
D. Kaeli and K. Sachs (Eds.): SPEC Benchmark Workshop 2009, LNCS 5419, pp. 439–450, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Designing Web-Based Mobile Services with REST

Claudio Riva and Markku Laitkorpi

Nokia Research Center, P.O. Box 408,
FIN-00045 NOKIA GROUP, Finland

{claudio.riva,markku.laitkorpi}@nokia.com

Abstract. The Web is emerging as the favorite platform for delivering applica-
tions and services. The REST architectural style comprises the key principles
behind its design and success. While REST is originally defined in the context
of publishing hypermedia documents, it is becoming a popular method for im-
plementing Web services as well. The goal of this paper is to explore the prin-
ciples of the REST style for building mobile services and to address the mobile
specific constraints. We present the design method that we have followed for
building a basic photo storage service. Our preliminary evaluation confirms that
REST is a flexible and extensible approach for building mobile services.

Keywords: Software architectures, mobile services, service oriented architec-
tures, web oriented architectures, REST.

1 Introduction

New compelling mobile services are expanding the capabilities of mobile devices
besides the traditional services of voice and short messaging. Nowadays modern mo-
bile devices have built-in support for several mobile services like web browsing, mo-
bile email, mobile search, photo sharing, news readers, internet radio and navigation.
The promise of the mobile Internet is turning into reality for many consumers. In
some cases, the mobile services are tightly bundled with the devices in order to
maximize their user experience, e.g. Blackberry Research in Motion’s (RIM) push
email service, Nokia N-Gage Arena and Nokia S60’s support for mobile search and
photo sharing with Flickr. With the availability of fast and convenient mobile Inter-
net, we expect that mobile services will represent a significant value-adding element
of future devices.

The World Wide Web is emerging as the favorite platform for delivering applica-
tions and services. The Web 2.0 phenomenon is exploiting the web browser as a
cross-platform runtime environment for shipping and executing applications. Special-
ized libraries (e.g. Ajax) and frameworks (e.g. Ruby on Rails) have been developed
for facilitating the creation of interactive web applications. The Web is also becoming
the preferred platform for delivering services to third parties. Internet companies open
their functionality and their data to the external developers through public interfaces
implemented with Web services. These public interfaces, typically called Open APIs
or Web APIs, are key enablers of the Web 2.0 phenomenon.

440 C. Riva and M. Laitkorpi

There are two dominant paradigms for creating Web APIs, namely SOAP/WS-*
and REST. SOAP is an XML based protocol for exchanging messages over a com-
puter network, typically tunneling over HTTP, and is the foundation for the more
complex Web Services stack, also known as WS-* [10,11]. SOAP provides different
types of messaging patterns, but the remote procedure call is commonly used when
building Open APIs. A SOAP based Open API typically provides a set of remote
operations that can be invoked over the Web.

REST (Representation State Transfer) follows a different philosophy than SOAP
by focusing on data instead of operations. Roy Fielding, one of the principal authors
of the Hypertext Transfer Protocol (HTTP) [2], coined the term REST1 in his doctoral
dissertation [1]. REST is an architectural style derived from the Web, and its architec-
tural elements and constraints aim at collecting the fundamental design principles that
enable the great scalability, growth and success of the Web. REST is originally de-
fined in the context of publishing hypermedia documents but it has become a popular
method for publishing Web services as a Web-friendly alternative to SOAP. REST is
primarily focused on defining and addressing web resources (like documents and
images) and for managing their representations. Although there is only one version of
REST defined, it does not mean that every system is supposed to be equally RESTful.
Therefore, the constraints of REST should be taken as a toolkit that helps the architect
identify the benefits or costs, depending on whether the actual requirements fit the
constraints.

The goal of the present research is to investigate how to apply the principles of the
RESTful design to the development of mobile services. In particular, our focus is to
analyze the benefits and limitations of REST in a mobile context and to elaborate a
proper design process. Designing REST services is about modeling resources that are
published on the Web and the functionality is implemented with a limited set of op-
erations on those resources. The design process resembles the data-driven design
processes (e.g. for databases). In this paper, we present our preliminary work of de-
signing REST services. First, we present the key rationale and constrains of REST
design in a mobile environment. Then, we present our design process and we apply it
to the case study of designing a photo storage services. Finally, we conclude with a
preliminary evaluation.

2 Mobile Services with REST: Rationale and Constraints

Mobile services allow users to access network services through the user interface of a
mobile device. They consist of a client application, the client component that pro-
vides the user interface on the mobile device, and a service backend, the server com-
ponent in the network that provides the remote functionality.

The implementation of the client application heavily depends on the capabilities of
the mobile device and the available run-time environments. Often, the mobile soft-
ware developer must specialize the client applications to the various clients in order to
take full advantage of the device specific features [5]. The client application also

1 There are different interpretations of REST. Unless otherwise specified in this paper we refer

to a truly resource-oriented approach, often referred as RESTful.

 Designing Web-Based Mobile Services with REST 441

needs to efficiently interact with the backend in order to fetch the data that is pre-
sented in the user interface. There are several motivations to design the backend ac-
cording to the REST style:

• It provides a uniform method for accessing the resources independently of the
run-time environment (native, Java, Python, etc). Any client that supports the
HTTP protocol is capable of accessing the REST services without the need of any
additional messaging framework.

• The representation of a resource can be negotiated at run-time between the client
and the server. This enables us to support mobile optimized variants of the re-
sources according to the needs of the device.

• The REST principles favor scalability and fast response times (e.g. through cach-
ing). This is an important point for mobile services that potentially have a huge
user base of billions of users. Scalability is often a hard to reach quality if not
properly addressed early in the design.

However, the mobile environment poses additional challenges and constraints over
the typical REST design. We summarize them below:

• Network latency: mobile data networks (2G, EDGE, 3G) are optimized for con-
tent download. The bandwidth is often sufficient for most of the scenarios (like
video streaming), but the network latency is still a major issue. Even if future
networks beyond 3G (e.g. HDSPA, WiMAX) will minimize this problem, a reli-
able mobile service should make few assumptions about the underlying data net-
work. Optimizing for high latency network is a key requirement for success. The
roundtrip time for sending a request and receiving a response can be as high as
two seconds. To avoid performance bottlenecks, the number of message ex-
changes with the server must be kept at the minimum. This requirement is often
conflicting with REST services developed for low latency networks.

• Data formats: verbose data formats (e.g. XML) are slow to transfer and to parse.
Mobile devices require lightweight formats. Compact binary formats are often
the optimal solution but they compromise the service interoperability. Often, the
tradeoff is between a proprietary optimization and an interoperable standard.

• Caching policy: to reduce the network traffic the mobile services must cache the
data on the device memory. Caching can happen either at the protocol level (e.g.
the HTTP responses) or at the application level (e.g. the actual data).

• Offline/online behavior: irregular network connectivity is typical for mobile
devices. Mobile services must define a strategy for supporting offline operations.

• Thin vs. thick clients: how much logic resides on the client and on the server.

3 Designing REST Services

The core entities of the REST design are the web resources. To design the APIs we
follow a data-driven design process that starts by modeling the domain of the APIs. In
the following sections we describe our basic design principles, the design process and
the structure of the REST API.

442 C. Riva and M. Laitkorpi

3.1 Design Principles

The basic architectural style is REST with the HTTP. The functionality is defined in
terms of resources that are manipulated via HTTP as an application protocol.

A resource is an entity that has:

− name and address identified by a URI [3]
− one state at a time defined by a set of attributes and their values
− at least one representation that encode the current state in a particular content type

The allowed actions on the resources are based on the HTTP protocol with the fol-
lowing semantics:

− GET: retrieves a representation of a resource. This operation is safe with no
changes that a client could be held accountable for.

− PUT: rewrites a resource with a new state that is enclosed in the request. This op-
eration is idempotent (request can be re-processed with the same final state).

− POST: appends the entity enclosed in the request to the resource. A new resource
might be created. This action returns either the location of the created resource or
the resource representation after appending. This operation is not idempotent.

− DELETE: removes the mapping between a resource and its URI, thus making the
resource inaccessible. This operation is idempotent.

Each request is authenticated independently using the standard HTTP authorization
header. Hence, there is no need for session control and cookies. The access control for
a resource is conducted at the URI level.

Concerning the data objects, we support the exchange of two types of structured
data: containers (e.g. a collection of photos) and single items (e.g. an image). Besides
the standard content types for media (MIME types [6]), we support content types for
structured data for different applications:

− ATOM (application/atom+xml): widely popular XML based format for
blogs and mash-ups [7,8]

− JSON (application/json): lightweight format for structured data [9]
− binary JSON (application/x-bjson): our own extension to JSON format to

support the exchange of binary data.

We also define a decoration mechanism for clients to control the exact content of
the message body of the HTTP responses. In the header of the HTTP request, we can
add a custom header called x-decorations that contain a comma separated list of
decorations to be applied to the response. We have defined the following decorations:

− xlink-id: add basic identifier links to objects
− xlink: adds all available links to objects
− item(id | summary | full): controls the verbosity of the items when

listed in a container
− inline(<content-type>)=<link name>: outputs an optimized response

that includes the associated data in one single request-response cycle. The output

 Designing Web-Based Mobile Services with REST 443

format depends on the content type of the resource. For JSON and XML we use
multipart/related, for binary JSON and ATOM we inline the data in place.
The <content-type> can be any of the allowed content types of the linked re-
source (e.g. image/jpg). The <link-name> can be any of the link names pub-
lished by the resource (e.g. tn_tiny)

3.2 Design Process

Designing REST services involve modeling web resources and their URIs. Therefore,
we follow a data-driven approach that is summarized in three steps:

1. Developing the abstract data model. The first step is to identify the concepts and
their associations that are part of the API. For this task, we follow the traditional
techniques of object-oriented analysis and design, focusing on all the relevant
nouns in the problem domain.

2. Deriving the core resource model. Based on the abstract data model, we identify
the primary resources of the REST design, i.e. the central concepts of the API. We
distinguish between two types of resources: containers (collections of items) and
items. Besides the primary resources, we can also identify the secondary resources
that can be accessed from the primary resources through their associations.

3. Designing the URI space of the API. The final step is to define the URI space of
the API. For each resource we define the URI, allowed methods, content types, and
links to other resources. The structure of the API is described in the next section.

3.3 API Structure

The structure of the API is documented using four elements that are described below:

− URI space. Each resource (either a container or an item) is addressed by one URI.
The name containment implies strong sub-resource relationship. We use the fol-
lowing syntax:

 ../<ownership>/<primary projection>/<association>?<query>

where:
<ownership>: encodes the owner of the resource, such as user “john”
<primary projection>: encodes the primary resource, such as “pho-

tos” or “photo”
<association>: encodes the associations from the primary resources,

such as “tags of a photo”
<query>: query string for multidimensional projections.

− Methods and content types: this describes the available interactions on the re-
sources and the supported content types

− Links: traversable connections from one resource to another. It is a combination of
a name (semantics) and a URI (concrete address)

− Representations: actual data content of the resource

444 C. Riva and M. Laitkorpi

4 Example of REST API for Photos

As a case study we have designed the potential REST API for a photo storage service.
The service should provide the functionality for uploading new photos, tagging them,
organizing them into folders and assigning properties. There are many similar ser-
vices on the Web that provide an API for storing photos: Flickr2 and Smugmug3 as
examples, but they are clearly operation-centric and only accidentally RESTful. The
goal of our case study is to design a photo storage service that follows the REST prin-
ciples and is usable from mobile devices. We describe the data model, the list of web
resource and several use cases to access the service.

4.1 Data Model

The Figure 1 shows the simple data model for the photo storage service and their
attributes. We have included the following concepts:

• User: the authenticated user of the system. Each user has a unique login name
• Photo: the data object for a photo. Each photo has a unique id.
• Bag: a user-specific label for grouping photo objects in albums
• Tag: a publicly defined label that can be associated to a photo object
• Content: the actual binary representation of the photo (e.g. the jpg file)
• Attr: an attribute that assigns a value to a property
• Prop: a property definition with semantics, defined by a scope and a name.
• Tn: the binary representation of a thumbnail of a photo.

Attr
-prefix
-name

Bag
-name

ContentTag
-name

Tn
-size

User
-login name

Photo
-id

Prop
-prefix
-name

1 *

1
*

* *

1

1

1 * 1*

*

**
1

Fig. 1. Abstract data model of the Photo API

4.2 Core Resources

From the data model we can directly derive the core resources of the REST API.
Below we list the core resources:

Primary resources
 Containers: Photos, Tags, Bags, Properties
 Items: Photo, Tag, Bag, Property
Secondary Resources
 Containers: Thumbnails of a photo, Attributes of a photo, Tags of a photo, Bags

of a photo
 Items: Content, Thumbnail, Attribute

2 http://www.flickr.com/services/api
3 http://www.smugmug.com

 Designing Web-Based Mobile Services with REST 445

4.3 API Structure

Based on the core resource model, we define the structure of the URIs. Table 1 lists
the URIs of the resources and Table 2 documents the semantic of the HTTP actions.

Table 1. Structure of the API for Photos

URI
Ownership Primary projection Association

Description

Photos
/users/{name} /photos Photos for user {name} (container)
/users/{name} /photos/recent Recent photos for {name} (container)
/users/{name} /photos/{photo-id} Photo item
/users/{name} /photos/{photo-id} /content Photo content of {photo-id}
/users/{name} /photos/{photo-id} /tns/tiny Photo thumbnail (50x50)
/users/{name} /photos/{photo-id} /tns/small Photo thumbnail (100x100)
/users/{name} /photos/{photo-id} /tns/medium Photo thumbnail (200x200)
/users/{name} /photos/{photo-id} /tns/large Photo thumbnail (400x400)
/users/{name} /photos/{photo-id} /tns/custom/{xsize

};{ysize}
Photo thumbnail xsize x ysize

/users/{name} /photos/{photo-id} /attrs Photo attributes for {photo-id} (con-
tainer)

/users/{name} /photos/{photo-id} /attrs/{attr-prefix
}/{attr-name}

Photo attribute

/users/{name} /photos/{photo-id} /tags Tags for {photo-id} (container)
/users/{name} /photos/{photo-id} /tags/{tag-name} Photo tag
/users/{name} /photos/{photo-id} /bags Bags for {photo-id} (container)
/users/{name} /photos/{photo-id} /bags/{bag-name} Photo bag

Tags
 /tags All tags (container)
 /tags/{tag-name} Tag item
 /tags/{tag-name} /photos All photos with tag {tag-name} (con-

tainer)

Bags
/users/{name} /bags All bags for user {name} (container)
/users/{name} /bags/{bag-name} Bag item
/users/{name} /bags/{bag-name} /photos All photos in bag {bag-name} (con-

tainer)

Properties
 /props Public properties (container)
 /props/{prop-prefix

}/{prop-name}
 Public property

446 C. Riva and M. Laitkorpi

Table 2. Supported methods and content-types for the resources. Unless otherwise specified all
the methods support the following content-types: application/json,application/
atom+xml, application/x-bjson.

Resource Method Content-type Description
GET Retrieves the array of photos Photos (container)
POST image/jpeg Appends a new photo

Recent photos (container) GET Retrieves the array of recent photos
GET Retrieves the photo item
PUT Replaces the content of the item

Photo item

DELETE Removes the item
GET image/jpeg Retrieves the image file Photo content
PUT image/jpeg Replaces the image file

Photo thumbnail GET image/jpeg Retrieves the thumbnail file
GET Retrieves the array of attributes Photo Attributes

(container) POST Adds a new attribute to a photo
GET Retrieves the value of an attribute Photo Attribute
PUT Updates the value of an attribute
GET Retrieves the array of tags Tags (container)
POST Add a new tag to a tag container
GET Retrieves the tag data
PUT Updates the tag data

Tag item

DELETE Removes the tag
GET Retrieves the array of bags Bags (container)
POST Adds a new bag to a bag container
GET Retrieves the bag data
PUT Replaces the bag data

Bag item

DELETE Removes the bag (but not the con-
tent)

GET Retrieves the array of properties Properties (container)
POST Creates a new property
GET Retrieves the data about a property
PUT Updates a property

Property item

DELETE Removes a property

4.4 Use Cases How to Access the Photo API

Uploading a photo
The user can upload a photo by sending a POST request to a Photo container (e.g.
/users/mary/photos) the binary data that contains the jpg image of the photo.
If successful, the services replies with the message “201 Created” and the Loca-
tion header contains the link to the created resource.

Fetching the list of photos
The user can fetch the list of photos stored in the system with a GET request on the
root Photo container (e.g. /users/mary/photos). The response in JSON format
is an array with the IDs of the photos:

 Designing Web-Based Mobile Services with REST 447

{"photos": {"photo": [{"id": 169}, {"id": 170}, {"id": 171},
{"id": 172}, {"id": 173}, {"id": 174}, {"id": 175}, {"id":
176}], "total": 8, "start": 0, "count": 20}}

By passing the inline header in the request the user can request additional informa-
tion to be added in the response. For instance, we can inline the thumbnails by adding
the header: x-decorations: inline(image/jpeg)=tn_tiny. The
response is a multipart message containing the JSON data and the thumbnails.

Fetching the content/thumbnail of one photo
The user can fetch the content of one photo with a GET request on the Photo resource
(e.g. /users/mary/photos/169/content). The response is the binary data of
the jpeg image. The thumbnail can be retrieved from the suitable thumbnail URI (e.g.
/users/mary/photos/169/tns/small).

Tagging photos
Because a single tag is simply like a label, the user can add a new tag to a photo by
sending a PUT request to a non-existent Tag resource of the Photo (e.g.
/users/mary/photos/169/tags/Holiday). Alternatively, the user can
upload multiple tags by using a POST request on the Tags container resource with the
body containing the tag names in JSON format (e.g. {“tags”: {“tag”:
[{“name”: “Holiday”}, {“name”: “Maledives”}]}})

The user can fetch the list of all the photos with a particular tag by sending a GET
request to the Tag resource (e.g. /tags/Holiday/photos). The result is an array
of photos:

{"photos": {"photo": [{"id": 169}, {"id": 170}], "total": 2,
"start": 0, "count": 20}}

The user can un-tag a photo sending a DELETE request to the Tag resource of the
Photo (e.g. /users/mary/photos/169/tags/Holiday).

Attaching the geo location attribute to one photo
The user can define new properties for the Photo resource and attach the attributes to
a particular Photo. In this case we need to define a new property for storing the geo
location of a photo (e.g. the property /loc/coord). First, we send a POST request
to the Properties container (/props) with the new property to create: {"prop":
[{"name": "coord", "prefix": "loc"}]}. Then, we can add the attrib-
ute to the photo by sending a PUT request to the location of the photo (e.g.
/users/mary/photos/169/loc/coord) with the following body:
{"attr": {"value": "45.2 10.7"}}.

5 Preliminary Evaluation

5.1 Prototype Implementation

We have prototyped a reference implementation of the photo service that was pre-
sented in the previous section. The implementation is based on the Ruby on Rails

448 C. Riva and M. Laitkorpi

framework [4] that provides several convenient features for the implementation of
REST services. To evaluate the benefits and the limitations of the REST design we
have tested the backed with the three different clients:

• Maemo. It is the linux-based platform for the Nokia internet tables 770 and
N800. We implemented the client using the Python scripting language.

• Java MIDP. The Java MIDP environment runs on most mobile devices. Java
MIDP supports the HTTP protocol but not all the HTTP actions (only GET and
POST are supported). We have implemented a simple workaround for emulating
the PUT and DELETE operations with POST. We tested the client on a Nokia
N73 device.

• Python for S60. S60 is Nokia’s platform for smartphones and multimedia com-
puters. We have implemented the client using the port of the Python language on
S60. The port provides full support for the standard HTTPlib module.

• Mash-ups. We have assembled our photo service with the services from other
Internet sites (e.g. Google maps) within the browser environment. The mash-ups
have been implemented in Javascript.

5.2 Main Observations

Our general evaluation of REST for mobile services is positive but there are still sev-
eral limitations that need to be solved. We list the main points of our evaluation
below:

• REST with HTTP provides a uniform mechanism for building web services that
requires a minimal infrastructure on the client and the server sides. Most impor-
tantly, this approach is independent of the run-time environment, as long as there
is decent support for HTTP as a common denominator. Unfortunately, some run-
time libraries targeting mobile devices still treat HTTP as a simple transport
mechanism instead of a proper application protocol. For example, MIME multi-
part support is typically provided by the mail libraries, and its API is often in-
compatible with HTTP message processing API, thus rendering HTTP multipart
message parsing rather clumsy and inefficient.

• The network latency is a concrete problem for web services, especially for the
overall user experience on the client-side. The user interface requires a proper de-
sign to take into consideration the long roundtrip periods for transferring the data
across the wireless network. We have experimented with two solutions that can
be used for both read and write requests. The first one is to inline additional data
in one request (e.g. inlining the thumbnails) that allows fetching or updating.
However, this solution inhibits the individual HTTP caching of the inlined re-
sources. The second one is to create convenient URIs that provide more applica-
tion-specific data either by bypassing or augmenting the core API, effectively
creating custom views on top of the underlying core resources. When properly
designed in terms of resources and their URIs, these views can then be used for
batch updates with a single request, for example. However, this approach compli-
cates the design of the back-end, because it may introduce potentially complex
application-specific aspects on the server side.

 Designing Web-Based Mobile Services with REST 449

• The JSON data format suits very well the mobile environment. It is simple to
generate, to parse, and compact to transfer. According to our preliminary meas-
urements, however, the size of the transferred data is not significantly smaller
than that of XML data, especially when retaining the field names for self-
descriptiveness. We have also extended the JSON format with binary data to
support the response inlining, because at the moment we have found the multipart
messages too complex to be processed on the client side.

• Designing simple and intuitive URIs is a critical part of the REST design. We
have sketched a simple data-oriented design process but we need a method for
specifying the resources with a proper formalism. Especially developers without
prior experience of REST would greatly benefit from method and tool support
that help them map their requirements to RESTful resource design. There is also
the open issue of enabling the component-like reuse of resource subtrees across
different parts of the API (e.g. reusing the Tag resource between the Photo and
Video resource).

• In our solution, we do not have any explicit support for offline processing. Our
RESTful approach, however, inherently fits many offline scenarios, mainly be-
cause of statelessness. For example, idempotent requests can be queued on the
client side quite easily for later delivery, but this requires that dynamically cre-
ated resources should have client-provided URIs.

5.3 “Mobile REST”

As explained above, the roundtrip cost is probably the most significant individual
challenge in network-based mobile applications. Therefore, applying REST effi-
ciently in mobile application architectures may require some additional constraints
that guide the architects to make more mobile-friendly decisions. These constraints
would primarily need to tackle the dilemma of “just enough requests, just enough
data”. In very simple terms, “just enough requests” refers to mechanisms that give
clients enough control to adjust the scope of the RESTful interactions, thus reducing
the need for multiple requests. As an opposite driving force, “just enough data” refers
to mechanisms that clients may use to adjust the volume of data in a single message.
Elaborating these additional constraints will be part of our future work.

6 Conclusions

The growth and success of the Web mainly derive from a thorough application of
basic design principles that are crystallized in the REST style. REST is also becoming
a popular paradigm for publishing Web services (as an alternative to the WS-* stack).
In the current paper we have investigated how to apply the REST principles to the
design of mobile services. We have identified several issues (like network latency and
data formats) that need particular attention when applying the REST concepts to the
mobile environment. For demonstration purposes, we have prototyped a REST photo
web service and tested it with different mobile clients. Our preliminary evaluation
shows that REST with HTTP provides a uniform mechanism for building web ser-
vices that requires a minimal infrastructure on the client-side and is independent of

450 C. Riva and M. Laitkorpi

the run-time environment. The service is extensible with different data representations
and, hence, allows us to properly address the mobile specific needs. The critical part
of the design process is to elaborate a clear URI structure for the API, allowing mo-
bile clients to make just enough requests and process just enough data. We have fol-
lowed a data-driven design process but we have been lacking a meticulous design
formalism (e.g., a UML based approach that helps developers map their requirements
to REST constraints). Our future work will be focused on improving the design proc-
ess of REST services, especially for the mobile environment, and conduct a more
thorough evaluation with additional prototypes.

References

1. Fielding, R.T.: Architectural styles and the design of network-based software architectures,
PhD Thesis, University of California, Irvine (2000)

2. Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext Transfer Protocol – HTTP/1.1. Internet RFC 2616 (June 1999)

3. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource Identifiers (URI): Generic
syntax. Internet RFC 2396 (August 1998)

4. Thomas, D., Hansson, D.H.: Agile Web Development with Rails, Pragmatic Bookshelf,
2nd edn. (December 14, 2006)

5. van Gurp, J., Karhinen, A., Bosch, J.: Mobile Service Oriented Architectures. In: Eliassen,
F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 1–15. Springer, Heidelberg
(2006)

6. Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions. Internet RFC 2046 (No-
vember 1996)

7. Nottingham, M., Sayre, R.: The Atom Syndication Format. Internet RFC 4287 (December
2005)

8. Greogiro, J., de hOra, B.: The Atom Publishing Protocol, Internet Draft version 17 (No-
vember 2007)

9. Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON),
Internet RFC 4627 (July 2006)

10. Web Services Architecture, W3C Working Group Note (February 11, 2004),
 http://www.w3.org/TR/ws-arch/

11. SOAP, Version 1.2, W3C Recommendation (Second edn.) (April 27, 2007),
 http://www.w3.org/TR/soap/

	Designing Web-Based Mobile Services with REST
	Introduction
	Mobile Services with REST: Rationale and Constraints
	Designing REST Services
	Design Principles
	Design Process
	API Structure

	Example of REST API for Photos
	Data Model
	Core Resources
	API Structure
	Use Cases How to Access the Photo API

	Preliminary Evaluation
	Prototype Implementation
	Main Observations
	“Mobile REST”

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

