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Abstract. The provenance, or lineage, of a workflow data product can
be reconstructed by keeping a complete trace of workflow execution. This
lineage information, however, is likely to be both imprecise, because of
the black-box nature of the services that compose the workflow, and
noisy, because of the many trivial data transformations that obscure the
intended purpose of the workflow. In this paper we argue that these
shortcomings can be alleviated by introducing a small set of optional
lightweight annotations to the workflow, in a principled way. We begin
by presenting a baseline, annotation-free lineage model for the Taverna
workflow system, and then show how the proposed annotations improve
the results of fundamental lineage queries.

1 Introduction

Workflow technology is being increasingly adopted in e-science as a way to model
and automate the enactment of scientific experiments, and more generally, to
specify complex sequences of distributed data manipulation operations (retrieval,
transformation and analysis) in a flexible and declarative way. The workflow
shown in Fig. 1, for example, is designed to look for a list of diseases in response
to a single input query consisting of clinical terms, for instance “Alzheimers dis-
ease +protein”.1 The output list is obtained by (i) retrieving relevant abstracts
based on the query (Lucene-query), (ii) extracting protein names from the ab-
stracts by means of a dedicated a named entity recognizer (NERecognize), and
(iii) linking the proteins to disease names through the OMIM2 disease database
(extract diseases-from-OMIM).

The final workflow output is certainly the most important product of this
modelling and execution effort. If we intend to use it as a piece of scientific
1 The example is due to one of the authors (Marco Roos). Full details are available

through the myExperiment workflow repository and sharing facility: http://www.
myexperiment.org.

2 OMIM: http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim.
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Fig. 1. Example Taverna dataflow, folded view (right) and unfolded selected sub-
workflow (left)

evidence upon which more results will be built, however, we need to provide
some proof of its soundness, i.e., by showing that such a sophisticated chain
of data transformations and manipulations does indeed produce the intended
result. This is not just a matter of debugging, but rather, of supporting the
claim to reliability of the results. For instance, it is crucial for the experimenter
to understand how proteins names were identified in the NErecognize step, if
these automatically produced results are to be trusted. This suggests the need to
use intermediate workflow data products as a way to explain the final result and
to support any claim of reliability on it, for the benefit of both the experimenters
and their community at large.

We use this example to motivate the need for collecting and analysing data
provenance, broadly defined as “information that helps determine the derivation
history of a data product, starting from its original sources” [16]. In this paper
we focus specifically on data lineage obtained from one or more executions of a
dataflow through multiple processors, i.e., the graph of data dependencies that
account for an output value produced during the course of a dataflow execution.
By dataflow we mean a workflow consisting only of data links, i.e., with no
explicit control links between the nodes.

Issues of data lineage have been studied extensively in the context of data
management in databases, originally with respect to the derivation of data ele-
ments as a result of relational operations [5], and, more recently, with the goal
of helping resolve uncertainties in data, i.e., in the Trio project [3]. Despite this
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body of research, two main issues make the problem of capturing and presenting
lineage information in the workflow context a challenging one. Firstly, a common
assumption that underpins the work just mentioned is that the available data
manipulation operations are limited to a well-founded set, i.e., a collection of re-
lational algebra operators or data replication primitives. In contrast, workflows
invariably include the invocation of services described only in terms of their ac-
cess interfaces. It has been observed [4, 19] that the black-box nature of these
services limits the specificity of the lineage information that can be captured by
observing a workflow execution.

Secondly, a workflow is a detailed specification of a process that can be de-
scribed, in abstract, as a set of interdependent data transformations, such as
those listed in our early example. Nevertheless, the model of the data that the
process operates upon is remains latent and is never made explicit as part of the
process specification. If it were to be spelled out, a conceptual model designed
from the top down to represent the data managed by our example workflow would
probably include a handful of entities, such as “clinical term”, “article abstract”,
“disease term”, “protein name”, along with logical associations amongst them.
While one execution of the actual workflow does generate values that can po-
tentially be used to populate the data model, doing so automatically is difficult,
because the interesting values are part of a much larger collection of relatively
irrelevant data products, that exist solely to enable the integration among the
main data transformation steps.

While the adapters that produce these values should ideally disappear, along
with their products, from a user-oriented view of the overall process, doing so
requires an explicit abstraction mechanism. As an example, Figure 1 describes
one possible mechanism for abstraction, available in Taverna [11, 15], Kepler [17],
and other workflow systems, namely the nesting of workflows structures. The
workflow shown in the right part of the figure actually consists of a number of
sub-workflows, each rendered here as an atomic processor, while the left part
shows the unfolding of one of those sub-workflows. At this finer level of detail
we can see that only few of the processors, for instance NERecognize, actually
perform interesting data transformations, while the remaining processors, known
as shims [10], are adapters that must be there in order to perform mundane
tasks. Note however that nesting is entirely optional and is perceived by many
users more as a mechanism for reuse, rather than for abstraction. The lineage
model described in this paper does not rely, and indeed does not benefit from,
structural nesting, although this type of abstraction, central for example to the
Zoom approach [4] mentioned below, is being considered as part of ongoing work.

Based on these observations, we argue that a desirable goal for a data lineage
management system is to provide a variable level of specificity and abstraction,
based on the specification provided by both workflow designers and consumers
of the lineage information. The question is then, what is a reasonable trade-off
between the effort required from users in order to create a complete specification,
and the benefit in terms of precision of lineage information. We could, in an
extreme case, transform all the black-boxes into “white-box” services by adding
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extensive annotations to describe their semantics. This would probably impose
an unacceptable additional burden to the workflow designers, however. On the
other hand, data lineage that is based exclusively on the workflow structure,
i.e., its graph topology and the interface-level information about the services, is
complete but it may contain too much irrelevant information that obscures the
intended purpose of the workflow.

This paper explores the middle ground between these two extremes, focusing
on a small set of lightweight annotations that add value to basic lineage informa-
tion while requiring with little additional human effort. The analysis presented
here underpins the current data lineage model for the Taverna workflow system,
which will be used as a reference model throughout the paper. Specifically, our
goal is twofold. Firstly, we define a simple, baseline model for annotation-free
data lineage, and show that it is sufficient to answer lineage queries. Secondly, we
introduce a small set of annotation types, in addition to user-defined constraints
on the queries, and show their added value in terms of increased specificity and
focus of the resulting lineage query results. The specific goals of the annotations
are as follows:

– increase specificity, by explicitly declaring dependencies of output variables
from input variables for each processor, including the fine-grained transfor-
mation of list-valued variables;

– increase focus, by letting users specify data lineage queries that select only
relevant aspects of the workflow, for instance the few important processors
alluded to earlier;

– enable space/time trade-offs when storing and querying lineage data. As
pointed out recently [8], the size of provenance may easily outgrow the size
of the data being computed by a workflow. We note that, if we instead knew
that some of the workflow processors are stateless, then we would have the
option to compute their transformation at lineage query time, as needed,
rather than recording it explicitly. This is beneficial when the workflow in-
cludes many simple shims that add little computational cost to the query.

The lineage model described in this paper, including support for the proposed
lightweight annotations, is currently being implemented as part of the Taverna
provenance architecture.

2 Baseline Model for Capturing and Querying Data
Lineage

In this section we lay the foundation for the lineage model, assuming that no
information besides the workflow structure is available to collect and present
data lineage. For this purpose we characterise a Taverna dataflow as a DAG
where the nodes denote processors3. Throughout our discussion we are going to

3 A full account of the formal syntax and structural semantics for the Taverna language
can be found in [20].
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xform([A1/a1, A2/a2], B/b, P1/p1)

xform(B/b, C1/c1, P2/p2)

xform(B/b, C2/c2, P4/p4)

xform(C1/c1, D1/d1, P3/p3)

xform(C2/c2, D2/d2, P5/p5)

xform([D1/d1D2/d2], E1/e1, P6/p6)

xform([D1/d1D2/d2], E2/e2, P6/p6)

xform([E2/e2, F/f ], G/g, P7/p7)

Fig. 2. Example dataflow with execution annotations, and corresponding lineage graph
specification

use the generic workflow pattern of Figure 2, which, in particular, captures the
topology of the real-life workflow presented earlier.

Each processor may have multiple inputs and outputs, each denoted by a
distinct variable name. We write

〈P, [X1 : τ1 . . .Xn : τn], [Y1 : σ1 . . . Ym : σm]〉 (1)

to denote a node in the graph, representing a processor P with input variables
X1 . . .Xn and output variables Y1 . . . Ym. Variables have a type, denoted here
by τi and σj , which is either a simple type (string, boolean, etc.), or is a list of
values, denoted l(τ). Lists can be nested, i.e., τ is either a simple type or itself
a list. Nodes in the dataflow graph are connected through directed data links
〈P1, Xi, P2, Yj〉 that transfer a value bound to output Xi from an upstream pro-
cessor P1 to the value bound to input Yj of a downstream processor P2. Note that
this simple type system does not prevent the use of bulk or multimedia types,
as strings can be used to hold references, typically URIs, to external objects.

The data lineage information captured during dataflow execution reflects the
available knowledge regarding the dependencies of output variables from input
variables, for each node of the form (1). Unless processors are annotated with
specific dependency information, as discussed later in Section 3, we must assume
that every output depends on every input. We write this as a set of functional
dependencies, as follows:

X1 . . .Xn → Y1, X1 . . . Xn → Y2, . . .

When recording lineage information, we consider an instantiation of the dataflow
graph consisting of:

– a binding of each variable X of type τ to a value x, denoted X : τ/x, and
– a binding of each processor P to a process instance p, denoted P/p.
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The data lineage graph captured during dataflow execution consists of three
relations. The first, xform , describes data transformations through a processor:

xform([X1 : τ1/x1 . . .Xn : τn/xn], Yj : σj/yj, P/p) (2)

A second relation xfer captures the transfer of value x of output X to input Y
through a data link:

xfer(X : τ/x, Y : τ/x)] (3)

Note that X can be a list-typed variable; in this case, X/x denotes the binding of
the entire list x to X . Since we have no specific information that links individual
elements of a list to one another, those elements are indistinguisheable. We do,
however, provision for the explicit reference to list elements as part of our model,
using a third relation:

member(xi, x, i) (4)

to indicate that value xi appears at position i within list x. This can be used
whenever there are good reasons to refer to individual members of a list, as
described later (Section 2.1). In addition, we will use relation isInput(X/x) and
isOutput(X/x) to denote the fact that X/x is an input (resp., output) to the
entire workflow.

With this notation, the right side of Figure 2 shows the lineage graph for one
sample execution of the dataflow on the left. Note that, without loss of generality,
we have left the xfer relation implicit, assuming for simplicity that the variable
names on corresponding outputs and inputs on a data link are the same (e.g.
the output B of P1 and the corresponding input into P2). With this assumption,
all xfer tuples are of the trivial form xfer(X/x, X/x).

2.1 Explicit and Implicit Collections

As mentioned, each of the values in the example above may be a list. In fact,
Taverna processors that manage lists can be described by the following patterns,
where some of the variables have an explicit list type l(τ):

〈P, [X : τ ], [Y : l(σ)]〉 (5)
〈P, [X : l(τ)], [Y : σ]〉 (6)

〈P, [X : l(τ)], [Y : l(σ)]〉 (7)

These patterns reflect paradigmatic transformations: (5) is representative of a
search service, where X is a search string and Y the result collection; (6) cap-
tures, among other things, aggregation functions, while (7) is appropriate for a
filter (i.e., a selection of elements) or a sort operation on a list.

Characteristically, however, Taverna also allows for variables with simple type
to be bound to a list. For instance, X : string can be assigned a list of strings,
x = [x1 . . . xk]. Taverna manages this type cardinality mismatch by adding an
implicit iterator on x, so that P is executed separately on each value xi. Corre-
spondingly, the output values yi are collected into a list, which is then assigned
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// compute a derivation tree

dt(V, DT) :- isInput(V), !,

DT = derive(V, [], in).

dt(V, DT) :- xform(Vset, V, P),

dt1(Vset, DTlist),

DT = derive(V, DTlist, P).

dt1([], []).

dt1([V1 | Vrest], [DT | DTrest]) :-

dt(V1, DT1),

dt1(Vrest, DTrest).

Fig. 3. A basic derivation tree computation in Prolog, and its output on a specific goal

to an output Y (also originally of type string). This case, where each element yi

depends only on the corresponding input xi, is captured by the following tuples:

xform(X/xi, Y/yi, P/pi), member(xi, x, i), member(yi, y, i), i : 1 . . . k

Thus, in Taverna this is equivalent to having n instances p1 . . . pn of a processor
P , each responsible for one element xi of x. This is a case where we can provide
a more granular lineage data than would otherwise be possible in general.

2.2 Data Lineage Queries

The lineage graph collected during one execution supports a variety of queries,
including some of those proposed as part of the First Provenance Challenge4.
While a complete account of the query formulation is beyond the scope of this
paper, it should be clear that useful queries involve traversing the lineage graph,
a task that can be accomplished in a variety of ways. Consider for example
the basic lineage query: “find all derivation paths for an output value (or any
intermediate value), back to the input values that contribute to it during a
specific execution”. Its answer consists of the tree of paths, rooted at G/g, shown
in Figure 3 (right). The graph-traversal algorithm that computes the tree is
presented as a Prolog program on the left in the same figure5. Informally, the
program computes a derivation tree for an input bound variable, say Y/y. The
root of the tree is labelled Y/y. If Y/y is derived through a transformation of
the form (2), i.e.:

xform([X1/x1 . . .Xn/xn], Y/y, P )

4 http://twiki.gridprovenance.org/bin/view/Challenge/FirstProvenanceChallenge.
5 Here we use Prolog for conciseness; however, this does not reflect the actual imple-

mentation for this and additional lineage queries supported by the lineage graph.
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then node Y/y has n sub-trees, each rooted at Xi/xi, expressing the fact that
Y/y is derived from all of the Xi/xi. Each such sub-tree is computed recursively
using other xform tuples in the lineage graph, until we reach the input variables
(i.e., the X/x such that tuple isInput(X/x) exists). In practice, a derivation tree
is an unfolding of a particular traversal strategy on a lineage graph, in this case a
bottom-up visit (remember that the lineage graph is a DAG, just as the original
workflow graph). The derivation tree DT for our example workflow corresponds
to the Prolog goal: dt(G/g,DT).

In a similar fashion we can support a number of additional queries; for in-
stance, by traversing the graph in a forward fashion we can compute the set of
all values that depend on a given set of inputs. Perhaps more interestingly, in the
next section we consider adding constraints to these basic queries, namely to (i)
focus on selected paths in the graph, and (ii) focus on selected transformations
within a path.

3 Lightweight Annotations for Improving Lineage Data

The derivation graph described at the end of the last section exhibits some of
the problems that we had stated informally at the beginning, namely:

– when services are black boxes, then we have to assume that all outputs
depend on all inputs, for instance B/b depends on both A1/a1 and A2/a2;
furthermore, each element in each output data collection depends on each
element in all of the input collections;

– lineage derivation trees include shim services, i.e., P2 and P5, that add little
to the understanding of the actual, latent data model that is implicit in
the dataflow. In addition, the lineage data for all the shim transformations
must be stored explicitly and dealt with in the same way as more critical
workflow steps, although these processors usually perform mundane tasks.
This additional space consumption does not translate into useful information
to users.

To address these problems in a principled way, we propose a simple classifica-
tion of annotation types that serve different purposes, namely precision, focus,
and optimisation and are provided at different stages during experimentation,
i.e., workflow design, workflow execution, and lineage query.

Precision: These annotations aim at improving the granularity and under-
standability of lineage derivation trees. We consider workflow design time
annotations that:
1. Make a distinction among input variables according to their role during

processing, i.e., between data that is used as part of the processor’s
computation, for instance a search string, and configuration parameters,
e.g. the number of results returned by the search.

2. Refine the functional dependencies between inputs and outputs for indi-
vidual processors. With reference to (2) on page 21, if the designer knew
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that, say, Y1 only depended on X1 . . . Xk, with k < n, then the first
dependency would become X1 . . . Xk → Y1, resulting in more specific
xform tuples, i.e., xform([X1/x1 . . . Xk/xk], Y1/y1, P/p).

3. Assert a 1-1 mapping between elements of an input list and correspond-
ing elements of an output list. When this additional information is avail-
able, as in the case of cardinality mismatch described earlier, lineage can
be tracked at the level of individuals within a collection.

4. Explain the nature of aggregation functions. This amounts to stating,
for example, that E1/e1 is the result of applying a function dupCount
to the input lists D1/d1 and D2/d2. Note that this is a special case of a
more general semantic annotation for processors, an interesting topic of
current research.

We also consider additional information that may become available during
workflow execution, and that is contributed either by the workflow enactor,
or by the services themselves. This includes, for example:
– the information that implicit iterators have been applied to input collec-

tions to resolve some cardinality mismatch, and
– an explicit permutation map provided by a processor that performs a sort

operation. Such a map allows the lineage service to refine the derivation
graph by applying the inverse mapping to individual elements in the
input/output lists.

Focus: These annotations provide users with a means to select relevant lineage
information at lineage query time, namely by (i) suppressing some of the
paths in the graph, for example those involving D1 but not D2, and (ii)
specifying a subset of the processors of interest. In the example, it would be
natural to focus on the query processors P3 and P4, while ignoring P2 and
P5, for instance6.

Optimisation: These annotations, specified at workflow design time, indicate
that some of the processors are stateless, i.e., they are guaranteed to produce
the same result when executed multiple times on the same input (unlike, for
example, a query to a database that may change in time). When this is
the case, the lineage service has a choice between materialising the lineage
tuples corresponding to those processors’ transformations, or re-executing
the services themselves when the lineage tree is computed (under the realistic
assumption that its implementation is available to the lineage service at
query time). This is potentially beneficial for a number of small shim services
that are computationally inexpensive.

Table 1 presents a summary of these annotation types (the specific annotation
syntax is not relevant for the purposes of this paper). Although the framework
in the table is fairly general and applicable to a variety of annotation options
and workflow systems, we focus here on a few cases that are of direct interest to
Taverna workflows. The last column of the table provides examples of the effect
of each of these annotations.
6 Taverna does include a basic feature that can be used as starting point, namely for

tagging processors as “boring” so that they are excluded from the visual rendering.
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Table 1. Summary of dataflow annotations types and their effect on lineage

Annotation type Phase Effect
Precision:
refinement of functional
dependencies between in-
puts and outputs

design xform([X1/x1 . . . Xk/xn], Y/y, P ) replaced by:
xform([X1/x1 . . . Xk/xk], Y/y, P ), k < n

parameter vs. data input
distinction

design xform([A1/a1A2/a2], B/b, P1) replaced by:
xform(A2/a2, B/b, P1)
A1/a1 reported as separate context information instead

1-1 mapping on lists design xform(B/b, C2/c2, P2) replaced by:
xform(B/bi, C2/c2i, P2) for each i

type of aggregation func-
tions

design xform([D1/d1D2/d2], E1/e1, P6)
reported along with dupCount during query answering

implicit iteration over
non-collection variables

execution equivalent to 1-1 mapping, only implicit

explicit permutation
maps for list sorting
processors

execution a permutation map containing: Π(E/e2i) = G/gj

justifies the derivation: derive(G/gj,[E/e2i], )

Focusing:
path suppression lineage

query
disregard some of the lineage paths, e.g.
P6 → P5 → P4 → P1 not considered

processor selection lineage
query

only report on derivation through, say, P3 and P4.

Optimisation:
stateful vs. stateless pro-
cessors

design If P1,P2,P5,P6,P7 are stateless, then the only required mate-
rialisation of lineage is now:
xform(B/b, C2/c2, P4)
xform(C1/c1, D1/d1, P3)

Fig. 4. Derivation tree obtained using additional annotations and user selection
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Let us now consider their effect on our example workflow graph, specifically:

(1) A1, F are configuration parameters
(2) P5 provides a 1-1 mapping between input and output lists
(3) Any path containing P3 should be excluded from the derivation tree
(4) Processor P6 should be excluded from the derivation tree.

Figure 4 (left) shows a new version of the workflow graph, where the nodes that
will be ignored according to (3) and (4) are shown in dotted lines. The derivation
tree from G/g back to the input A2/a2 is shown on the right. Note that F/f and
A1/a1 are now mentioned only as part of the processor configuration, and that
G/g now appears to be derived from D2 through a two-nodes path involving P7

as well as P6. Also, since we know that P5 maps each element c2i of its input
list C2 to the corresponding element d2i in D2, we can make the derivation from
c2i to d2i explicit in the tree, resulting in the three branches shown in the figure
(this fine granularity does not extend to B/b nor to G/g).

4 Discussion and Conclusions

The work presented in this paper stems from the hypothesis that a model for
describing the lineage of workflow data products can improve in precision by
adding a few, selected annotations to the workflow, both at design time and
at execution time. Furthermore, a simple selection of relevant processors by the
users when formulating lineage queries can be effective in presenting lineage data
at a suitable level of abstraction. We have proposed a simple classification of
lightweight annotation types and have demonstrated their impact by comparing
a derivation tree obtained as the results of a typical lineage query, with the
equivalent derivation tree obtained using a baseline, annotation-free data model
for lineage in Taverna.

A number of well-known workflow management systems for scientific appli-
cations have been proposed which collect and exploit provenance information
for different purposes. These include enabling partial, “smart” re-runs of pre-
viously executed workflows (Vistrails [7] and Kepler [1]), debugging workflows
(Kepler [1]), and comparing experiment results (Karma [18])). Hidders et al. [9]
describe a formal functional model of dataflow repositories using the Nested Re-
lational Calculus [6] (NRC). The authors show how, for dataflows described using
NRC, the lineage of any occurrence of a value that appears during the course of a
workflow execution can be specified using the same formalism, in terms of a path
across the dataflow model. This interesting reference model could, potentially,
be adopted as a starting point for our own model of data lineage. This would
entail showing that Taverna workflows can be expressed using the NRC-based
dataflow model, so that the provenance inference rules defined therein can be ap-
plied. Indeed it would be interesting, but beyond the scope of our current work, to
investigate how the model can be used to describe the types of annotations that
we propose in this paper, and their effect on the computation of lineage paths.
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It is important to emphasize that, in this paper, we are not claiming any
specific element of novelty with respect to the provenance models and manage-
ment systems just mentioned: tracking “raw” data lineage on a dataflow graph
is, after all, a well-defined problem with known solutions, as the cited research
shows. Here we focus instead on the problem of specifying and exploiting ad-
ditional properties that may be known about the graph components, to bring
added value to provenance users. In this respect, the Zoom system [4] is perhaps
the closest in spirit to our efforts. Zoom lets users define personalised “compos-
ite modules” that are abstractions of the concrete workflow, by way of grouping
some of its components and then selecting the relevant groups. The system then
provides answers to provenance queries that are consistent with the abstraction
level chosen by the user. The type of abstraction envisioned by the authors is
similar to that described in Figure 1, i.e., by modular composition.

In a similar vein, Miles et al. [12] propose a mechanism for narrowing the cope
of provenance queries. In this proposal, p-assertions are used when provenance
is collected as a way to document the relationships among items of provenance
metadata. In particular, one can use p-assertions to specify causual, functional,
or other kinds of relationships. Provenance queries are then scoped based on
these p-assertions types.

In contrast to both these approaches, we envision a distinction among proces-
sors that is independent of any grouping/nesting feature, and is instead based
on the contribution of individual processors to the “latent data model”, as we
have described it earlier.

The only work to our knowledge that considers the use of semantic annota-
tions for analysing workflow provenance is by Miles et al. [13], where a method
for validating scientific experiments is proposed. The validation entails reason-
ing over collected data provenance and the semantic descriptions of the services
that compose the workflows. Its goal is to ensure that the experiments are en-
acted correctly, and that the results they deliver are of value. Using this method,
for example, a user is able to check that the intermediate data delivered by a
given service operation belongs the appropriate domain, e.g. ”protein”. It is
worthwhile noting that this proposal assumes that semantic annotations of web
services are always available. However, practice shows that semantics annota-
tions are a scarce commodity in general [2]. With this in mind, the solution we
propose is incremental in that semantics annotations are not mandatory inputs
for analysing the lineage of workflow results. Rather, they are used for improving
the analysis and facilitating the interpretation of the lineage results.

Finally, although the systems mentioned above define a variety of different
data lineage models, a consensus has recently begun to emerge among different
groups towards a common model for workflow provenance. The result is an initial
version of the Open Provenance Model (OPM) [14], a conceptual model that
describes provenance using a pre-defined set of entities and relationships. This
is an interesting reference schema onto which we hope to map our lineage model
(a detailed comparison between the lineage model proposed in this paper and
the OPM is beyond the scope of this paper).
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The work presented in the paper is still in progress and forms the core of the
provenance architecture for Taverna, with support for a range of queries, both
on a single workflow execution and across executions. A mapping of the Taverna
lineage model to the Open Provenance Model is also in the plans.
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