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Abstract. We present a probabilistic algorithm for finding correspon-
dences across multiple images. The algorithm runs in a distributed set-
ting, where each camera is attached to a separate computing unit, and
the cameras communicate over a network. No central computer is in-
volved in the computation. The algorithm runs with low computational
and communication cost. Our distributed algorithm assumes access to a
standard pairwise wide-baseline stereo matching algorithm (WBS) and
our goal is to minimize the number of images transmitted over the net-
work, as well as the number of times the WBS is computed. We employ
the theory of random graphs to provide an efficient probabilistic algo-
rithm that performs WBS on a small number of image pairs, followed by
a correspondence propagation phase. The heart of the paper is a theoret-
ical analysis of the number of times WBS must be performed to ensure
that an overwhelming portion of the correspondence information is ex-
tracted. The analysis is extended to show how to combat computer and
communication failures, which are expected to occur in such settings,
as well as correspondence misses. This analysis yields an efficient dis-
tributed algorithm, but it can also be used to improve the performance
of centralized algorithms for correspondence.

1 Introduction

Settings with large numbers of cameras are spreading in many applications of
computer vision, such as surveillance, tracking, smart environments, etc. [11,
7,16,5] Existing vision applications in a multi-camera setting are based on a
central computer that gathers the information from all cameras, and performs
the necessary computations. In some cases, part of the computation is performed
locally at the cameras’ sites (e.g., feature detection or local tracking), and then
the overall solution is computed by the central computer.

Controlling a large application involving many cameras by a central server
has the advantage that the computation, once performed, is reliable and can
utilize all of the information in one place. But it has disadvantages that often
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outweigh the advantages. First, since many vision applications require a signif-
icant amount of computation, centralized solutions are often not scalable: their
performance degrades as the number of sites grows. In addition, the server can
become a communication hot-spot and possible bottleneck. Finally, the central
server is a single point of failure. If it fails or is unreachable for a while, the
applications it governs may fail. Moreover, the possibility of temporary failures
grows when the system is dynamic and, for example, cameras occasionally join
or leave the system, or move from one place to another. These disadvantages
of the centralized approach motivate an investigation of techniques for solving
computer vision applications that are not based on a central server. The pro-
cessing units at different cameras communicate among themselves and perform
whatever computations may be needed in the application. The scenario in which
many of the cameras are attached to reasonably powerful computing devices is
quite realistic, and supports this approach.

In this paper we present a distributed approach to computing multi-image
correspondence in a multi-camera setting. Such correspondence forms the basis
of many important visual tasks, such as calibration, 3D scene reconstruction,
and tracking. One way to compute multi-image correspondence is by computing
correspondence between pairs of images, using a Wide-baseline Stereo (WBS)
algorithm.1 Computing WBS for all pairs, which clearly guarantees obtaining
full correspondence, is costly in terms of both communication and computation.
Moreover, the computation becomes intractable when a large setting with hun-
dreds or even thousand of cameras is considered. An alternative is to perform
WBS computations on only some of the pairs, and then use the transitivity
of correspondence to obtain further correspondence information among images
that were not compared directly. A key aspect of such an algorithm is the choice
of image pairs to which the WBS algorithm will be applied.

Our solution is distributed: every camera is involved in a limited amount
of communication and performs only a small number of WBS computations.
Propagation of the correspondence is performed by local communication between
cameras. Nevertheless we are guaranteed that, with high probability, the full
correspondence information is obtained for the vast majority of points at the
end of the propagation process. Our solution can be tuned so that it will tolerate
communication failures, processor failures, and failure of the WBS computations
to identify corresponding points in overlapping images.

A key element in the efficiency of an algorithm such as ours is in the choice of
which WBS computations to perform. We employ the theory of random graphs
in order to obtain a drastic reduction in the number of such computations each
camera performs. Further reduction is obtained when there is information regard-
ing cameras that do not view overlapping regions. Finally, we tune our algorithm
to capture correspondence information for points that are seen by many cam-
eras. In a multi-image setting, the number of images in which a feature point p
appears is important. We call this the degree of exposure, or exposure for short,

1 We use the WBS computation as a black box; a better solution to WBS will improve
the performance of our scheme.
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of p. Applications that use correspondence information typically obtain much
greater benefit from points with high exposure than from ones with low expo-
sure (e.g., Bundle Adjustment [23]). Accordingly, our algorithm is designed to
accept an exposure parameter k and will be tuned to find the correspondence
information of points with degree of exposure that is greater than or equal to k.
The algorithm has the following features:

1. Every camera i performs a small number si of WBS computations;
2. cameras exchange correspondence information for at most log2 k rounds; and
3. for every feature point p with exposure degree k or more, with probability at

least 0.99 all cameras that view p obtain the full correspondence information
regarding p.

As we show, when there is sufficient information about the relative locations
of cameras, si may be c · log2 k for some constant c. Since WBS computations
are dominant in this application, the algorithm will then terminate in time that
is proportional to log2 k. Our approach is probabilistic, rather than heuristic.
Moreover, its success is guaranteed with high probability for every given set of
images (provided that the WBS algorithm is error-free).

The algorithm is designed in such a way that no single failure can impact
the quality of the correspondence information obtained in a significant way.
Moreover, it is robust in the sense that it degrades gracefully as the number
of failures grows. We extend the algorithm to handle unreliable systems with
communication failures, processor failures, and failure of the WBS computations
to identify corresponding points in overlapping images. Roughly speaking, in
order to overcome a failure rate of f < 1 of the communication channels (resp. a
portion of f < 1 of the cameras crashes, or a portion of f < 1 of the matches are
false-negative errors by the WBS), an increase of roughly 1

1−f in the number
of WBS computations leads to the same performance as in a system with no
failures. Hence, to overcome a high failure rate of 10%, the cameras need to
perform only 12% more work!

While originally motivated by the quest for a distributed solution, our proba-
bilistic analysis can be applied to reduce the number of WBS computations even
when correspondence is computed on a single computer. That is, our algorithm
can be simulated on a centralized computer (replacing the propagation step by a
simple transitive closure computation) to improve the efficiency of computation
of existing centralized algorithms.

The question of how to reduce the number of WBS computations performed
in the centralized setting has been addressed by Schaffalitzky & Zisserman [21].
They suggested a heuristic approach to this problem: first single-view invariants
are computed and mapped to a large feature vs. views hash table. The hash
table can then guide the greedy choice of the pairs on which to compute WBS,
resulting in run-time complexity of O(n) WBS computations, where n is the
number of cameras.

This paper makes two main contributions. One is in providing a reasonably
efficient solution to the multi-image correspondence problem in a distributed
system with no central server and no single point of failure. The second is in
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employing the theory of random graphs in order to reduce the number of WBS
computations needed to obtain a useful amount of correspondence information.

2 Previous Work

There have recently been a number of significant advances on the subject of
Wide-baseline Stereo (WBS), in which computations involving a small number
of images are used to extract correspondence information among the images [24,
1,17,20,6,15].

Schaffalitzky & Zisserman [21] and then Ferrari et. al. [10] suggested methods
for wide baseline matching among a large set of images (on the order of 10 to
20 cameras). They both suggested methods for extending the correspondence
of two (or three) views to n views, while using the larger number of views to
improve the pairwise correspondence. Their algorithms are designed to run on a
central computer. Levi & Werman [12] consider the problem of computing the
fundamental matrices between all pairs of n cameras, based on knowing only the
fundamental matrices of a subset of pairs of views. Their main contribution is
an algebraic analysis of the constraints that can be extracted from a partial set
of fundamental matrices among neighboring views. These constraints are then
used to compute the missing fundamental matrices.

In recent years various applications of multi-camera settings with a central
computer are considered. These include various tasks such as surveillance, smart
environments, tracking and virtual reality. Collins et al. [7,8] report on a large
surveillance project consisting of 14 cameras spread over a large compound. The
algorithm they used for calibration, which was based on known 3D scene points
[8], was performed on a central server. The virtual-reality technology introduced
by Kanade et al. [16,19] uses a multi-camera setup that can capture a dynamic
event and generate new views of the observed scene. Again, the cameras were
calibrated off-line using a central computer. Smart environments [5,13] consist of
a distributed set of cameras spread in the environment. The cameras can detect
and track the inhabitants, thus supporting higher-level functions such as con-
venient man-machine interfacing or object localization. Despite the distributed
nature of these systems, the calibration of the cameras is usually done off-line
on a central processor.

Karuppiah et al. [11], have already discussed the value of solving multi-
camera computer vision problems in a distributed manner. They constructed
a four-camera system and experimented with tracking and recognition in this
system, showing the potential for fault-tolerance and avoiding a single point of
failure.

While the literature contains little in the way of distributed solutions to com-
puter vision applications, the literature on distributed systems and distributed
computing has addressed many issues that are relevant to a task of this type.
They involve methods for failure detection and fault-tolerant execution of com-
putations, algorithms for leader election and consensus, etc. A good overview of
the issues can be found in Tanenbaum and van Steen [22] and in the collection
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by Mullender [18]. A comprehensive source for distributed algorithms can be
found in Lynch [14] and a useful treatment of issues relating to data replication
is the book by Bernstein et al. [2].

3 The Algorithm

We assume a set {1, . . . , n} of cameras overlooking a scene. Each camera has a
processing unit attached to it, and the cameras can communicate over a point-
to-point communication network. We further assume that the communication
network is complete so that every camera can communicate directly and reliably
with every other camera. We denote by Mi the number of cameras with which
camera i can have corresponding points and let mi denote the size Mi. Initially,
we assume that the WBS computations are noise and error free: A WBS com-
putation performed on a pair of images identifies two locations in the images as
being corresponding exactly if there is a genuine feature point p that appears
in the stated coordinates in the respective images. We relax these reliability
assumptions in Section 5.

Our distributed algorithm is defined in terms of an exposure parameter k,
and is designed to discover the vast majority of points with an exposure size
k or more. Each camera maintains a list of its own feature points and their
corresponding points in other cameras. At each propagation step, each camera,
propagates any new correspondence information to all the cameras with which
it has established corresponding points. Each camera has to run the following
algorithm, given the exposure parameter k.

1. Initialization
Randomly choose a set S ⊂ Mi of cameras of size

si = miτ(k) ≈ mi
log k + 5

2k
, (1)

and request their images.
2. Pairwise Matching

For every camera j from which an image has been received, perform a WBS
computation between i’s image and j’s , record its results in the local cor-
respondence lists, and send the results to j. Concurrently, for every request
for an image, send you image to the requesting camera and later record the
result when you receive them in the correspondence lists.

3. Correspondence Propagation
This stage proceeds in rounds of communication. In the first round, for every
point pi = (xi, yi) in camera i’s image that has been matched with more
than one point by the WBS computations, i performs a propagation step.
In every subsequent round, i performs propagation steps for every point pi for
which it received new correspondence information in the most recent round.
The propagation is terminated when no new correspondence information
received.
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One of the main contributions of the algorithm is in equation 1 that expresses
the number of WBS computations as a function of the exposure parameter k.
As for mi, it is equal to n in case no prior information is available, but in many
cases, we do initially have information regarding which images potentially have
corresponding points, and which do not. Reducing the value of mi means a
smaller number of WBS computations, as is evident from equation 1. Consider,
for example, a situation in which cameras are located around a hill or a rooftop.
They may cover the surrounding scene quite effectively, while every camera has
a limited number of relevant neighbors to consider for correspondence. There
is another source that may reduce the size of Mi. Some recent approaches to
computing multi-view correspondence contain a preprocessing stage in which
images are ranked for likelihood of correspondence (e.g., [21]). The result of
such a stage can reduce the sets Mi.

4 Probabilistic Analysis of the Algorithm

The probabilistic analysis will show that the above algorithm will detect all
points with exposure factor great or equal to k with probability 99%. Furthere-
more, it will show that only log2(n) propagation steps are needed, at most, for
the algorithm to terminate.

We represent the state of information that the cameras attain regarding the
multi-view correspondence of feature points by a labeled multi-graph, which we
denote by G. There is a node in G for each camera. There is a labeled edge,
({i, j}, p), between nodes i and j if p is an established corresponding point of
the images of i and j. Initially, the graph has no edges. After the first phase, in
which WBS computations are performed, the graph contains edges only among
images that were compared directly by a WBS computation. Additional edges
are added to G in the propagation phase.

Let us begin by considering the behavior of the algorithm in terms of dis-
covering the correspondence information of a single 3D feature point p. Let us
call the set of cameras that view the point p the p-set. All of the correspon-
dence information regarding p will be uncovered exactly if, at the end of the
propagation process, every pair of cameras in the p-set will share a p-edge. To
analyze the algorithm’s behavior with respect to p it is convenient to consider
the p-graph Gp derived from G that is defined by the p-set and the p-edges of G.
More formally, Gp = (Vp, Ep) where Vp is p-set—the set of cameras that view p,
and Ep consists of the edges {i, j} for which ({i, j}, p) is in G. We refer to the
state of Gp after the matching step of the algorithm by Gp(0), and after r ≥ 1
rounds of propagation by Gp(r).

4.1 Analysis of Propagation

We now prove that if Gp(0) is connected, then propagation will uncover the full
correspondence information regarding p. Moreover, this will be done within a
small number of rounds of propagation.



434 S. Avidan, Y. Moses, and Y. Moses

Lemma 1. If the distance between nodes i and j in Gp(0) is d, where 2r−1 <
d ≤ 2r, then their distance in Gp(r) is 1.

a b c

Fig. 1. (a) Gp(0)—the distance between v1 and v5 is 4. (b) Gp(1)—the distance is
reduced to 2, and (c) in Gp(2) the distance is 1.

Proof. Consider two vertices v1 and vd+1 that are distance d apart. Let v1, ..., vd+1
be a path connecting these points in Gp(0). In the first round of the propaga-
tion algorithm node v2 will update node v1 that v3 also views the point p, and
similarly node v2 will also update node v3 that v1 views the point p (see Figure
1). As a result, nodes v1 and v3 both update their local p-lists, and the edge
{v1, v3} is added to Gp. In a similar manner, all edges between vi and vi+2,
i ≤ d + 1, are added to Gp. It follows that after a single round of propagation,
the path v1, v3, v5, ..., vd+1 connects v1 and vd+1 in the graph. As a results, the
distance between v1 and vd+1 is shortened by a factor of two, and it is �d

2�. A
straightforward induction shows that the distance between v1 and vd is reduced
to 1 after �log2(d)� = r steps.

Corollary 1. Suppose that Gp(0) is connected. If the diameter of Gp(0) is d,
then Gp(�log(d)�) is a complete graph (its diameter is 1).

Since d ≤ k ≤ n is guaranteed, Corollary 1 implies that there is no need to
ever run the propagation algorithm for more than �log(n)� rounds.

Corollary 2. If camera i does not receive a new update regarding the point p in
round r of the propagation phase, then i will never send or receive any further
updates about p.

Corollary 1 proves that propagation is guaranteed to terminate for all points
within a small logarithmic number of rounds. Moreover, by Corollary 2 every
camera can easily detect when its propagation phase is done.

4.2 The Number of WBS Computations

As we have seen, if Gp(0) is connected then the propagation phase of the algo-
rithm will discover the correspondence information regarding p. Clearly, if Gp(0)
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Fig. 2. The graph G with cameras that view the points p1, p2, and p3. The graphs Gp1 ,
Gp2 , and Gp3 are marked with red, black, and green edges, respectively. The edges of G
span each of the derived graphs Gpi .

is not connected, then only partial information will be discovered. In this section
we determine the precise number of cameras that are selected in the initial-
ization step of the algorithm by showing that it will ensure connectedness. We
base the discussion here on the theory of random graphs, which was initiated
in a paper by Erdös and Rényi [9]. Consider a random process in which each of
the

(
N
2

)
undirected edges of a graph on N nodes is chosen independently with

probability ρ > 0. The resulting graph is denoted by G(N, ρ).

Lemma 2. (a) Let ρ̂(N) = 0.577+ln N
N . The probability that G(N, ρ̂(N)) is con-

nected tends to 1 as N tends to ∞. More concretely, for small values of N
we have

(b) Let ρ(N) = 4.61+log N
N . The probability that G(N, ρ(N)) is connected is greater

than 0.99 for all values of N ≤ 40, 000

The first part of the lemma is a classical result in the field, while the results
in the second part are from Bollobás and Thomason[4], as they are quoted in
the excellent textbook by Bollobás [3]. Since we are unlikely to be interested in
computing correspondence for points that are seen by more than 40,000 cameras,
the second part gives us very good bounds to work with: For our purposes, if p has
exposure degree k and each pair of nodes in the p-set is chosen with probability
at least ρ(k) for a WBS computation, then we have high assurance (over 0.99
probability!) that Gp(0) will be connected.

For independent probabilistic events A and B, we have that Pr(A ∪ B) =
Pr(A) + Pr(B)−Pr(A) Pr(B). An edge is chosen if one of its nodes selects it. In
the algorithm, if every node selects the edge with probability τ(k), then we need
to ensure that 2τ(k) − τ2(k) ≥ ρ(k) in order to guarantee edges are chosen with
sufficient probability. The exact formula for τ(k) is thus τ(k) = 1 − √

1 − ρ(k).
However, τ(k) tends to ρ(k)

2 in the limit, and for all k ≥ 10 we have τ(k) <

0.6ρ(k). So τ(k) is essentially ρ(k)
2 .

Our analysis so far has been in terms of connectivity of the graph Gp(0).
Indeed, working with Gp rather than G is crucial since guaranteeing that G
is connected would not immediately yield Gp’s connectivity. (Figure 2 is an
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example showing that not every spanning graph of G induces spanning graphs
of all of the graphs Gpi .) However, the correspondence algorithm works at the
level of the graph G on all cameras, with no a priori knowledge about the identity
of the p-sets. Working at this level, if every edge is chosen with probability at
least τ(k) then, in particular, every edge among members of the p-set is chosen
with this probability. The desired property for ensuring connectivity of Gp(0)
is thus satisfied. Actually, much more is true. Connectivity of Gq(0) is ensured
with high probability at once for all points q with exposure degree k or more!
In particular, Lemma 2(b) implies that in this case the algorithm will find the
correspondence information for at least 99% of these points.

In the algorithm, we guarantee that a camera i chooses each edge with prob-
ability at least τ(k) by having it randomly choose a subset of Mi of size si where
s

mi
≥ τ(k). Choosing a subset of the neighbors of a predetermined size has the

advantage that we can control the number of WBS computations that every
node performs. In summary, we have

Theorem 1. Executing the correspondence algorithm with parameter k will,
with high probability, yield the full correspondence information for at least 99%
of the points that have exposure degree k or larger.

5 Dealing with System Failures

In this section we consider the properties of our algorithm when executed on
an unreliable distributed system. We start with a classical analysis of processor
crashes and communication failures but show that the analysis can be naturally
extended to handle mis-matches by the WBS as simply another type of failure.

5.1 System Crashes

Let us first consider crashes. Assume that some of the cameras may crash during
the operation of the algorithm. We assume further that the cameras use a timeout
mechanism to identify that a processor is down. Clearly, if i is in a p-set and
it crashes early on, we do not expect to necessarily discover the correspondence
information regarding i’s image. Define the surviving degree of a feature point p
to be its exposure degree if we ignore the cameras that crash. Crashed cameras
do not participate in the algorithm, and their crashing does not affects the
interactions among the surviving cameras. The original algorithm, unchanged,
is thus guaranteed to discover all information for the point with surviving degree
of k.

5.2 Communication Failures

Now consider communication failures. We assume that each channel between
two cameras can fail with independent probability f < 1, after which it stays
down for the duration of the algorithm. Again, our timeout mechanism can
allow the cameras to avoid being hung waiting for messages on failed lines.
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The worst-case behavior of a failing communication line is to be down from
the outset. Since communication line failures are independent of the choices of
WBS computations made by the camera, the probability that an edge that is
chosen by the cameras with probability ρ will also be up is (1 − f)ρ. Hence,
we can increase ρ by a factor of 1

1−f and make the random graph resulting
from the joint behavior of the cameras choices and the adversary’s failures have
the exact same structure as it originally. This translates into the choice of a

neighbor with probability τ ′(k) = 1 −
√

1 − ρ(k)
1−f instead of τ(k). In the range of

20 ≤ k ≤ 50, overcoming 10% failures requires between 13% and 11% overhead,
and to overcome a huge 25% probability of failure it suffices to choose between
40% and 36% more cameras than in the fully reliable case.

This discussion is summarized as follows.

Theorem 2. (a) Executing the correspondence algorithm unchanged with pa-
rameter k when camera crashes are possible will, with high probability, yield
the full correspondence information for at least 99% of the points that have
surviving exposure degree k or larger.

(b) When communication channels may fail with probability f < 1, executing
the algorithm with τ ′(k) ≈ 1

1−f τ(k) instead of τ(k) will, with high probabil-
ity, yield the full correspondence information for at least 99% of the points
that have exposure degree k or larger. Moreover, it will not require more
computation than the original algorithm does.

5.3 Failure of WBS to Detect Matches

We next consider failures of the WBS computation to identify the fact that a
feature point appears in two images being compared. Here we suppose that our
WBS algorithm will fail to identify a match with independent probability f < 1.
The situation here is very similar to the case of communication failures. Again,
the probability that an edge of Gp will be discovered by the first part of the algo-
rithm is (1 − f)ρ if edges of G are chosen with probability ρ. By the analysis we
performed in the case of communication failures, choosing τ ′(k) instead of τ(k)
images to compare with will provide us with the original guarantees. This time,
however, all τ ′(k) computations and communications must be carried out. The
total overhead is then roughly 1

1−f :

Theorem 3. When WBS computations may fail to identify a match with inde-
pendent probability f < 1, executing the algorithm with τ ′(k) ≈ 1

1−f τ(k) instead
of τ(k) will, with high probability, yield the full correspondence information for
at least 99% of the points that have exposure degree k or larger.

We remark that this analysis is applied to false-negative errors. Coping with
false-positives—mistaken matches reported—can be done using distributed sys-
tems’ techniques for handling malicious failures. This analysis is beyond the
scope of this paper and is left as a topic for future work.
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6 Experiments

Our analysis ensures that the algorithm will indeed recover the correspondence.
However, the analysis is very conservative, and in practice smaller numbers of
WBS computations should suffice. We validated this expectation through exten-
sive simulations in MATLAB. Our scenario is a surveillance system in an urban
setting and thus our simulated test-bed consists of a collection of orthographic
cameras that are mounted on roof-tops looking down. Each camera observes all
the feature points within a pre-defined distance from its position. To ensure that
all the cameras form a single connected component, we enforce overlap between
the image footprint of the different cameras, on the ground.

In every experiment we run the algorithm with precisely the same data,
but with a different number of WBS operations. The experiments show that
the predicted number of required WBS operations is indeed sufficient, but even
smaller numbers can be used.

To evaluate the success of each run, we define the average number of recovered
points for each exposure. A given point p is recovered if each camera in the p-set
knows the identity of all cameras in the p-set. In particular, let p be a point with
exposure degree k, and for every i denote by Li(p) is the size of i’s correspondence
list for p. Then observe that 1

k2

∑
Li(p) = 1 if p is fully recovered, and this value

is smaller than 1 if p is only partially recovered.
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Fig. 3. The number of recovered points for each exposure degree, Ẽ(k). Red is the
number of points with given exposure. Blue is the average portion of correspondence
found after the matching phase, and green is the portion after propagation. The ex-
periment was run on a reliable system with 50 cameras and 500 points. (a) the results
when using 3 WBS per camera, (b) when using 6 WBS and (c) when using 12.

Let E(k) be the set of 3D points with an exposure degree k. Ideally, if all
the points in E(k) are recovered, then the number of points with exposure k is
given by:

Ẽ(k) =
1
k2

∑

p∈E(k)

Li(p)
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We use the measure Ẽ(k) to evaluate the success of extracting the correspon-
dence: when all the connections are recovered then |E(k)| = Ẽ(k).

For each exposure degree k, we present three values of Ẽ(k). The first, red
bar, is the real number of points for each exposure degree. The second, green
bar, is the final result of our algorithm. It is the number of computed recovered
points at the end of the run. If all points for a given exposure were uncovered,
then the green bar will cover the red bar. Finally, blue bar, is the value after
WBS operation, that is only direct edges in the graph are considered.

The first experiment was designed to verify the bound on the number of
required WBS operations. We generated a setup of 50 cameras and 500 points
(Figure 3a) and simulated the behavior of the algorithm five times, changing
the number of WBS each time. As can be seen in Figure 3a, using just three
WBS does not generate enough matching points and hence the algorithm does
not fully recover any of the p-sets. As the number of WBS performed grows,
the number of fully recovered p-sets grows. In Figure 3b and 3c, we present the
results of running 6 and 12 WBS. As can be seen, the exposure degree from
which full correspondence is obtained is reduced when we use the number WBS
a camera performs increases. In Figure 3b, we present the smallest degree which
all the p-sets of the degree were fully recovered.
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Fig. 4. (a) The setup with 50 cameras and 500 points. Each point is marked in blue,
and each camera center is marked in red. The field of view of one of the cameras is
marked in pink. (b) Full recovery with 20% errors of the WBS in red, and with no
errors in black.

In the second experiment we evaluated our algorithm when the WBS algo-
rithm failed to find 20% of the natchings. The same set of cameras and points as
in the first experiments were used, in order to compare the performance using
perfect and imperfect WBS. The results are presented in Figure 4.
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7 Summary

Visual systems consisting of a large number of geographically distributed cam-
eras are, in particular, distributed computing systems. Information is generated
and gathered at different sites, and a communication medium is used for inte-
grating the data being gathered. We have shown how a particular application,
namely image correspondence across multiple cameras, can be done in a dis-
tributed manner.

This approach allows us to use results from distributed systems theory to an-
alyze the complexity of the distributed algorithm. In particular, we have shown
what is the number of pair-wise stereo matching computations required to de-
tect, with high probability, all points that appear in a given number of cameras.
Moreover, the analysis carries naturally to the centralized case as well. Our
distributed approach combines naturally failures in the communication lines,
processing units and the stereo matching algorithm in a single, coherent frame-
work. So, we have started with a distributed approach which, we believe, should
be the natural way to approach large scale camera settings and ended with con-
tributions to centralized algorithms. We plan to apply this distributed analysis
to other problems in computer vision.
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