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Abstract. Non-speech audio gives important information from the environment that

can be used in robot navigation altogether with other sensor information. In this ar-

ticle we propose a new methodology to study non-speech audio signals with pattern

recognition techniques in order to help a mobile robot to self-localize in space do-

main. The feature space will be built with the more relevant coefficients of signal

identification after a wavelet transformation preprocessing step given the non-

stationary property of this kind of signals.

1 Introduction

Sound offers advantages for information systems in delivery of alerts, duration infor-

mation, encoding of rapidly incoming information, representing position in 3-D space

around the person and her localization. Hearing is one of human beings most important

senses. After vision, it is the sense most used to gather information about our environ-

ment. Despite this, little research has been done into the use of sound by a computer to

study its environment. The research that has been done focuses mainly on speech recog-

nition [1], [2], while research into other types of sound recognition has being neglected.

In robotics, non-speech audio has been ignored in front of artificial vision, laser beams

and mechanical wave sensors beyond the audible spectrum. But the study and modeling

of non-speech audio can help greatly to robot navigation and localization in the space

domain. The existing research in non-speech sound is incipient and focuses on signal

processing techniques for feature extraction with the use of neural networks as a classifi-

cation technique [3], [4]. In this article a  new technique based on pattern recognition

techniques in order to locate a robot in the space domain by non-speech audio signals is

proposed. The feature space will be built with the coefficients of model identification of

audio signals. Due to their non-stationary property wavelet decomposition is needed as a

preprocessing step. We also propose a technique (transform function) to convert the sam-

ples in the feature space into the space domain, based in the sound derivative partial

equation described in [1]. In section 2  the feature selection and feature vector are de-

scribed as soon as the procedure to obtain the transform function. In section 3 we present

an experiment in order to test the proposed algorithms and techniques.
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2 Non-speech Audio Feature Extraction Approach for Localization

in Space Domain

In this section we propose a new localization in space domain approach from non-

speech audio signals that will be applied on a robot in an industrial environment, the

approach follows the next steps: 1) measurement and data preprocessing. 2) MAX

models signals identification by the wavelet transform; 3) feature selection, feature

extraction and its correspondence with the space domain. Non-speech audio signal

generated by any audio source (industrial machinery, appliances, etc.) is continuous by

its nature. Preliminary, non-speech signal preprocessing includes sampling the analog

audio signal with a specific frequency and to convert it into a discrete set of samples.

Sampling interval should be chosen in such a  way that essential information be pre-

served. In this case, due to the audio signal form we have followed the same criteria as

[5] in order to choose the sampling frequency because its similarity to speech signals.

2.1 Model Identification by the Wavelet Transform and Feature Selection

Non-speech audio signal have the property of non-stationary signal in the same way

that many real signals encountered in speech processing, image processing, ECG

analysis, communications, control and seismology. To represent the behavior of a sta-

tionary process is common the use of models (AR, ARX, ARMA, ARMAX, OE, etc.)

obtained from the experimental identification [6]. The coefficient estimation can be

done with different criteria: LSE, MLE, among others. But in the case of non-

stationary signals the classical identification theory and its results are not suitable.

Many authors have proposed different approaches to modeling this kind of non-

stationary signals, that can be classified: i) assuming that a  non stationary process is

locally stationary in a  finite time interval so that various recursive estimation tech-

niques (RLS, PLR, RIV, etc.) can be applied [6]; ii) a state space modeling and a Kal-

man filtering; iii) expanding each time-varying parameter coefficients onto a  set of

basis sequences [7]; and iv) nonparametric approaches for non-stationary spectrum

estimation such a  local evolving spectrum, STFT and WVD are also developed to

characterize non-stationary signals [8].

To overcome the drawbacks of the identification algorithms, wavelets could be con-

sidered for time varying model identification. The distinct feature of a  wavelet is its

multiresolution characteristic that is very suitable for non-stationary signal processing

[9]. Wavelet transform can decompose L2(R) space to a linear combination of a set of

orthogonal subspace adaptively which divide the whole frequency bands into a series

of subbands from high to low frequency, representing the multiresolution characteris-

tics of the original signal.

As non-speech audio signals are non-stationary and have very complex waveforms

because of the composition of various frequency components, a signal transformation

is performed. The idea of signal transformation is to separate the incoming signal into

frequency bands. This task may be solved with the use of filter bank or wavelet trans-

form, as psychoacoustics has associated human hearing to non-uniform critic bands.

These bands can be realized roughly as a four-level dyadic tree. For sampling at 8kHz
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the frequencies of the dyadic tree are 0-250Hz, 250-500Hz, 500-1000Hz, 1000-

2000Hz, 1000-2000Hz and 2000-4000Hz. Each input signal are decomposed in 4 lev-

els, that is, the audio signal Si A4i+D4i+D3i+D2i+D1i, where A4i is the approximation

of the original Si signal and Dji (j=1,4) are the detail signals for Si.

The wavelet transform have been done with the Daubechies wavelet, because it

captures very well the characteristics and information of the non-speech audio signals.

This set of wavelets has been extensively used since its coefficients capture the maxi-

mum amount of the signal energy [9].

A MAX model (Moving Averaging Exogenous) represents the sampled signals in

different points of the space domain because the signals are correlated. We use the

closest signal to the audio source as signal input for the model. Only the model coeffi-

cients need to be stored to compare and to discriminate the different audio signals. This

would not happen if the signal were represented by a AR model because the coeffi-

cients depend on the signal itself and, with a different signal in every point in the space

domain, these coefficients would not be significative enough to discriminate the audio

signals. When the model identification is obtained by wavelets transform, the coeffi-

cients that do not give information enough for the model are ignored. The eigenvalues

of the covariance matrix are analyzed and we reject those coefficients that do not have

discriminatory power. For the estimation of each signal the approximation signal and

its significative details are used following the next process: i) model structure selec-

tion; ii) model parameters calibration with a estimation model (the LSE method can be

used for its simplicity and, furthermore a good identified model coefficients conver-

gence is assured); iii) validation of the model.

Let us consider the following TV-MAX model and be Si = y(n),
r
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where y(n) is the system output, u(n) is the observable input, which is assumed as the

closest signal to the audio source, and e(n) is a noise signal. The second term is neces-

sary whenever the measurement noise is colored and needs further modeling. In dis-

crete time, wavelet expansions are computed through filter banks. Now we expand the

coefficients b(n;k) and c(n;k) onto a wavelet basis,

)()()( 21 nTnTny           where                       (2)

)()2(
~

)()2(
~

)( )(

1
0

)(

,

)(

0
0

)(

,1 knumnhknumnhnT jj
q

k

Jmax

Jminj

b

mj

JmaxJmax
q

k m

b

mJmax
kk (3)

)()2(
~

)()2(
~

)( )(

1
0

)(

,

)(

0
0

)(

,2 knemnhknemnhnT jj
r

k

Jmax

Jminj

c

mj

JmaxJmax
r

k m

c

mJmax
kk (4)

Let h0 (n) and h1(n), be a dyadic Perfect Reconstruction Filter Bank (PRFB).

Then, for a fixed k, the wavelet coefficients, corresponding to the low-resolution

and the detail signal of b(n;k), are given by
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where 2,1),()(
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lnhnh ll . See reference [9] for further details. In order to obtain the

c(n;k) coefficients we follow the same procedure.

2.2 Feature Extraction and Spatial Recognition

The coefficients for the different models will be used as the feature vector, which can 

be defined as XS, where
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where q+1 and r+1 are the amount of b and c coefficients respectively. From every

input signal a new feature vector is obtained representing a new point in the (q+r+2)-

dimensional feature space, fs. For feature selection, it is not necessary to apply any

statistical test to verify that each component of the vector has enough discriminatory

power because this step has been already done in the wavelet transform preprocessing.

This feature space will be used to classify the different audio signals entering the

system. For these reason we need some labeled samples with their precise position in

the space domain. (In the following section an specific experiment is shown). When an

unlabeled sample enters the feature space, the minimum distance to a labeled sample is

computed and this measure of distance will be used to estimate the distance to the same

sample in the space domain. For this reason we need a transformation function which

converts the distance in the feature space in the distance in the space domain, fT :

, (fT : ((q+r+2)-D fs) (2-D x-y space domain), note that the distance is an scalar

value, independently of the dimension of the space where it has been computed.

The Euclidean distance is used, and the distance between to samples Si and Sj in the

feature space is defined as
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where bkSi and ckSi are the b and c coefficients, respectively, of the wavelet transform

for the Si signal. It is not necessary to normalize the coefficients before the distance

calculation because they are already normalized intrinsically by the wavelet transfor-

mation.

This distance computation between the unlabeled sample and labeled samples is re-

peated for the three closest samples to the unlabeled one. Applying then the transfor-

mation function fT three distances in the x-y domain are obtained. These distances

indicate where the unlabeled sample is located. Now, with a simple process of geome-

try, the position of the unlabeled sample can be estimated. The intersection of the three
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circles, ideally yields a unique point, corresponding to the position of the unlabeled

sample. In the practice, the three circles intersection yields an area proportional to the

error of the whole system. The position of the sample is approximated by the centroid

of this area.

fT : dfs(Si,Sk) dxy(Si,Sk)=ri; fT : dfs(Sj,Sk) dxy(Sj,Sk)=rj; fT : dfs(Sp,Sk) dxy(Sp,Sk)=rp

where Si, Sj and Sp are three labeled samples and ri, rj and rp are the distances in the

space domain to the unlabeled sample Sk. The distance is understood as a radius be-

cause the angle is unknown.

Because there exist the same relative distances between signals with different mod-

els, and with the knowledge that the greater the distortion the farther the signal is from

the audio source, we choose those correspondences (dxy,dfs) between the samples that

are closest to the audio source equidistant in the dxy axis. These points will serve to

estimate a curve of n-order, that is, the transformation function fT. Normally this func-

tion is a polynomial of 4th order and there are several solutions for a unique distance in

the feature space, that is, it yields different distances in the x-y space domain. We solve

this drawback adding a new variable: previous position of the robot. If we have an

approximate position of the robot, its speed and the computation time between feature

extraction samples, we will have a coarse approximation of the new robot position,

coarse enough to discriminate among the solutions of the 4th-order polynomial. In the

experiments section a waveform for the fT function can be seen, and it follows the

model from the sound derivative partial equation proposed in [1].

In the figure 1 the localization system can be shown, including the wavelet trans-

formation block, the modeling blocks, the feature space and the spatial recognition

block which has as input the environment of the robot and the function fT.
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Fig. 1. Localization system in space domain from non-speech audio signals.
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3 Experimental Results

In order to prepare a  setting as real as possible, we have used a  workshop with a

CNC milling machine as non-speech audio source. The room has a  dimension of 7

meters by 10 meters and we obtain 9 labeled samples (from S1 to S9), acquired at regu-

lar positions, covering all the representative workshop surface. With the dimensions of

the room, these 9  samples are enough because there is not a  significative variance

when oversampling. In figure 3 (right) the arrangement of the labeled samples can be

observed. The robot [10] enters the room, describes a  predefined trajectory and gets

off. In its trajectory the robot picks four unlabeled samples (audio signals) that will be

used as data test for our algorithms (S10, S11, S12 and S13). The sample frequency is

8kHz and a capacitive microphone is used.

First, in order to obtain the 9  models coefficients corresponding to the 9  labeled

non-stationary audio signals, these signals are decomposed by the wavelet transform in

4 levels, with one approximation signal and 4  detail signals, figure 2. For the whole

samples, the relevance of every signal is analyzed. We observe the more significative

decomposition to formulate the prediction model, that is, those details containing the

more energy of the signal. With the approximation (A4i) and the detail signal of 4th

level (D4i) is enough to represent the original signal, because the mean and deviation

for the D3i, D2i and D1i detail signals are two orders of magnitude below A4i and D4i.

Figure 2 (up right) shows the difference between the original signal and the estimated

signal with A4i and D4i. Practically there is no error when overlapped. In this experi-

ment we have chosen the Daubechies 45 wavelet transform because it yields good

results, after testing different Daubechies wavelets.

After a initial step for selecting the model structure, it is determined that the order of

the model has to be 20 (10 for the A4i and 10 for D4i coefficients), and a MAX model

has been selected, for the reasons explained above.When those 9 models are calibrated,

they are validated with the error criteria of FPE (Function Prediction Error) and MSE

(Mean Square Error), yielding values about 10-6 and 5% respectively using 5000 data

for identification and 1000 for validation. Besides, for the whole estimated models the

residuals autocorrelation and cross-correlation between the inputs and residuals are

uncorrelated, indicating the goodness of the models.

These coefficients form the feature space, where the relative distances among all the

samples are calculated and related in the way explained in section 2 in order to obtain

the transform function fT. With these relations, the curve appearing in figure 3 (left) is

obtained, under the minimum square error criteria, approximated by a  4th-order poly-

nomial with the following expression:

84.10789.144)2(49.8)5(61.1)10(65.9 234
xyxyxyxyfsT ddedededf  (10)

which is related with the solution of the sound equation in [1] with a physical

meaning.
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Fig. 3. (Left) Transform function fT; (right) robot environment: labeled audio signals and actual

robot trajectory with unlabeled signals (S10, S11, S12, S13).

With the transform function fT we proceed to find the three minimum distances in

the feature space to each unlabeled sample respect the labeled ones, that is, for audio

Fig. 2. (Left) Multilevel wavelet decomposition

of a non-speech signal (S2) by an approximation

signal and four detail signal; (right) comparison

between original signal (A4+D4) and the esti-

mated signal and its error (below) for S11.
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signals S10, S11, S12 and S13, respect S1, ..., S9. We obtain four solutions for each signal

because each distance in the feature space crosses four times the fT curve. In order to

discard the false solutions we use the previous position information of the robot, that is

the (xi,yi)prev point. We also know the robot speed (v = 15cm/sec) and the computation

time between each new position given by the system, which is close to 3 sec. If we

consider the movement of the robot at constant speed, the new position will be (xi,yi)prev

(450,450)mm. With this information we choose the solution that best fits with the

crossing circles solution. In table 1, the recognition rate for each estimated position in

space domain are presented, in any case there is an error bigger than the 15%, and in

one case the error is under the 0.5%.

Table 1. Rate of spatial recognition results for unlabeled samples respect their actual position.

Original signal S10 S11 S12 S13

Cartesian coord. x10 y10 x11 y11 x12 y12 x13 y13

Recognition rate (%) 90.4 85 97.98 87.69 89.18 99.58 88.35 94.42

4  Conclusions

With the methodology presented in this article we have achieved some interesting

results that encourage the authors to keep on walking in this research field. The intro-

duction of more that one audio source is also a new challenge. The experimental results

show a narrow correspondence with the sound physical model and this demonstrates a

high reliability of the proposed methodology.
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