load of data requests as evenly as possible
over all the replicas.

The rest of the paper is organized as follows. Section 4 presents the proposed
replica placement algorithm. This section also discusses a baseline policy used

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 66–73, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Placement of File Replicas in Data Grid Environments 67

to compare the performances of PSR. Section 5 discusses the performance eval-
uation framework and the results of the proposed policy. Conclusion and future
directions are presented in Section 6.

2 System Model

In this paper, we use a hierarchical Data Grid model (see Figure 1), which
is one of the most common architectures in current use [11], [5], [6] [2]. The
sites are classified into four regions: local sites, regional sites, national sites and
international sites [5]. The connectivity bandwidth and delays between different
levels of the sites is shown on Figure 1. Since the the load on the network is
shared, the bandwidth can vary unpredictably in practice. Each Data Grid user
is assigned a weight relative to the percentage of overall traffic in the system.
Also, each site has an associated weight that represents the rate of data request
expected to traverse it. Each higher level node is assigned a weight representing
the sum of the traffic from its children, and the edge distance represents the
one-way link transfer delay. The cumulative cost from a child node to a parent
node is the sum of the edge distances.

Site 1

Site 4

Site 2

Site 3 Site 5 Site 6 Site 7

Site 0

Site 8 Site 9 Site 10 Site 11 1ms

5ms

10ms

25ms

Fig. 1. Hierarchical Data Grid system model

We assume that once created, data is mostly read-only [5]. Also, as in [6]
and [2], we assume that initially, only one copy (i.e., the master copy) of the
files exists at the root site (Site0) while all requests for file are generated at
the leaves. Hence, in the hierarchical Data Grid system model, request for files
travels upward from the leave node and any node along the path of the request
in the hierarchy that has the requested file services the request. In other word,
when a node v on level k requires a file, it sends a request to its parent node u
at level k+1. Upon receiving the request, if u does not have the requested file,
it forewords the request to its parent in turn. This process recursively continues

68 J.H. Abawajy

up the hierarchy until a node that has the requested file is encountered or the
request reaches the root node.

In the absence of file replicas, the root node services all data requests. Note
that when there are more than one replicas of a file in the system, depending
where the replica is located in the hierarchy, a site may be blocked from servicing
requests for file. For example, if there are file replicas in Site0, Site1 and Site2,
the file replica at Site0 cannot be used as all requests for file can be serviced by
Site1 and Site0, respectively. Therefore, it is important to place file replicas at
appropriate locations in the hierarchical Data Grid systems to reap the benefits
of replication.

3 Problem Statement

The goal of replication is to allow researchers to use computing power and data
storage with a reasonable response time rather than access all the data at the
root. Therefore, given the network topology and data request patterns shown in
Figure 1, the goal is to determine an optimal placement of a set of f file replicas
on the n sites such that data access delays are reduced, data access availability
is improved and the load of data request within the system both on the network
and site level are balanced.

In this paper, we assume that both f and n are known. Note that there are
many ways we can determine the number of replicas (i.e., f). For example, we can
determined it based on the popularity of the file as in [9]. It has been noted that
the access pattern in Data Grid environments shows considerable repetitiveness
and locality [3], [5]. Therefore, we can use the intensity of access patterns from
a given locations. Alternatively, the number of replicas can be based on a cost
model that evaluates data access costs and performance gains of creating each
replica. The estimation of costs and gains is based on factors such as run-time
accumulated read/write statistics, response time, and bandwidth.

Broadly speaking, file replication makes identical files available at multiple
locations within the Data Grid environments. The overall file replication problem
includes making the following decisions: (1) when file replicas are created and
deleted; (2) how many file replicas are created; (3) where these replicas should be
placed in the system; and (4) how data consistency is enforced. Data consistency
problem dictates that multiple copies of file must appear as a single logical
data object. This problem has been address in [13] and [3]. As most of data
in Data Grids are read-only [3],[5], data consistency is not a serious problem.
An economic model for replica creation and deletion is discussed in [2]. Also,
a scheme that is based on a cost model that evaluates data access costs and
performance gains of creating each replica is discussed in [12] whereas replication
of a file is done based on the popularity of a file in [9] and [14].

Although, data replication is one of the major optimization techniques for
promoting high data availability, low bandwidth consumption, increased fault
tolerance, and improved scalability, the problem of file replica placement as de-
fined in this section has not been well studied for large-scale grid environments.

Placement of File Replicas in Data Grid Environments 69

The common thread among existing work is that they focus on which replica
should be used and not where should the file replicas are placed. Our work
differs from these studies in that we are interested in determining the best lo-
cation for the file replica. Therefore, the work described in this paper will help
build on a high level tool above the replica management software. This tool will
make replica placement decisions to increase the overall efficiency in terms of
availability, response time and fault-tolerance of the Data Grid.

4 Replica Placement Service

Replica placement service is one components of the data grid architecture that
decides where in the system a file replicas should be placed. In this section, we
discuss a new and a baseline file replication strategies.

4.1 Proportional Share Replica Location Policy

The proportional share replica (PSR) policy works as shown in Figure 2. The
main idea underlying the PSR policy is that each file replica should service
approximately equal number of request rates in the system. The objective is to
place the replicas on a set of sites systematically selected such that file access
parallelism is increased while the access costs are decreased. For the Data Grid
architecture shown in Figure 1, PSR selects Site1 as the location of the new
replica when the number of replica is one. However, when the number of replicas
is set to two, the algorithm selects Site5 and Site2 as optimal location for the
two replicas.

Note that collectively the sites will be able to offload about 1
root copy+f

data
requests from the root node. Also note that none of the nodes hinder any other
node where a replica of the file is located from receiving its share of file requests.
Note also that a given request for file reaches the root node only if there is no
node along the path traveled by the request.

4.2 Affinity Replica Location Policy

The affinity replica placement algorithm replicates data on or near the client
machines where the file is accessed most. In other words, a copy of the file will
be placed near the client hat generates access traffic the most. In Figure 1,
for example, when the number of replica is one, the algorithm selects Site6 as
the placement of the new replica. Most of existing replica management systems
employs a variation of this type of replication scheme [1], [2], [12]. This algorithm
is similar to the cascading replica placement algorithm discussed in [6].

5 Performance Analysis

In this section, we compare the proportional and affinity file replica placement
schemes discussed in previous section on simulated Data Grid environments. We

70 J.H. Abawajy

1. Select a set of V sites, V ∈ {Site1, . . . , Siten} such that each site in V meets the
following conditions:
a) does not have f already.
b) does not block any site where a replica of the file exits from servicing its share

of file requests.
2. Compute an ideal load distribution over the replicas as follows:

load =
1

root copy + f
× R (1)

where R is the total number of data access requests in the system.
3. Place replicas as follows:

REPEAT
a) Select a site v ∈ V that is able to service a set of requests slightly greater than

or equal to the ideal load.
b) Place a replica of the file in v.

UNTIL all replicas are placed.

Fig. 2. Pseudo-code of the proportional policy

used ns2 network simulator but modified it such that we capture grid specific
components in a similar manner to [12], [1], [2]. We also added some extra nodes
whose sole purpose is to generate background traffic at a specific rate such that
we model a shared interconnection network, as is the real grid environment. In
all experiments reported in this paper, we run a total of 30 simulations. As in
[5], [12], [1], [2], we used the mean response time as a chief performance metric.

5.1 Experimental Setup

The grid topology, number of sites, connectivity bandwidth and the number of
users is as shown in Figure 1. Each request is a 4-tuple field with the arrival
time, a source node, a server node and file size. The request arrival process is
modeled as exponential distribution with mean of 30 requests per time period.
The file size is drawn from a hybrid distribution, with a log-normal body, and
a Pareto tail. The median transfer size is 5MB. The largest transfer is 53MB,
while the smallest is 3MB bytes. The source and server nodes are generated at
random based on the desired request rate for each user. The default server for
all requests is the root node.

5.2 Results and Discussions

Figure 3 shows the performance of the proportional and affinity replication poli-
cies as a function of the number of replicas. We observe that replication do im-
prove the mean response time as shown by both policies. The main observation
is that the proportional algorithm performs better than the affinity algorithm.

Placement of File Replicas in Data Grid Environments 71

In proportional policy, the tendency is to choose sites that serve multiple clients
and offload traffic from the busiest network links whereas this is not the case
in affinity algorithm. Also the secondary influence in proportional algorithm ap-
pears to favor the placement of file replicas in sub-trees that reflect the highest
traffic generating clients. This observation is not surprising considering that this
sub-tree generates most of the load on upstream links. The Affinity policy can-
not process requests as quickly as it is receiving them. When the node is unable
to handle the load of requests it is receiving, the size of its message queue begins
to increase. Therefore, balancing the load among the replicas is important as it
is done in proportional policy.

 20

 40

 60

 80

 100

 120

 140

 1 1.5 2 2.5 3 3.5 4

Me
an

 R
es

po
ns

e T
im

e (
se

c)

Number of Replicas

Proportional
Affinity

Fig. 3. Performance of the replication policies

It is important to investigate the sensitivity of the replication policy to the
network congestion and packet loss factors. This can be modeled by varying
the request arrival rate while keeping the file size to 20MB. Figure 4 shows the
mean response time (y-axis) of the three policies as a function of the request
arrival rate (x-axis). Note that 120 request per second produces an average of
80% utilization on the busiest link in the network. At this level, we observed
that about 0.2% of packets were lost when all the requests are serviced from
the master copy (i.e., NoReplica case), which required retransmission of the
lost packets. This partially explains the performance of the NoReplica case. In
contrast, the packet loses in Affinity is 0.064819% while that of Proportional
is 0.03511% which is far less than both cases. The conclusion is that network
related factors such as the number of packet losses have significant impact on
the performance of the replica locations.

6 Conclusions and Future Direction

Many scientific and engineering applications perform large amount of data anal-
ysis on increasingly large datasets. There is a need for efficient tools and mid-
dleware infrastructures that allow secure access to massive amounts of data, to

72 J.H. Abawajy

 0

 50

 100

 150

 200

 250

 30 40 50 60 70 80 90 100 110 120

Me
an

 R
es

po
ns

e T
im

e (
se

c.)

Request Arrival Rate

Proportional
Affinity

NoReplica

Fig. 4. Sensitivity of the replication policies to arrival rate

move and replicate data and to manage coherence of data in Data Grid environ-
ments [8]. In this paper, we addressed one of these data management problems,
which is the file replication problem while focusing on the problems of strategic
placement of the replicas with the objectives of increased availability of the data
and improved response time while distributing load equally. We proposed a new
replica placement algorithm that distributes the request to all replicas in such a
way that data request processing parallelism is obtained. To the our knowledge,
no replication approach balances the load of data requests within the system
both on the network and host levels as well as to improve reliability. Our results
show that:

1. Replication improves the data access performance of the overall system as
measured by the response time. This observation concurs with results in the
literature.

2. Many factors including network related issues such as the rate of packet
losses affect the performance of replication approaches.

3. The placement of replicas in the system matters and it depends on several
factors including the rate of data request arrival and the size of files.

4. Balancing the data request among the replicas is important in improving the
performance.

The replica selection by individual users may dependent on a number of factors,
including the security policies of the sites which contains these replicas, queuing
and network delays, ease of access and so forth. These issues will be addressed
in future. The simplifying read only assumption makes it possible to initially
address the following question: What are efficient algorithms for creating and
disseminating replicas in a Data Grid. We are currently working with both read
and write aspects of the file replication strategy discussed.

Placement of File Replicas in Data Grid Environments 73

References

1. David, W. B., Cameron, D. G. , Capozza, L., Millar, A. P., Stocklinger, K., Zini,
F.: Simulation of Dynamic Grid Replication Strategies in Optorsim. In Proceedings
of 3rd Int’l IEEE Workshop on Grid Computing (2002) 46-57

2. David, W. B.: Evaluation of an Economy-Based File Replication Strategy for a
Data Grid, International Workshop on Agent based Cluster and Grid Computing
(2003) 120-126

3. Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman, K., Tierney, B.: File and
Object Replication in Data Grids. In 10th IEEE Symposium on High Performance
and Dis-tributed Computing (2001) 305-314

4. Li, B., Colin, M., Deng, X., Sohraby, K.: The Optimal Placement of Web Proxies
in the Internet. In Proceedings of IEEE INFOCOM (1999) 1282-1290

5. Hoschek, W., Janez, F. J., Samar, A., Stockinger, H., Stockinger, K.: Data Man-
agement in an International Data Grid Project. In Proceedings of GRID Workshop
(2000) 77-90

6. Ranganathana, K., Foster, I.: Identifying Dynamic Replication Strategies for a
High Performance Data Grid. In Proceedings of the International Grid Computing
Workshop. (2001) 75-86

7. EU Data Grid Project. http://www.eu-datagrid.org.
8. Chervenak, A., Foster, I. , Kesselman, C., Salisbury, C., Tuecke, S.: The Data

Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. Journal of Network and Computer Applications (2000)
187-200

9. Allocck, W., Foster, I., Nefedova, V., Chervnak, A., Deelman, E., Kesselman,
C. Lee, J., Sim, A., Shoshani, A., Tierney, B., Drach, B., Williams, D:. High-
Performance Remote Access to Climate Simulation Data: A Challenge Problem
for Data Grid Technologies (2001) 46-46

10. Particle Physics Data Grid (PPDG); http://www.ppdg.net.
11. Grid Physics Network (GriphyN); http://www.griphyn.org.
12. Lamehamedi, H., Szymanski, B., Shentu, Z., Deelman, E.: Data Replication Strate-

gies in Grid Environments. In Proceedings of 5th International Conference on Al-
gorithms and Architecture for Parallel Processing (2002) 378-383

13. Deris, M.M., Abawajy J.H., Suzuri, H.M.: An Efficient Replicated Data Access
Approach for Large-Scale Distributed Systems. To appear in IEEE International
Sympo-sium on Cluster Computing and the Grid (2004), April 19-22, Chicago,
Illinois, U.S.A.

14. Abawajy J.H.: An Integrated Resource Scheduling Approach on Cluster Comput-
ing Systems. In the Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (2003) 251-256

15. Ranganathan, K., Iamnitchi, A., Foste, I.T.: Improving Data Availability through
Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. In 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid (2002).
376-381

16. Holtman, K.: CMS Data Grid System Overview and Requirements. The Compact
Muon Solenoid (CMS) Experiment Note 2001/037, CERN, Switzerland (2001)

	Introduction
	System Model
	Problem Statement
	Replica Placement Service
	Proportional Share Replica Location Policy
	Affinity Replica Location Policy

	Performance Analysis
	Experimental Setup
	Results and Discussions

	Conclusions and Future Direction

