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Abstract. The area of password-based authenticated key exchange pro-
tocols has been the subject of a vast amount of work in the last few years
due to its practical aspects. AuthA is an example of such a technol-
ogy considered for standardization by the IEEE P1363.2 working group.
Unfortunately in its current form AuthA, including some variants, only
considered the classic client and server (2-party) scenarios. In this paper,
based on a variant of AuthA, we consider a quite different paradigm from
the existing ones and propose a provably secure password-authenticated
key exchange protocol in a cross-realm setting where two clients in differ-
ent realms obtain a secret session key as well as mutual authentication,
with the help of respective servers. In our protocol, any honest server is
unable to gain any information on the value of that session key. Moreover,
our protocol is reasonably efficient and has a per-user computational cost
that is comparable to that of the underlying 2-party encrypted key ex-
change.

Keywords: Password; provably secure; cross-realm; authenticated key
exchange.

1 Introduction

The Password-based Authenticated Key Exchange (PAKE) is a protocol which
allows two communicating parties to prove to each other that they know the pass-
word (that is, mutual authentication), and to generate a fresh symmetric key
securely such that it is known only to these two parties (that is, key exchange).
However, since people like to choose simply-guessed strings (e.g. personal iden-
tity, nickname, birthday, etc.) as their passwords, many password-based proto-
cols are vulnerable to replay attack or dictionary attacks [1]. Designing a secure
password-based protocol is a precise task that has attracted many cryptogra-
phers. Due to its practical aspects, the area has been the subject of a vast
amount of work in the last few years [1,2,3,4,5,6,7,8,9]. AuthA is an example of
such a technology considered for standardization by the IEEE P1363.2 working
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group[11,12]. Unfortunately in its current form AuthA, including some variants,
only considered the classic client and server scenarios and assume that they share
a common password. In a word, AuthA is 2-party password-authenticated key
exchange (2PAKE).

With diversity and development of communication environments in the fields
such as mobile networks, home networking and etc., the end-to-end security is
considered as one of main concerns [10,13]. For example, from a users point
of view, in a mobile computing environment, a secure end-to-end channel be-
tween one mobile user in cell A and another user in cell A or cell B may be a
primary concern. Although 2PAKE protocols are quite useful for client-server
architectures, they are not suitable for large scale end-to-end communication en-
vironments since 2PAKE protocols require every pair of communication entities
to share a password. It is very inconvenient in key management for client-client
communications in large-scale communication environments. To avoid this incon-
venience, some of proposed PAKE protocols are extended to take into account
the 3-party scenario [14,15,16,17,18,19], in which a trusted server exists to me-
diate between two communication parties to allow mutual authentication. Such
protocols only demand that each communication entity shares a password with
a trusted server. However, in practices, they are less considered in a cross-realm
setting like in kerberos system [20,21]. In a cross-realm setting, two clients are in
two different Kerberos realms and hence two servers (who are connected with a
symmetric key) are involved. Some researchers, e.g. [18], think it unnecessary to
consider this case since they have presumed that all servers in the general case
know all users’ passwords. Actually, in the protocols with a cross-realm setting,
it is important to guarantee that one server should not obtain the password of
a client in another realm.

Kerberos system is the first solution to password-authenticated key exchange
in a cross-realm setting but one of the most serious problems in the Kerberos
system is a dictionary attack. To solve this dictionary attack, Byun et al. recently
proposed a password-authenticated key exchange protocol in a cross-realm set-
ting [14], which is a variant of cross-realm authentication in the Kerberos system.
However, S. Wang et al. subsequently found the protocol due to Byun et al. was
insecure [22]. Later, two schemes for password-authenticated key establishment
in a cross-realm setting were proposed in [24,25] but both of them were still
pointed out to be insecure in [26]. To the best of our knowledge, no more work
address the problem in the cross-realm setting and achieves provable security.
Moreover, as noted in [22], a scheme in a single-server setting(3-party setting)
cannot be easily lift up to a scheme in a cross-realm setting since it is a quite
different paradigm from the former. In this paper, based on a variant of Au-
thA in [5], we propose a provably secure password-authenticated key exchange
protocol in a cross-realm setting. Note it is not a trivial work. Difficulties in de-
signing a secure client-client password-based authenticated key exchange scheme
arise from the existence of insider attacks while insider attacks do not need be
considered explicitly in the case of 2-party protocols. Our protocol has several
attractive features. As in [18], we trust as little as possible the third party and
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assume that the servers are honest but curious, which roughly means that, even
though the servers’ help is required to establish a session key between two users
in the system, the servers should not be able to gain any information on the
value of that session key. Please note that key distribution schemes usually do
not achieve this property. We can show that our protocol has key privacy with
respect to the server. Moreover, our scheme is reasonably efficient and has a per-
user computational cost that is comparable to that of the underlying 2-party
encrypted key exchange.

The remainder of this paper is organized as follows. In Section 2, we introduce
the formal model of security for password-based authenticated key exchange in
a cross-realm setting. Next, in Section 3, we recall the algorithmic assumptions
upon which the security of our protocol is based upon. Section 4 then presents
our password-based key exchange protocol along with its security claims and
rigorous proof. Efficiency analysis is also presented in this section. In the last
section, we conclude this paper.

2 Security Model for Password-Based Key Exchange

A secure password-based key exchange is a key exchange protocol where the
parties use their passwords in order to derive a common session key sk that will
be used to build secure channels. Loosely speaking, such protocols are said to be
secure against dictionary attacks if the advantage of an attacker in distinguishing
a real session key from a random key is less than O(n/ |DC|) + ε(l), where |DC|
is the size of the dictionary DC, n is the number of active sessions and ε(l) is a
negligible function depending on the security parameter l.

In this section, we introduce the formal security models which will be used
in next section when we show that our protocol is secure in the random-oracle
model. The model is a slightly different variant of that introduced in [19], in
which two trusted servers are contained.

2.1 Protocol Syntax

Protocol participants. The end-to-end system we consider is made up of
three disjoint sets: S, the set of trusted servers; C, the set of honest clients; and
E , the set of malicious clients. We also denote the set of all clients by U . That is,
U = C ∪ E . In a cross-realm setting, we assume S to contain two trusted servers.

As in [18], the inclusion of the malicious set E among the participants is
one the main differences between the 2-party and the multi-party models. Such
inclusion is needed in the multi-party model in order to cope with the possibility
of insider attacks. The set of malicious users did not need to be considered in
the 2-party due to the independence among the passwords shared between pairs
of honest participants and those shared with malicious users.

Long-lived keys. Two servers are connected with a symmetric key. Each
participant U ∈ U holds a password pwU . Each server S ∈ S holds a vec-
tor pwS = 〈pwS [U ]〉U∈U with an entry for each client, where pwS [U ] is the
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transformed password, following the definition in [3]. In a symmetric model,
pwS [U ] = pwU , but they may be different in some schemes. The set of pass-
words pwE , where E ∈ E , is assumed to be known by the adversary.

2.2 The Security Model

The interaction between an adversary A and the protocol participants occurs
only via oracle queries, which model the adversary capabilities in a real attack
(see literature for more details [3,5].) The types of oracles available to the ad-
versary are as follows:

– Execute(U i1
1 , Sj1

1 , Sj2
2 , U i2

2 ): This query models passive attacks in which the
attacker eavesdrops on honest executions among the client instances U i1

1
and U i2

2 and trusted server instances Sj1
1 and Sj2

2 . The output of this query
consists of the messages that were exchanged during the honest execution of
the protocol.

– SendClient(U i, m): This query models an active attack, in which the adver-
sary may intercept a message and then modify it, create a new one, or simply
forward it to the intended client. The output of this query is the message
that client instance U i would generate upon receipt of message m.

– SendServer(Sj , m): This query models an active attack against a server. It
outputs the message that server instance Sj would generate upon receipt of
message m.

– Reveal(U i): If a session key is not defined for instance U i or if a Test
query(see section 2.3) was asked to either U i or to its partner, then return
⊥. Otherwise, return the session key held by the instance U i.

2.3 Security Notions

In order to define a notion of security for the key exchange protocol, we consider
a game in which the protocol P is executed in the presence of the adversary A.
In this game, we first draw some passwords from a dictionary DC, provide coin
tosses and oracles to A, and then run the adversary, letting it ask any number
of queries as described above, in any order.

AKE Security. In order to model the secrecy (semantic security) of the ses-
sion key, we consider a game Gameake(A, P), in which one additional oracle is
available to the adversary: the Test(U i) oracle.

– Test(U i): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. In order to answer it, we first flip a
(private) coin b and then forward to the adversary either the session key sk
held by U i (i.e., the value that a query Reveal(U i) would output) if b = 1
or a random key of the same size if b = 0.

The Test-oracle can be queried at most once by the adversary A and is only
available to A if the attacked instance U i is Fresh, which is defined to avoid
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cases in which adversary can trivially break the security of the scheme. In this
setting, we say that a session key sk is Fresh if all of the following hold: (1)
the instance holding sk has accepted, (2)both the related clients are honest;
and (3) no Reveal-query has been asked to the instance holding sk or to its
partner (defined according to the session identification). Let Succ denote the
event in which the adversary successfully guesses the hidden bit b used by Test
oracle. The AKE advantage of an adversary A is then defined as Advake

P,DC(A) =
2Pr[Succ] − 1, when passwords are drawn from a dictionary DC. The protocol
P is said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any
adversary A running with time t. The definition of time-complexity that we use
henceforth is the usual one, which includes the maximum of all execution times
in the games defining the security plus the code size [23].

3 Algorithmic Assumptions

The security is proved by finding a reduction to the hardness of the Computa-
tional Diffie-Hellman (CDH) problem and the security of the underlying message
authentication schemes. We will briefly introduce these algorithmic assumptions
in this section.

3.1 CDH Assumption

We assume a finite cyclic group G of l-bit prime order q generated by an element
g, in which the operation is denoted multiplicatively. The CDH assumption states
that given gx and gy, where x and y are drawn at random from Zq, it is hard to
compute gxy. Under the computational Diffie-Hellman assumption it might not
be possible for the adversary to compute something interesting about gxy given
gx and gy. This can be defined more precisely by considering an experiment
Expcdh

g,G(A), in which we select two values x and y in Zq, compute X = gx,
and Y = gy, and then give both X and Y to an adversary A. Let Z be the
output of A. Then, the experiment Expcdh

g,G(A) outputs 1 if Z = gxy and 0
otherwise. Then, we define advantage of A in violating the CDH assumption
as Advcdh

g,G (A) = Pr[Expcdh
g,G(A) = 1] and the advantage function of the group

Advcdh
g,G (t), as the maximum value of Advcdh

g,G (A) over all A with time-complexity
at most t.

3.2 Security of Message Authentication Scheme

A message authentication scheme is a pair of polynomial algorithms (MAC,VF).
The function MAC takes a message m and a key k, and it produces a “message
authentication code” (tag) μ =MACk(m). The function VF takes a message m,
a tag μ and a key k, and it returns a bit VFk(m, μ), with 1 standing for accept
and 0 for reject. We require that for any m output with positive probability by
its tag μ, it is the case that VFk(m, μ).
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For the security of the underlying message authentication scheme MAC,
we consider the classical definition of existential unforgeability under chosen-
message attack (CMA) due to Goldwasser et al. [27]. By definition, the secu-
rity level for MAC is to prevent existential forgeries, even for an adversary
which has access to the tag generation and verification oracles. We define the
advantage of A in violating the security of MAC with security parameter l as
Adveuf−cma

MAC (A) = Pr[k ← {0, 1}l, (m, μ) ← AMACk(·),VFk(·;·)() : VFk(m; μ) =
1], and the advantage function of MAC, Adveuf−cma

MAC (t) as the maximum value of
the advantage Adveuf−cma

MAC (A) over all A with time-complexity at most t. Note
that A wins the above experiment only if it outputs a new valid authenticator.

4 Our Password-Based Protocol

In this section, we introduce our protocol and provide a rigorous proof of secu-
rity for it based on the hardness of the CDH problem and the security of the
underlying primitives. The security proof is in the random oracle model. It as-
sumes that two clients willing to establish a common secret session key are in
two different Kerberos realms and hence share passwords with two respective
servers (the latter are connected with a symmetric key). As in [18], we trust
as little as possible the third party and assume that the servers are honest but
curious, which roughly means that, even though the servers’ help is required to
establish a session key between two users in the system, the servers should not
be able to gain any information on the value of that session key.

4.1 Description

Our scheme is based on a 2-party password-based key exchange protocols in [5].
It runs between two clients A, B and two servers SA, SB . The client A (resp. B)
and server SA(resp. SB) initially share a low-quality password PWA(resp. PWB),
uniformly drawn from the dictionary DC. The two server are connected with a
symmetric key, i.e. the MAC key K. The description is given in Fig.1, where
(G, g, q) is the represented group; l is a security parameter; Hi: {0, 1}� → {0, 1}l

is a random oracle, for i = 0, 1, 2. In Fig.1, by U2
message←−−−−−
send

U1 we mean that user

U1 sends message to user U2.
At first, the client may send a request to the server to start the protocol(e.g.

the client sends hello information to the server in the TLS (Transport Layer
Security) protocol at the beginning). Then the protocol runs as follows.

1. The server SA(resp. SB) chooses an ephemeral public key by choosing a
random element tA(resp. tB) in Zq and raising g to that power, encrypts it
as TA(resp. TB) using the corresponding password PWA(resp. PWB), and
sends this value to the client A(resp. B) and the other server along with its
identity SA(resp. SB) and the two clients’ identity. Upon receiving a message
from the server SA(resp. SB), the client A(resp. B) decrypts TA(resp. TB) to
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Public information: G, q,Hi

Secret information: PWA, PWB ∈ G, K
Client A Server SA Server SB Client B

tA
R←− Zq tB

R←− Zq

TA ← gtA × PWA TB ← gtB × PWB

A
A,B,SA,TA←−−−−−−−−

send
SA

A,B,SA,TA−−−−−−−−→
send

SB SA
A,B,SB,TB←−−−−−−−−−

send
SB

A,B,SB,TB−−−−−−−−−→
send

B

x
R←− Zq ,X ← gx y

R←− Zq ,Y ← gy

KAS ← (TA/PWA)x KBS ← (TB/PWB)y

Auth1A ← H1(IDAS , KAS) Auth1B ← H1(IDBS , KBS)

A
X,Auth1A−−−−−−−−→

send
SB SA

Y,Auth1B←−−−−−−−−
send

B

KAS ← XtA KBS ← Y tB

Auth1A
?= H1(IDAS , KAS) Auth1B

?= H1(IDBS , KBS)
if false, terminates if false, terminates

α ← MACK(A, B, SA, SB , TA, TB , X) β ← MACK(A, B, SA, SB , TA, TB , Y )

SA
SA,X,α−−−−−−→
send

B A
SB,Y,β←−−−−−
send

SB

β
?= MACK(A, B, SA, SB , TA, TB , Y ) α

?= MACK(A, B, SA, SB , TA, TB , X)
if false, terminates if false, terminates

Auth2A ← H2(IDAS , Y, KAS) Auth2B ← H2(IDBS , X, KBS)

A
Y,Auth2A←−−−−−−−−

send
SA SB

X,Auth2B−−−−−−−−→
send

B

terminates and accepts terminates and accepts

Auth2A
?= H2(IDAS , Y, KAS) Auth2B

?= H2(IDBS , X, KBS)
if false, terminates if false, terminates

K ← Y x K ← Xy

sk ← H0(ID, K) sk ← H0(ID, K)
terminates and accepts terminates and accepts

Fig. 1. Our password-based authenticated key exchange protocol

recover the server’s ephemeral public key, chooses a random index x(resp. y)
in Zq, exponentiates it to that power as the Diffie-Hellman keys KAS(resp.
KBS), and at the same time also raises g to the that power as his ephemeral
public key X(resp. Y ). Then the client computes the authenticators Auth1A

(resp. Auth1B) via a hash function H1 so that he can send X (resp. Y )to the
server SA(resp. SB) in an authenticated way. For simplicity, IDAS and IDBS

represent (A, B, SA, TA, X, PWA) and (A, B, SB, TB, Y, PWB) respectively.
2. Upon receiving the messages from both the client A(resp. B) and the other

server, the server SA(resp. SB) exponentiates the client’s ephemeral public
key to the tA-th (resp. tB-th) power as the Diffie-Hellman keys KAS(resp.
KBS). Then the server computes the MAC tag α (resp. β) with the symmet-
ric key K so that he can transfer X (resp. Y )to the other server SB(resp.
SA) in a secure way. Upon receiving this messages, the server SA(resp. SB)
first checks the MAC tag β (resp. α) is valid. If it is valid, the server will
proceed to compute the authenticators Auth2A (resp. Auth2B) via a hash
function H2 so that he can forward Y (resp. X) to he client A(resp. B) in
an authenticated way.

3. Upon receiving Y (resp. X) from the server, the client A(resp. B) first checks
the authenticators Auth2A (resp. Auth2B) is valid. If it is valid, he computes
the Diffie-Hellman key K and then uses this value to derive the session key sk
via a hash function H0. In the end, he accepts and terminates the execution
of the protocol. For simplicity, ID represents (A, B, X, Y ).
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All throughout the course, if any participant receives an invalid authenticator,
he simply abolishes and terminates the execution of the protocol.

How the Password Becomes an element in G. Since the password PW
appears as an element of G in the computations for our scheme, some addi-
tional function is needed to obtain this element from the password string. In the
protocol description, we do not care about details of the function and simply
use the result PW (in group G) as the “effective password” instead: anyone
knowing PW is actually able to impersonate the client or the server, and the
security proof shows that attacking the protocol reduces to finding PW . In other
words, at the protocol level, PW is the password needed for authentication and
password is just a way to remember it.

Notes. One should remark that K is long-lived key. And thus a nonce is
necessarily included in computing α and β in order to prevent replay attacks. To
do so, each server also sends to another server its ephemeral public key, which
will be included in computing the MAC tag as its nonce.

Efficiency. Our protocol is quite efficient, only requiring a small amount of
computation by each user. In what concerns MAC computations and hash com-
putations, each client only has to perform 3 hash computations; and each server
only has to perform 2 MAC computation and 2 hash computations. All these
can be done efficiently and their computational complexity can be neglected.
The most expensive part of our protocol is the number of exponentiation, which
entails the highest computational complexity. Since each participant needs to
perform 2 exponentiations, our protocol has a per-user computational cost that
is comparable to that of the underlying two-party encrypted key exchange.

In addition, from the view of the client side, our protocol is very similar to a
2PAKE with explicit mutual authentication. If the client computes his session
key using sk = H1(A, · · · , SA, TA, X, · · · , KAS) instead, it shifts to run a 2PAKE
protocol with the server. Thus we do not need two separate programme codes to
support client-server and client-client PAKE respectively. Instead we can use a
common programme to support both them, which saves storage resources. This
is very attractive in resource constrained environments.

4.2 Security

As the following theorem states, our proposal is a provably secure password-
based key exchange protocol as long as the CDH problem is hard in G and the
underlying message authentication scheme is secure. The specification of this
protocol is found on Fig.1.

Theorem 1. Let DC be a uniformly distributed dictionary of size |DC|, and
MAC be a message authentication scheme. Let P describe the password-based
authenticated key exchange protocol associated with these primitives as defined
in Fig.1. Then Advake

P,DC(A) ≤ (2qp+qs)2

q + q2
h+2qs

2l + 6qs

|DC| + 2qsAdveuf−cma
MAC (t) +

4q2
hAdvcdh

g,G (qh, t + 2τ), where qs denotes the number of active interactions with
the parties (Send-queries); qp denotes the number of passive eavesdroppings
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(Execute-queries); qh denotes the number of hash queries to Hi; and τ denotes
the computational time for an exponentiation in G.

Due to the limitation of the paper length, the complete proof of Theorem 1 is
to be included in the full version of this paper.

Finally, we come to consider key privacy with respect to the servers. Since a
server is unable to deduce the Diffie-Hellman key K from the clients’ ephemeral
public keys X and Y (due to computational Diffie-Hellman assumption), he will
be unable to retrieve any information about the session key sk between the two
clients. Thus, we have

Theorem 2. Our password-based authenticated key exchange protocol described
in Fig.1 has key privacy with respect to the servers as long as the CDH assump-
tion holds in G.

5 Conclusion

We have presented the new PAKE protocol in a cross-realm setting and proved
the security for it in the random-oracle model. Our protocol has several attractive
features. In our protocol, any honest server is unable to gain any information on
the value of that session key. Moreover, our scheme is reasonably efficient and
has a per-user computational cost that is comparable to that of the underlying
two-party encrypted key exchange. In addition, from the view of the client side,
our protocol is very similar to a 2PAKE with explicit mutual authentication. We
can thus use a common programme to support both client-server and client-client
applications, which saves storage resources. This is very attractive in resource
constrained environments.

References

1. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proceedings of the 1992 IEEE Computer
Society Symposium on Research in security and Privacy, Oakland, California,USA,
pp. 72–84. IEEE Computer Society Press, Washington (1992)

2. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

5. Bresson, E., Chevassut, O., Pointcheval, D.: New security results on encrypted key
exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
145–158. Springer, Heidelberg (2004)



Password-Authenticated Key Exchange between Clients 103

6. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: Proceedings of the 2003 Advances in Cryptology (EUROCRYPT 2003),
Warsaw, Poland, pp. 524–543. Springer, Berlin (2003)

7. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

8. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

9. Abdalla, M., Chevassut, O., Pointcheval, D.: One-time verifier-based encrypted key
exchange. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 47–64. Springer,
Heidelberg (2005)

10. Varadharajan, V., Mu, Y.: On the Design of Security Protocols for Mobile Com-
munications. In: Proceedings of Twelfth Annual Computer Security Applications
Conference, pp. 78–87. IEEE Computer Society Press, Los Alamitos (1996)

11. Bellare, M., Rogaway, P.: The AuthA protocol for password-based authenticated
key exchange. Contributions to IEEE P1363 (March 2000)

12. MacKenzie, P.D.: The PAK suite: Protocols for password-authenticated key ex-
change. Contributions to IEEE P1363.2 (2002)

13. Boyd, C., Mathuria, A.: Key establishment protocols for secure mobile communi-
cations: A selective survey. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS,
vol. 1438, pp. 344–355. Springer, Heidelberg (1998)

14. Byun, J.W., Jeong, I.R., Lee, D.H., Park, C.-S.: Password-authenticated key ex-
change between clients with different passwords. In: Deng, R.H., Qing, S., Bao, F.,
Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 134–146. Springer, Heidelberg
(2002)

15. Wen, H.-A., Lee, T.-F., Hwang, T.: Provably secure three-party password-based
authenticated key exchange protocol using Weil pairing. IEE Proceedings — Com-
munications 152(2), 138–143 (2005)

16. Lin, C.-L., Sun, H.-M., Hwang, T.: Three-party encrypted key exchange: Attacks
and a solution. ACM SIGOPS Operating Systems Review 34(4), 12–20 (2000)

17. Yeh, H.-T., Sun, H.-M., Hwang, T.: Efficient three-party authentication and key
agreement protocols resistant to password guessing attacks. Journal of Information
Science and Engineering 19(6), 1059–1070 (2003)

18. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

19. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Appli-
cations to Password-based Authentication. In: Patrick, S., Yung, A. (eds.) FC 2005.
LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

20. Steiner, J.G., Newman, B.C., Schiller, J.I.: Kerberos: An Authentication Service
for Open Network Systems. In: USENIX Conference Proceedings, February, 1988,
pp. 191–202 (1988)

21. Jaspan, B.: Dual-workfactor Encrypted Key Exchange: Efficiently Preventing Pass-
word Chaining and Dictionary Attacks. In: Proceedings of the 6th Annual USENIX
Security Conference, July 1996, pp. 43–50 (1996)

22. Shuhong, W., Jie, W., Maozhi, X.: Weaknesses of a password-authenticated key ex-
change protocol between clients with different password. In: Proceedings of the 2nd
International Conference on Applied Cryptography and Network Security (ACNS
2004), Yellow Mountain, China, pp. 414–425. Springer, Berlin (2004)



104 S. Wu and Y. Zhu

23. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001)

24. Yin, Y., Bao, L.: Secure Cross-Realm C2C-PAKE Protocol. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 395–406. Springer, Hei-
delberg (2006)

25. Byun, J.W., Lee, D.H., Lim, J.: Efficient and Provably Secure Client-to-Client
Password-Based Key Exchange Protocol. In: Zhou, X., Li, J., Shen, H.T., Kitsure-
gawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 830–836. Springer,
Heidelberg (2006)

26. Phan, R.C.-W., Goi, B.: Cryptanalysis of two provably secure C2C-PAKE pro-
tocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp.
104–117. Springer, Heidelberg (2006)

27. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17(2), 281–308
(1988)


	Password-Authenticated Key Exchange between Clients in a Cross-Realm Setting
	Introduction
	 Security Model for Password-Based Key Exchange
	Protocol Syntax
	The Security Model
	Security Notions

	Algorithmic Assumptions
	CDH Assumption
	Security of Message Authentication Scheme

	Our Password-Based Protocol 
	 Description
	Security

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




