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Abstract. Catadioptric omnidirectional sensors, consisting of a cam-
era and a mirror, can track objects even when their bearings change
suddenly, usually due to the observer making a significant turn. There
has been much debate concerning the relative merits of several possible
shapes of mirrors to be used by such sensors.
This paper suggests that the conical mirror has some advantages over
other shapes of mirrors. In particular, the projection beam from the cen-
tral region of the image is reflected and distributed towards the horizon
rather than back at the camera. Therefore a significant portion of the
image resolution is not wasted.
A perspective projection unwarping of the conical mirror images is devel-
oped and demonstrated. This has hitherto been considered possible only
with mirrors that possess single viewpoint geometry. The cone is viewed
by a camera placed some distance away from the tip. Such arrangement
does not have single viewpoint geometry. However, its multiple view-
points are shown to be dimensionally separable.
Once stereopsis has been solved, it is possible to project the points of
interest to a new image through a (virtual) single viewpoint. Successful
reconstruction of a single viewpoint image from a pair of images obtained
via multiple viewpoints appears to validate the use of multiple viewpoint
projections.
The omnidirectional stereo uses two catadioptric sensors. Each sensor
consists of one conical mirror and one perspective camera. The sensors
are in a coaxial arrangement along the vertical axis, facing up or down.
This stereoscopic arrangement leads to very simple matching since the
epipolar lines are the radial lines of identical orientations in both omni-
directional images.
The stereopsis results on artificially generated scenes with known ground
truth show that the error in computed distance is proportional to the
distance of the object (as usual), plus the distance of the camera from
the mirror. The error is also inversely proportional to the image radius
coordinate, ie. the results are more accurate for points imaged nearer the
rim of the circular mirror.
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1 Introduction

Autonomous navigation, site modelling and surveillance applications all benefit
from using panoramic 360◦ images. Omnidirectional visual sensors produce such
images. Early attempts at using omnidirectional sensors included camera clus-
ters [1] and various arrangements of mechanically rotating cameras and planar
mirrors, [2], [3], [4]. These mostly had problems with registration, motion, or
both. Fisheye lens cameras have also been used to increase the field of view [5]
but they proved difficult because of their irreversible distortion of nearby objects
and the lack of a single viewpoint, explained below.

Catadioptric sensors [6] consist of a fixed dioptric camera, usually mounted
vertically, plus a fixed rotationally symmetrical mirror above or below the cam-
era. The advantages of catadioptric sensors derive from the fact that, unlike
the rotating cameras, their ‘scanning’ of the surroundings is moreless instan-
taneous. (The camera exposure time is usually shorter than the full rotation
time). Shorter exposure means fewer image capture problems caused by motion
and vibration of the camera, or by moving objects.

The suitability for use in dynamic environments is clearly an important con-
sideration, especially as one of the chief benefits of omnidirectional vision in
general is the ability to retain objects in view even when their bearings have
changed significantly. Catadioptric omnidirectional sensors are ideally suited to
visual navigation [7], visual guidance applications [8], using stereopsis, motion
analysis [9], and site mapping [10].

The problem with catadioptric sensors is that the details of the image can
have relatively poor resolution, as the image depicts a large area. The resolution
problem is unfortunately compounded by mirrors whose shapes have curved
cross-sections. Such radially curved mirrors include the three quadric surface
mirrors (elliptic, hyperbolic and parabolic) which are known to possess a single
viewpoint at their focal points.

Single viewpoint projection geometry exists when the light rays arriving from
all directions intersect at a single point known as the (single) effective viewpoint.
For example, by placing the centre of the perspective camera lens at the outer
focus of the hyperbolic mirror, the inner focus then becomes the single effective
viewpoint.

A single viewpoint is generally thought to be necessary for an accurate un-
warping of images and for an accurate perspective projection which is relied on
by most computer vision methods [11].

The single viewpoint projection has been endorsed and recommended by [12],
[13], [14], [15], [16] and others.

There have been few attempts at analysing non-single viewpoint sensors [17],
[18], although various people [19] used them previously without analysis.

The omnidirectional sensors resolution can be improved by using several
planar mirrors with a separate camera for each one of them. The mirrors are
placed in some spatial arrangement, for instance in a six sided pyramid [20]. The
reflected camera positions are carefully aligned to coincide and to form a single
effective viewpoint. However, such arrangements are awkward, expensive, and
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sensitive to alignment errors. The hexagonal pyramid apparatus would require
no fewer than twelve cameras for stereopsis! Also, the coverage of the surrounding
area is not isotropic.

Spacek [21] proposed a solution to the above problems which combines the
benefits of the planar mirrors (no radial distortion, no radial loss of resolution)
with the advantages of the rotationally symmetric catadioptric sensor (short
exposure, isotropic imaging). The only shape of mirror that satisfies these re-
quirements is the cone.

2 Perspective Projection through a Conical Mirror

The benefits of the cone mirror over the radially curved mirrors were pointed
out by Lin and Bajczy in [22]. They can be summarised as:
1. Curved cross-section mirrors produce inevitable radial distortions. Radial dis-
tortion is proportional to the radial curvature of the mirror. The cone has zero
radial curvature everywhere except at its tip, which is only reflecting the camera
anyway.
2. Radially curved mirrors produce ‘fish eye’ effects: they magnify the objects
reflected in the centre of the mirror, typically the camera, the robot, or the sky,
all of which are of minimal interest. On the other hand, they shrink the region
around the horizon, thereby reducing the available spatial resolution in the area
which is of interest. See Figures 1 and 2 for the comparison of the hyperbolic
and the conical mirrors. The mirrors are showing different scenes but both are
pointing vertically upwards.
3. The cone presents planar mirrors in cross-section. See Figure 3. The planar
mirror does not have a complicated function mapping the camera resolution
density onto the real world.

Some optimised shapes of radially curved mirrors have been proposed [23], as
well as hybrid sensors, mirrors combining two shapes into one, and other mirrors
of various functions. However, it seems that none of them completely address all
of the above points.

The cone mirror has a single effective viewpoint located at the tip. Lin and
Bajczy proposed cutting off the tip and placing the camera lens in its place, or
placing the tip at the forward focus point of the lens. Both of these methods
require the camera to be very close to the mirror which results in difficulties
with capturing enough light and with focusing, so the improvement in image
quality over the curved mirrors is debatable.

Our solution consists of placing the camera at a comfortable distance d from
the tip of the conical mirror and still obtaining a useful projection, despite the
fact that there is now an infinite number of viewpoints arranged in a circle of
radius d around the tip of the cone. See Figure 4. Not having to fix the camera at
a precise distance represents an additional practical benefit in comparison with
the hyperbolic mirrors or the approach of Lin and Bajczy.

R is both the radius and the height of the cone with a 90◦ angle at the
tip. Given the field of view angle φ of a particular camera lens, the appropriate
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Fig. 1. An omnidirectional image ob-
tained using a hyperbolic mirror and an
ordinary perspective camera. Note the
typical predominance of the sky.

Fig. 2. A conical mirror image of an in-
doors scene. The entire mirror image re-
flects useful data.
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camera distance d = R(cotanφ
2 − 1). This is the camera distance calculated to

inscribe the base circle of the cone within the image. The field of view of the
camera and the size of the mirror are thus utilised to their best advantage. For
example, a mirror of radius R = 60mm and a camera with φ = π/4 results in
d = 85mm (rounded up). d is critical for the focal mirrors but not so for the
cone. At worst, we may lose a few pixels around the edges of the image.

2.1 The Projections

The image of a rotationally symmetric mirror viewed along its axis of symme-
try is circular. It is therefore convenient to use the polar coordinates (ri, θ) to
represent the image positions and the related cylindrical coordinates (r, θ, h) for
the 3D scene. See Figure 5 for the θ cross section of the conical mirror and the
associated perspective projection. Note that the points of interest along the pro-
jection ray from a 3D scene point P (r, θ, h) are collinear (forming three similar
triangles).

Let the image radius coordinate ri of the projected point P have the value
hi (the image height of P ). The perspective projection formula is obtained from
the collinearity property (or two similar triangles) in Figure (5):

hi =
vh

d + r
(1)

hi values are always positive (image radius). This is equivalent to using front
projection to remove the image reversal. Equation (1) is much simpler than the
projection equations for the radially curved mirrors.

v is the distance of the image plane behind the centre of the thin lens in
Gaussian optics. The focal length is normally less than v, unless we reduce
v to focus on infinity, or use the simplifying pinhole camera assumption. The
calibration of v is obtained by substituting the image radius of the mirror rm for
hi, and R for h and r in equation (1), giving: v = rm( d

R + 1). The image radius
rm is determined by locating the outer contour of the mirror in the image.

The classic perspective projection function for the single effective viewpoint
at (0, 0, 0) is just a special case of equation (1), where d = 0. Suppose we cre-
ate a thought-experiment (Gedanken) world in which all the objects are pushed
distance d further away from the mirror axis. Then the single viewpoint pro-
jection of the Gedanken world would result in the same image as the multiple
viewpoint projection of the real world. It is also clear that once r is known (see
the stereopsis method below), it is possible to reconstruct the single viewpoint
projection of the real world by using equation (1) and setting d = 0.

The geometry is illustrated in Figure 4. The outer circle depicts the projection
cylinder with the radius d + v and the same axis as the cone. The projection
cylinder for the single viewpoint at (0, 0, 0) is similar but has the radius v (the
innermost circle).

So far, we considered the projection for a fixed value of θ and identified its
associated viewpoint. Now we fix the elevation angle ε = arctan (h/(d + r)) and
allow θ to vary. Imagine spinning Figure 5 around the mirror axis. All projection
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lines with the same elevation angle will intersect the cone axis at the single point
C(0, θ, hc). Thus the intersection point C is the viewpoint associated with the
elevation ε. We can determine the height hc of C from the height h of P by again
using the collinearity property: hc = (d · h)/(d + r).

Sensors with a single (global) effective viewpoint have the same perspective
projection in both orthogonal image dimensions (usually x, y). However, we get
a different perspective projection in the θ dimension, as the effective viewpoint
C for the θ dimension is different from the effective viewpoint (d, θ + π, 0) for
the radial projection.

θ projection is not needed for our stereopsis which uses only the radial pro-
jection but it could be utilised if we placed two mirrors side-by-side. It has been
used in this fashion in [24].

We now define the projection property whereby the viewpoints are said to
be dimensionally separable:
– Each radial line in the image (or equivalently each column in the unwarped
image) has its own unique viewpoint.
– Each concentric circle in the image (or equivalently each row in the unwarped
image) has its own unique viewpoint.
– Each pixel is aligned with its two (row and column) viewpoints, along the
projection line from P .

2.2 Registration

We have just described the idealised projection which will be valid and accurate
after registration, when the tip of the mirror is precisely aligned with the centre
of the image and the axis of view coincides with the axis of the mirror. In general,
registration needs to be performed to find the two translation and three rotation
parameters needed to guarantee this. Existing registration methods will also
apply and work in this situation. See [25] and [26] for good solutions to this
problem within the context of omnidirectional vision.

Straight lines in the 3D world become generally conic section curves when
projected. However, lines which are coplanar with the axis of the mirror project
into radial lines. Concentric circles around the mirror project again into concen-
tric circles. These properties can be utilised for a simple test card registration
method, where the test card is of the ‘shooting target’ type consisting of cross-
hairs and concentric circles, centered on the cone axis.

2.3 Unwarping of the Input Image

If we were to cut and unroll the virtual projection cylinder, we would get the
unwarped rectangular panoramic image. Therefore unwarping is the backprojec-
tion of the real input image onto the virtual projection cylinder. The unwarping
from the polar coordinates (hi, θi) of the input image into the (x, y) coordinates
of the rectangular panoramic image is:

x =
xm

2π
· θi , y =

ym

rm
· hi (2)
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where (xm, ym) are the desired dimensions of the unwarped image, rm is the
radius of the mirror as seen in the input image, and θi is measured in radians.
The aspect ratio of the panoramic image is: xm/ym = 2π.

The direct mapping from the pixel position (x, y) of the panoramic unwarped
image to the corresponding position (xi, yi) of the input image is presented next.
We use polar coordinates as an intermediate step, and then equations 2. We also
need to know the centre of the mirror in the input image (xc, yc).

xi = xc + hi · cos θi = xc +
rm

ym
· y · cos(

2π

xm
· x) (3)

yi = yc + hi · sin θi = yc +
rm

ym
· y · sin(

2π

xm
· x) (4)

We used the unwarping by two dimensional DCT (discrete cosine transform)
of the omnidirectional input image, as described in [21], instead of the usual but
less precise pixel interpolation methods. The main advantage of this approach
becomes apparent when performing the radial edge-finding needed for our stereo
(see the next section).

See Figure 6 for the unwarping applied to a hyperbolic mirror image and
Figure 7 for the unwarping of a conical mirror image. Note that the conical
mirror image utilises better the available vertical resolution of the image. This
provides better resolution for stereopsis, though the resolution near the tip of
the mirror is clearly limited.

Fig. 6. Unwarping of Figure 1.

Fig. 7. Unwarping of Figure 2.
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3 Coaxial Stereopsis

Various arrangements have been proposed for binocular systems using catadiop-
tric sensors. Two mirrors situated side by side can be used to compute the
distance of objects in terms of the disparity measured as the arising difference
in angles θ [24]. However, such arrangement is not truly omnidirectional, as a
large part of the scene will be obstructed by the other catadioptric sensor.

It is better to arrange the cameras coaxially to avoid this problem. The coax-
ial arrangement has the further major advantage of having simple aligned radial
epipolar lines. Lin and Bajczy [27] used a single conical mirror and attempted to
place two cameras at different distances along its axis. They had to use a beam-
splitter to avoid the nearer camera obstructing the view of the more distant
camera. See Figure 8. We propose an omnidirectional stereo system consisting
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Fig. 8. Lin and Bajcsy’s omnidirectional
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two cameras at different distances. The
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amount of available light.
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of two coaxial conical mirrors pointing in the same direction, each with its own
camera. See Figure 9.

We wish to obtain a triangulation formula for the radial distance of objects
r. The radial distance is measured from the axis of the mirror(s) to any 3D
scene point P , which has to be in the region that is visible by both cameras
(the common region). See Figure 9. The common region is annular in shape in
3D, with a triangular cross-section extending to infinity. It is bounded above
and below in the (r, h) plane by the lines: h = R r+d

R+d , and h = s. The angle
at the tip of the common region triangle is φ

2 . The distance rmin of the tip is:
rmin = s( d

R +1)−d. Stereopsis cannot be employed anywhere nearer than rmin.
In order to obtain the triangulation formula, we subtracted two instances of

equation (1) for two coaxial mirrors separated by distance s (s is measured along
the h axis). We assume here that the parameters v and d are the same for both
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cameras, though this assumption can be easily relaxed if necessary.

r =
vs

hi2 − hi1
− d (5)

This is very similar to the usual triangulation formula from classical side-by-
side stereopsis but here the disparity hi2 − hi1, is the radial disparity. The extra
distance d is correctly subtracted.The similarity of the formulae is not surprising,
as the two reflected (virtual) cameras resemble a classical side-by-side system
within the plane of orientation θ.

Fig. 10. Edge map of the unwarped image in Figure 7.

3.1 Radial Edge Finding and Matching

The radial epipolar matching is driven by edges whose gradient is primarily in
the radial direction. We find those by the radial edge-finder using the DCT and
the polar coordinates (hi, θi) of the input image, as described in [21]. The main
benefit of this approach is that the slow unwarping process is avoided. We also
obtain the partial derivatives of the image function in hi and θi directions, which
is going to be useful for a polar optic flow.

The unwarping is needed only for the convenience of human viewing, such as
in Figure 10, showing a traditional edge map of the unwarped image, using [28].
The stereopsis correspondence computation is driven primarily by the horizontal
edges in this example.

The radial edge finding consists of the following steps:
1. Perform forward DCT transform on the omnidirectional input image, using
(xi, yi) coordinates.
2. Convert the input image coordinates at which the radial gradient component
is to be computed from the rectangular form (xi, yi) to the polar form (hi, θi)
and substitute to the normal inverse DCT function.
3. Apply the radial edge function (ref) defined in [21]. This function was obtained
by partial differentiation of the inverse DCT transform in polar coordinates with
respect to hi.

In other words, we are differentiating the inverse transform function instead
of differentiating the image. This is legitimate as the DCT has a finite number
of terms. The output is the desired radial edge map in the same format as the
original input image, ie. it is the radial edge map of the circular mirror in the
rectangular image coordinates (xi, yi). Similar process can be followed to find
the partial derivatives of an image in θ direction, or higher derivatives.
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The radial edge finder should be of interest to omnidirectional vision gener-
ally, as it can be used with any rotationally symmetric mirror. The unwarping
is unnecessary when using autonomous vision methods that work in polar coor-
dinates.

It is not necessary to generate the entire rectangular edge map of the second
image when doing the stereo matching. The ref can be evaluated at any randomly
selected points with sub-pixel accuracy. The outline of the radial stereo matching
algorithm is as follows:
1. Given a pair of stereo images f1 and f2, find all feature points in f1 where
abs(∂f1(xi,yi)

∂hi
) is significant (abs() is the absolute value function).

2. Find out the θi value of the selected feature point.
3. Keeping θi fixed, evaluate ref along the epipolar radial line in f2 and store the
image gradient vectors for both epipolar lines in two buffers.
4. Match the buffers looking for similar values of the gradient vectors and paying
attention to sensible ordering of the matches plus any other stereopsis matching
tricks.
5. Compute the distance of objects for all successful matches, using the matched
radial position values hi1 and hi2 and the triangulation equation (5).
6. Move to the next value of θi which has significant image feature(s) and repeat
from 2.

There are other sophisticated stereo matching methods that could be adapted
to these circumstances, for example [29].

3.2 Steropsis Discussion and Results

In the illustrated arrangement the view is directed at the horizon, which is nor-
mally rich in natural visual features of high contrast that are useful for outdoors
navigation [7]. For closer visual guidance indoors, the entire apparatus can be
simply inverted. The visible regions will lie either above or below the horizontal
plane touching the tip of the mirror, respectively. For very close range stereo,
we suggest inverting just the top mirror and camera, so that the tips of the
mirrors are facing away from each other. In each case the following triangulation
and matching will be much the same. The only combination to be avoided for
stereopsis is the one with the tips of the mirrors facing each other, as this would
result in no common region visible by both cameras.

Our arrangement is quite different from that proposed by Lin and Bajczy.
The resulting triangulation formula is different. Our system is simpler, there is
no loss of light through the beam splitter, and we gain better image quality by
being able to view large size conical mirrors.

Lin and Bajczy did not specify a 90◦ angle at the tip of their mirror so our
perspective projection, as described in section 2, has different specific properties.

We have tested our stereopsis method on artificial images with known ground
truth (admittedly not as demanding a test as using real images) and found the
errors in r to grow linearly with r + d. The errors are a function of the image
resolution, so for a fixed r, they are inversely proportional to h. This means that
the errors are smaller for points imaged nearer the edge of the mirror, where
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the θ resolution is better. There is a good agreement between our results and a
theoretical error prediction based on differentiation of the perspective projection
formula.

4 Conclusion

This paper has identified the conical mirror as a good solution for catadioptric
omnidirectional sensors.

The benefits of conical mirrors had been hitherto mostly overlooked because
of the demands for a single viewpoint projection. We conclude that the single
viewpoint is not necessary for an accurate perspective projection when using
the conical mirror with a 90◦ angle at the tip. Such conical mirrors provide
a useful model of projection when viewed from any reasonable distance by an
ordinary perspective camera. Conical mirrors are less sensitive to the precise
distance of the camera than are hyperbolic and elliptic mirrors. The ability to
view the mirror from a greater distance is desirable since it allows the use of larger
mirrors with relatively better optical quality. Given the same physical surface
quality (roughness), the optical quality will be proportional to the dimensions of
the mirror. The radial distortion properties of conical mirrors are better when
compared to other circular mirrors. Last but not least, conical mirrors direct the
camera resolution into more useful parts of the surroundings and their resolution
density is well behaved.

The unwarping methods and experiments demonstrated the concept of an
accurate perspective projection via multiple viewpoints.

The benefits of the coaxial omnidirectional stereo system are both practi-
cal (objects do not disappear from view due to vehicle rotation), and theoreti-
cal/computational (the epipolar geometry is simpler than in classical stereopsis).
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