
Model-Based Approach to Tomographic
Reconstruction Including Projection Deblurring.
Sensitivity of Parameter Model to Noise on Data

Jean Michel Lagrange1 and Isabelle Abraham1
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Abstract. Classical techniques for the reconstruction of axisymmet-
rical objects are all creating artefacts (smooth or unstable solutions).
Moreover, the extraction of very precise features related to big density
transitions remains quite delicate. In this paper, we develop a new
approach -in one dimension for the moment- that allows us both to
reconstruct and to extract characteristics: an a priori is provided thanks
to a density model. We show the interest of this method in regard to
noise effects quantification ; we also explain how to take into account
some physical perturbations occuring with real data acquisition.
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1 Introduction

From the last ten years, teams of researchers have worked on tomographic re-
construction of objects from a very little number of views ; the final goal being
to delimit very precisely big transitions of density between the various materi-
als [15,8,20,19,23,9] (typically in angiography) and also to restitute good values
of the density field when the objects are not binary.

The general context of our study is the reconstruction, from a single X-ray
photograph, of an object with a symmetry of revolution ; here, we assume that
X-rays are parallel (because the objects are sufficiently far from the emitter)
and monoenergetic. This work is part of a hydrodynamic high yield test project
where we study the dynamic behaviour of objects constrained by shock waves
produced with explosives. Due to the very hostile experimental environment,
there is only a single X-ray machine. So as to make out the signals received on
detectors, we have to research, from the unique projection, the interfaces between
the different areas of the object in order to labellize a posteriori the materials.
Moreover, it is fundamental, for us, to estimate precisely their respective masses:
this operation implies a very good knowlegde of the density field ρ : IR3 −→ IR.
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The data we get in our experiences are formed in the following way:
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The attenuations of the X-ray beam are given by

att(x, z) = e
−
∫

l

µ
ρ (x,y,z)ρ(x,y,z)dl

where µ
ρ (x, y, z) is the attenuation coefficient at the point (x, y, z). As source

illumination is monoenergetic, we can define a reference attenuation coefficient
(µ

ρ )ref , constant everywhere in the spatial domain. This allows us to write:

att(x, z) = e
−( µ

ρ )ref

∫
l

µ
ρ

(x,y,z)

( µ
ρ

)ref
ρ(x,y,z)dl

= e
−( µ

ρ )ref

∫
l
ρref (x,y,z)dl

where ρref is the equivalent density of the reference material. The quantity

Y(x, z) =
∫

l

ρref (x, y, z)dl (1)

is defined as the projection of the equivalent object.

Remark 1. If ρref is known at each point (x, y, z) and if the materials are
labellized (very often thanks to expert analysis) then µ

ρ (x, y, z) is known and the
whole density field can be obtained using the following conversion:

ρ(x, y, z) = ρref (x, y, z) ×
(µ

ρ )ref

µ
ρ (x, y, z)

(2)

The datas Y of the reconstruction processes are biased by the systems of
production and acquisition of X-ray photons. The two main perturbations are
the additive noise on the projections and the presence of blur due to the
X source and the detector (see [18] for more details).

Under these hypotheses, tomographic reconstruction of axisymmetrical ob-
jects from a single projection is technically achievable [1] (thanks to axisym-
metry) but it remains very delicate: generally, this leads to an inverse problem
which is well known to be ill-posed in the sense of Hadamard [13] because the
solution sensitivity (to noise) is very high.

Historically, in this context, Abel proposed in 1826 [1] a method based on
the inversion of his tranform [3]. This approach has been improved more re-
cently [5] [14] [11] so as to decrease the artefacts generated by noise on projec-
tions. However, the results remain again too unstable.



Model-Based Approach to Tomographic Reconstruction 39

Some authors [14] [10] [16] proposed also to adapt classical techniques used in
“conventional” tomography (Fourier synthesis and filtered backprojection): the
idea is to duplicate the unique projection to simulate acquisition from a large
number of angles. All these reconstructions have in common to create loss of
resolution while correlating noise leading to difficult segmentations.

Thanks to an optimal meshing technique described in [7], it is also possible
to get, for each plane section of the object, a reconstruction by Generalized
Inversion based on a natural sampling in torus:

r
Y(x)

X(r)

ray l(x,.)

plane section 

with Y (x) = Y(x, .) and X(r) = X(
√

x2 + y2) = ρref (x, y, .). On each section,
we have a relation between Y and X given by Y = HX, where H is the pro-
jection matrix which is upper triangular and well conditionned. The solution is
then simple and easy to compute as it consists in matrix inversion and multi-
plication, but it is very unstable: the noise is amplified, merely near the axis of
symmetry [7].

The poor quality of the estimated density field lead to the introduction of
regularization processes. The very easy Tikhonov-based approaches [24] are not
efficient enough here because the solution is too smooth. Jean Marc Dinten [7]
used Random Markov Fields (in the definition of a priori energy in a MAP
criterium) allowing to decrease noise influence while preserving high density
transitions. His method is indeed efficient but their remain a lot of parameters
whose regulation is not straightforward.

The common characteristic of all the previous approaches is that they provide
an equivalent density field ρref which is not segmented in materials. So they ne-
cessit a supplementary process of labellization obtained after contour extraction
and expert analysis in order to correct the density thanks to equation 2. The
consequence is that additional uncertainties, inherent to the contour extractor,
are added on the final field ρ.

Moreover, the blur present on attenuations (see section 4) is not taken into
account (direct deblurring being not satisfactory) during the reconstruction pro-
cess. The main effect, as shown in section 4, is to modify the estimated masses
for all the materials.

In this paper, we propose a new approach where we introduce an a priori
on the shape of the objects: an axisymmetrical density model. First, we treat
a 1D technique where each plane section is processed in an independent way.
In our experiences of high yield hydrodynamic, the shock wave propagation and
multiple reflexion phenomena generate areas with approximatively linear varying
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Fig. 1. Example of 1D density model

densities. (which is confirmed by physicists expert analysis), so a 1D realistic
model, illustrated on figure 1, is built by juxtaposition of constant density areas
and of linear varying density areas.

In section 2, we detail this approach by fitting of model. In section 3, we
present a sensitivity study of the parameters of the deformable model in the case
where the data are noisy. This is compared with the uncertainties obtained when
we use the results of generalized inversion (that will be our reference method in
this paper). In section 4, an original way to achieve deblurring/reconstruction
from blurred data is exposed.

2 1D Reconstruction

We have presented, formerly, “classical techniques” for the reconstruction of a
plane section of an object in equivalent densities. We also have mentionned the
necessity to labellize the materials so as to correct their density.

We propose here a new approach that allows both to reconstruct and to
extract the searched characteristics of the objects (radiuses of interfaces ri and
densities dj as illustrated on figure 1) thanks to the introduction of an important
a priori on the density. If we denote ω ∈ IRn (where n is the number of parameters
of the 1D model) the vector of radiuses ri and of densities dj , x the pixels’
abscissa, Y (x) the data (areal masses) and projω(x) the projection model, the
problem of reconstruction can be stated as follow:

(P)






ω̃ = arg min
ω∈Ω

‖projω − Y ‖2
2 = arg min

ω∈Ω
(ε2)

(C) : θ(ω) ≥ 0,
Ω = {ω ∈ IRn / ωl ≤ ω ≤ ωu}

(3)

where ω̃ is the solution (P) that minimizes ε2 ; The constraints (C) are used to
limit the domain and to ensure the existence of all the areas during the process
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(it’s to say ri > ri+1, ∀ i). We can notice here that the criteria ε2 is defined
continuously on Ω and performs a sub-pixel reconstruction.

The analysis of minimization methods (simulated annealing [12], I.C.M. [2]
and gradient descents [4] [22] [21]), leads us to choose gradient descents under
inequality contraints because they are faster and easier to compute with con-
straints (Lagrange multiplier theory) ; they also preserve the continuous aspect
of the criteria.

The main problem is that projω, and consequently ε2, are C1 almost every-
where on Ω but on a finite number of points: we can show that ε2 is infinitely
differentiable with respect to the di and differentiable with respect to the ri ev-
erywhere but on ri = |x|, where x are the discrete positions of the data. So as
to get C1 class on Ω, we have proposed two kinds of regularizations.

Remark 2. We will denote A �
ω

B the convolution of A and B in Ω and A �
x

B

the result of a spatial convolution.

2.1 Regularization by Convolution

The main idea is to find a function h : IRn −→ IRn, C1 class on Ω, such that[
projω �

ω
h
]

is C1 on Ω. So, the new criteria defined by

ε2 =
∥
∥
∥
[
projω �

ω
h
]

− Y
∥
∥
∥

2

2
(4)

will have the desired property. An analysis of
[
projω �

ω
h
]

provides us a simple
expression for h:

h(ω) =
nr∏

i=1

h1D(ri) (5)

where nr is the number of interface radiuses and h1D a kernel defined on IR.
The kernel h1D can then be expressed in the following way:

h1D(r) =
1
β

× f

(
r − x

β

)

if x ∈ [r − β, r + β] (6)

(β is the regularization parameter), where f is a gaussian like function whose
support is [−1, 1].

This technique proved to be efficient as we have obtained the convergence
of the process of minimization of the energy given by equation 4 (for β > 1
numerically). But, as expected, the final solution depends sometimes severely on
the choice of the regularization parameter β.

2.2 Regularization with a Weighting Function

In the previous subsection, we provide a way to solve our minimization problem.
Unfortunately, we found that the final estimate of ω was unacceptably dependent



42 J.M. Lagrange and I. Abraham

on the regularization parameter β. Here, we propose a new manner to regular-
ize that is simpler and quite “transparent” (i.e. independent of regularization
parameters).

Let u : IR × Ω −→ IR be a function of class Cp, p ≥ 1, that equals zero in a
neighbourhood of all the singular points ri, then the criteria:

ε2 =
∑

x∈D

{

u(x, ω)
(
projω(x) − Y (x)

)2
}

, (7)

where D is the set of measure points, is Cp class on Ω.
The function u can be chosen as follow:

u(x, ω) =
nr∏

i=1

u(x, ri) (8)

where u(x, 0) is an even function, equaling 0 in [0, ε] and 1 in [kε,+∞[. Its graph
(and the one of its first and second derivative with respect to r) is given by:

This approach, much more faster than the previous, allowed us to solve our
minimization problem. Moreover, it appears that the final solution is quite in-
dependent of the choice of ε and k that we fix respectively at 1 and 3.

However, before reconstructing the object by 1D fitting, we must calculate
the optimal number of linear varying density areas. If we denote σ̃2 an estimate of
the noise variance, we demonstrated that this is number is correct if the optimal
value of the criteria ε2(ω̃) is close enough to σ̃2 and if the sensitivity (to noise
present on the projections) of the parameter ω (whose expression is given in the
next section) is small. For our objects, a model with eight parameters and two
linear-varying areas (see figure 1) is always optimal.

3 Sensitivity to Noise

Getting a good precision on the position of the interfaces is very important in our
context. If the function u defined in 2.2 is built to be C2 class on IR × IRn, then
the criteria given by equation 7 is C2 on Ω. The zero-crossing condition of the
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gradient of ε2 in an acceptable openset leads to an implicit system F (ω, Y ) = 0
where F is continuously differentiable and has an inversible jacobian matrix. Un-
der these conditions, the implicit functions theorem [6] guaranties the existence
of a function G (such that ω = G(Y )) that is differentiable with respect to Y (x)
and whose derivative is:

G′(Y ) =
(

∂2ε2

∂ωi∂ωj

)−1

(i,j)∈I2

×
(

∂2ε2

∂ωi∂Yj

)

(i,j)∈I×J

(9)

where I is the set {1...n}, J the set {1...N}, n the number of model parameters
and N the number of data Y (x).

In our case, we can assume that the additive noise on Y is gaussian, zero
mean, spatially uncorrelated and stationary ( ∼ NN

(
0, Σb = σ2 × IN

)
) so, the

differential expression dω = G′(Y )dY allows us to compute the covariance matrix
of ω:

Σω = G′(Y ) × Σb × G′(Y )t (10)

So as to compare the precision on interfaces obtained with the present model-
based approach and the classical approach (generalized inversion followed by
contour extraction), we have also established the law of positions for this latter.
This work is developped in an internal document whose main results are given
here. To illustrate these results we generate our data by projection of the model
given on figure 1.

So as to compare the two reconstructions (from model-based and classical
approaches) when the projections are noisy, we add a realistic gaussian noise
of standard deviation 8, as presented on figure 2. The comparison of the recon-
structions with fitting and generalized inversion are then illustrated on figure 3.
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Fig. 2. noisy projection of the model

The strong unstability of the reconstruction obtained by generalized inversion
(dotted lines) appears clearly whereas the model obtained by fitting (continuous
line) is very similar to figure 1. For fitting, the parameter standard deviations
(calculated with formula 10) are very low. We deduce absolute errors less than
2% for densities di, and the variation of the interfaces positions does not exceed
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Fig. 3. comparison of the reconstructions (Generalized inversion in dotted and our
approach in continuous line)

a half pixel. These results confirm the very good stability of reconstruction by
fitting. For generalized inversion, error on density is between 10 and 90% and
the standard deviation of interface position error is between 1 and 2 pixels.

We can conclude that our approach provides undoubtedly a very im-
portant increase in precision on the characteristic parameters that we are
looking for.

4 1D Deblurring of 2D Blur

Blur is mainly due to the fact that the X-ray transmitter is not a pinpoint source
of light; moreover, the detector acts as a low-pass filter. In the current section,
we suppose that the blur kernel H2D associated to those perturbations is circular
symmetric with a known shape (from a specific experience). The origin of this
perturbation is in the energy domain of X photons (i.e. attenuations of X photons
going through the object). So, the blurred projection Yblur is a function of the
ideal projection Y of the object and is defined by:

Yblur(x, z) = −
(

µ

ρ

)−1

ln
[

e− µ
ρ Y �

x,z
H2D

]

(x, z) (11)

This expression allows us to state a very important result: the total mass of the
blurred object (Mblur) is different from its real mass (M). This is due to the fact
that: [

Mblur =
∫

IR2
Yblur

]

	=
[

M =
∫

IR2
Y
]

(12)

and therefore M can’t be deduced directly from the data Yblur.
Mass retrieval of each materials constituting the object is one of the most

important goal of our study. So the necessity to deblur the projections Yblur is
evident. Classical operations like Wiener, RIF filtering, ... [17] do not provide
satisfactory results in our context because Y exhibits very high frequencies,
additive noise is quite white and blur kernels are quite narrow.
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In this section, we first deal with the general problem of the deblurring/
reconstruction in one dimension from a projection Yblur blurred with a kernel H
(formula 11 written in 1D). Afterwards, we develop the case of two kinds of 3D
objects for which this process is achievable.

4.1 The Problem in One Dimension

So as to introduce a deblurring operation during reconstruction by fitting, we
define the criteria in the following way:

ε2 =
∑

x∈D

[(
µ

ρ

)−1

× ln
(
e− µ

ρ projω �
x

H (x)
)

+ Y (x)

]2

(13)

In order to use a gradient descent to compute the solution of our problem, we
first need to verify the differentiability of ε2 with respect to ω, and so to analyse
its partial derivatives with respect to ωi:

∂ε2

∂ωi
=

2 ×
∑

x∈D

{[(
µ

ρ

)−1

. ln
(
e− µ

ρ projω �
x

H (x)
)

+ Y (x)

]

×




(
∂projω

∂ωi
.e− µ

ρ projω

)
�
x

H (x)

e− µ
ρ projω �

x
H (x)





}

(14)

If we denote attblur the blurred attenuation of the object given by:

attblur(x) =
∫

IR

(
e− µ

ρ projω(τ) × H(x − τ)dτ
)

(15)

then the only problematic term in the computation of the gradient is:
(

∂attblur

∂ωi

)

(x) =
((

∂projω

∂ωi

)

e− µ
ρ projω

)

�
x

H(x) (16)

because the derivatives of the projection do not exist for all the values of the
parameter ω. We have shown that, in fact, the main difficulty is generically
reduced to the case of a model with a constant density area whose parameters
are called r and D, for which the expression of the previous equation turns out
to be:

∂attblur

∂r
(x) = 2.D.r

∫ r

−r

( 1√
r2 − τ2

× e− µ
ρ projω(τ) × H(x − τ)dτ

)

=
∫ r

−r

K(r, τ, x)dτ (17)

The function K(., τ, .) can be integrated on [−r, r] so this expression shows that
ε2 is differentiable if the convolution integral is performed on a continuous do-
main. In conclusion, the criteria is numerically not differentiable with respect to
the ri.
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In the two following items, we demonstrate that, from the definition of a
non differentiable criteria, we can supply very good approximations of its “true”
gradient (i.e. calculated continuously as in 17) and so ensure the convergence of
the minimization scheme to the exact solution.

Explicit Computation of the Gradient. If we denote τ0 a positive integer
lower than r and belonging to the set D (the set of points of measure x defined
in 2.2), then a reformulation of equation 17 leads to:

1
2.D.r

.
∂attblur

∂r
(x) =

∫ τ0

−τ0

K(r, τ, x)dτ

︸ ︷︷ ︸
computation by Discrete

Fourier Transform

+
∫ r

τ0

K(r, τ, x)dτ

︸ ︷︷ ︸
first rest R1(x)

+
∫ −τ0

−r

K(r, τ, x)dτ

︸ ︷︷ ︸
R2(x) = R1(−x)

The first term is easily computable and the only difficult issue is the rest R1(x).
Thanks to an integration of R1(x) by parts, we finally get a numerically conver-
gent integral and then the searched approximation of the gradient.

The main drawback of this method is that we must have a formal expression
of the blur kernel H, which is not the case in general.

Computation in the Fourier Domain. Let’s recall the main problem in
equation 16: the generic expression ∂projω

∂r (x) does not exist for all x. But, its
Fourier Transform is defined everywhere and is given by its cosine transform:

̂∂projω

∂r
(f) =

∫ r

−r

1√
r2 − x2

× cos(2πxf)dx =
∫ π

0
cos(2πrfcos(θ))dθ = π × J0(2πrf)

We can now write the computation of blurred attenuation (eq. 17) if we adopt
the following process:






∂attblur

∂r (x) =
(

∂projω

∂r × e− µ
ρ projω

)
� H(x)

FT ↓ DFT ↓ ↓ DFT

̂∂attblur

∂r (f) =
(
̂∂projω

∂r �
̂

e− µ
ρ projω

)

× Ĥ(f)
(18)

where the convolution, in the Fourier domain, between ̂
e− µ

ρ projω and ̂∂projω

∂r uses

a sampling of ̂∂projω

∂r ; ∂attblur

∂r is given by the inverse DFT of ̂∂attblur

∂r , which
finally allows us to provide an approximation of the gradient of ε2.

If we compare this technique with the one presented previously, we can notice
that we don’t have to know continuously the blur kernel H. The only constraints
come from the sampling of the Fourier Transform of ∂projω

∂r . It is indeed vanishing
very slowly, so the cancellation of high frequencies generates small artefacts.
However, these perturbations remain low enough not to disturb the minimization
process. This approach is moreover the fastest one.

In the following two subsections, we deal with two kinds of 3D objects for
which an extension of 1D deblurring/reconstruction by fitting is possible and
moreover, once again, exact.
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4.2 Application to “3D Cylindrical Objects”

For this kind of object, the projections Y are independent of z, so we can identify
the 1D projection Y (x) to Y(x, z) ,∀z. So as to be able to use the previous results,
we must search an expression relating the kernel H2D applied to Y to a 1D kernel
denoted H (that will be convolved with Y ) that verifies:

Yblur(x, z) = Y �
x,z

H2D(x, z) = Y �
x

H(x) ,∀z (19)

This kernel H is known to be the Abel Transform [3] of H2D and is given by:

H(x) =
∫ ∞

x

(
2y × H̃2D(y)
√

y2 − x2

)

dy = AT
[
H2D

]
(x) (20)

with H̃2D(
√

u2 + v2) = H2D(u, v), ∀(u, v) ∈ IR2.
With this new definition of the criteria to be minimized:

ε2 =
∑

x∈D

[(
µ

ρ

)−1

ln
(
e− µ

ρ projω �
x

AT
[
H2D

]

︸ ︷︷ ︸
H

(x)
)

+ Yblur(x, .)

]2

(21)

the problem is then well posed.
The results we have obtained with this technique are flagrant because, if the

blur kernel is known, the reconstruction by model fitting is then exact, whereas
classical techniques provide a very smooth reconstruction, often far from the
object. An example is illustrated on next figure where our exact reconstruction
is drawn in continuous lines and the reconstruction obtained by generalized
inversion is in dotted.

4.3 Application to 3D Spherical Objects

In this case, the 2D data Y are the projections of a spherical axisymmetrical
object. They are then circular symmetrical, centered at the point (c, c) and Y
can be defined by Y(x, c). If we use here a property of the Hankel Transform [3]
(denoted HT ), we get:

HT [Yblur(., c)] (q) = HT

[

Y �
x,z

H2D(., c)
]

(q) = HT [Y ] (q)×HT
[
H̃2D

]
(q) (22)
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where H̃2D is given by formula 4.2. This expression allows us to identify H:

HT [H] (q) = HT
[
H̃2D

]
(q) (23)

The problem is then well posed if we formulate the criteria ε2 as

ε2 =
∑

x∈D

[

−
(

µ

ρ

)−1

ln
{

HT−1(HT
[
e− µ

ρ projω

]
×HT

[
H̃2D

])
(x)
}

−Yblur(x, c)

]2

We demonstrate, thanks to relation 4.3, that the reconstruction is indeed
achievable. But the processing of direct and inverse Hankel Transforms remains
a delicate problem and extensively increases computation time.

5 Conclusion

In this paper, we have presented an original approach to the problem of tomo-
graphic reconstruction of an axisymmetrical object from one view. First, we have
developped a 1D study where we deform a simple model of the object based on
a description in density areas. We have described the formal aspects of the re-
construction and proposed two efficient regularizations allowing to minimize the
derived energy by gradient descent under inequality constraints. We have also
studied the bias generated by the noise on projections ; moreover, we have pro-
posed a new formulation of the problem that enables us to deblur the projections
during the reconstruction by fitting. In each case, we have compared our results
to a reconstruction with generalized inversion ; we have obtained an important
improvement in precision on the characteristic parameters we are looking for.

Our future works deal with the warping of a fully 3D axisymmetrical model of
the objects. We are now working on the construction of smooth 3D density fields
inserted between axisymmetrical surfaces under hypotheses of quasi linearity of
the density.
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