
Automated Maintainability of TTCN-3 Test Suites
Based on Guideline Checking

George Din1, Diana Vega2, and Ina Schieferdecker2

1 FOKUS Fraunhofer Institut, Kaiserin Augusta-Allee 31, Berlin, Germany
george.din@fokus.fraunhofer.de

2 Technical University of Berlin, Franklinstr. 28-29
Berlin, Germany

Abstract. Similar to software development, the test development must be ac-
companied with a set of rules specifying how to write tests. They are grouped
together into a document called guideline. Guidelines are especially necessary
for large test specifications involving many developers and have the goal to re-
duce the effort of the overall development. So far, no universal guidelines for the
TTCN-3 language [1] have been defined. Instead, each company or team defines
and follows own development rules for test structuring and development. This pa-
per deals with the problem of how to automate the validation whether a TTCN-3
test specification complies or not with an established guideline, i.e. guideline
checking. The results of the validation process are a list of non-consistencies.
A follow up step is the refactoring which automatically proposes and applies
changes to improve the test suite compliance level, and thus its quality.

1 Introduction

In software engineering, guidelines may be defined for various aspects: models, pro-
gramming, code documentation, users guides, developers guides, user interfaces, etc.
They are useful for many reasons. First of all they help to establish a common under-
standing within the developing team. Next, they allow for easier development, changes
or extensions. Any team member is able to understand the contributions of the rest of
the team, and may even be able to extend parts contributed by other team members.
Furthermore, new developers can integrate into the team by understanding much easier
a complex system and being able to easily recognize its structure.

In this paper we consider the guidelines for test specifications written in the stan-
dardized Testing and Test Control Notation (TTCN-3) language [2]. We selected this
language due to its popularity in the nowadays test developments. Its popularity grown
over the last decade when many test suites have been specified in this language. Lots of
resources have been invested by the industry and research groups in order to make out of
TTCN-3 a general and standard testing framework. However, an important contribution
to the spreading of TTCN-3 had the European Telecommunication Standardization In-
stitute (ETSI)[3] which standardized various TTCN-3 test suites for telecommunication
protocols.

Two obvious questions occur with respect to TTCN-3 based test specifications: on
one hand, how well the tests are designed and, on the other hand, how to evaluate

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 417–430, 2008.
c© IFIP International Federation for Information Processing 2008

418 G. Din, D. Vega, and I. Schieferdecker

that they are well written in a consistent manner. Both questions can be answered by
analyzing guidelines for TTCN-3 test development.

In testing area, the guidelines have the same importance as for software engineering.
More specific we look into the problem of how to automate the guideline checking of
test specifications and how to recognize potential non-consistencies with the specified
guideline. To achieve that, we analyze several existent guidelines used for TTCN-3 test
specifications. Then, we define a method to specify guidelines in such form that they
can be used by an automated tool for guideline checking.

From a test quality perspective, the use of guidelines is an essential requirement. Ac-
cording to the quality model for test specifications proposed in [4], the guidelines com-
pliance contributes the the overall quality of the test with respect to the selected quality
criteria. In that model, the quality is seen as a set of characteristics; each characteristic
being composed of further sub-characteristics. Several of these sub-characteristics may
be evaluated in relation with guidelines:

– understandability: documentation and description of the overall purpose of the test
specification are key factors in understanding a test suite.

– learnability: to be able to extend or modify a test suite, the test developer must
understand how it is structured. Proper documentation or style guides have positive
influence on learnability.

– analyzability: concerns the degree to which deficiencies in a test specification can
be localized. For example, test specifications should be well structured to allow
code reviews.

– changeability: describes the capability of the test specification to enable necessary
modifications to be implemented. E.g. badly structured code or a test architecture
that is not expandable may have negative impact on this.

One important question is how to check whether a guideline is fulfilled or not. As
long as the nowadays software systems are very large and complex, the guideline check-
ing should be automated as much as possible. Moreover, the guideline checking should
not only determine whether an entity (e.g. documentation, program) is compliant with
the guideline but also deliver a list of inconsistencies with precise localization informa-
tion where the issues appear.

The information delivered by the guideline checker should then be used to fix the
non-consistencies. The inconsistencies are of different types as for instance: a) naming
convention related, e.g. a function does not start with f , b) logical, e.g. a piece of
functionality is placed in a wrong file, c) structural, e.g. a file is placed in a wrong
package, etc. Also in this respect, we see the need for automation. This can be realized
only on top of a taxonomy of types of inconsistencies which may appear. The automated
approach should be such programmed that any type of inconsistency can be solved
automatically or with very little human intervention.

The automation of guideline checking and inconsistencies solving should offer a
tremendous help for rapid test specification improvement. An obvious result of auto-
mated approach is the better maintainability and reusability. This way the test specifi-
cation can be specified in a consistent manner and changes can be easier propagated,
etc. In addition, the same guideline can be used for different specifications belonging
to the same application domain. Furthermore, the pieces of functionality (e.g. libraries)

Automated Maintainability of TTCN-3 Test Suites 419

specified according to a guideline are easier to be reused for another test specification
that follows the same guideline.

This paper is structured as follows. The next section gives a short introduction of
the TTCN-3 language. Section 3 looks in more detail into the structure of a guideline
while Section 4 presents our method to define guideline checking rules and presents
a classification of the refactoring possibilities. The guidelines of the IPv6 testsuite[5],
written in TTCN-3, are provided as example and discussed in Section 5. The paper
finishes with the overview on related work and the conclusion sections.

2 A Short TTCN-3 Overview

The TTCN-3 language is a text-based language and has the form of a modern pro-
gramming language, which is obviously ease to learn and to use. Specially designed
for testing, it inherits the most important typical programming language artifacts, but
additionally it includes important features required for test specification.

A TTCN-3 based test specification is called Abstract Test Specification (ATS) and
it usually consists of many files grouped into folders and subfolders. Each file contains
one or more modules. The module is the top level element of the TTCN-3 language
which is used to structure the test definitions of:

– test data: types of messages, instances of types called templates,
– test configurations: ports and components to define the active entities of a test,
– test behaviours: functions, altsteps, testcases which implement the interactions

between the components and the SUT and which make use of the test data,
– control: a global behavior to control the flow of testcases execution

Each afore mentioned definition type (except control which does not need an iden-
tifier)) has an identifier and can be placed in any module. TTCN-3 also offers the pos-
sibility of grouping elements into groups. The test developer is free to choose how to
name the identifiers, how to group the definitions and in which modules to place them.
However, the group element does not impose a new scope for the grouped elements,
but only at the logical and visual level.

As long as the test specifications contain thousands of definitions, it is extremely
important to be consistent in writing TTCN-3 test definitions and in maintaining a clear
test suite structure and file structure. The language is similar to a programming language
such as Java or C++, therefore lots of structuring possibilities, naming conventions etc.
are allowed.

Currently, all ETSI test specifications are written in the TTCN-3 language [6]. Along
the last decade, the ETSI test specifications adopted different guidelines for structuring,
naming conventions etc. We are interested in this evolution in the testsuite design and
try to derive a general view on guideline rules design.

We analyzed a number of test specifications (SIP[7], IPv6[5], M3UA[8]) standard-
ized by ETSI in order to learn which guidelines have been used and check how consis-
tent are they along the whole test specification. A classification of these rules is realized
in Section 3 while in Section 4 we present a method of how to describe guideline rules
such that an automated guideline checker is capable of checking the test specification
consistency with respect to those rules.

420 G. Din, D. Vega, and I. Schieferdecker

3 Guideline Rules Classification

A comprehensive guideline should take into account various aspects. We propose a
method to classify these aspects for TTCN-3 into three levels: physical level, language
level and architectural level. Guideline rules are defined at each level and, consequently,
they contribute with requirements to the global guideline. Fig. 1 illustrates these levels.

Fig. 1. Guideline Levels

The architectural level refers to information related to System Under Test (SUT)
(interfaces, use-cases, roles etc.), the language level refers to the definition of test con-
structs in the TTCN-3 language (types, components, testcases, etc.), while the physical
level deals with file system information such as files and folders. In this classification,
the information from one level may propagate only to the levels below (top-done) and
never to the above ones. We analyze these levels in greater detail.

3.1 Architectural Level

The architectural level includes guideline rules derived directly from the SUT
architecture.

– SUT interfaces: the interaction between the Test System (TS) and SUT is realized
over at least one interface. To increase the readability, a common guideline rule is
to group together the definitions related to one interface.

– roles: the test behavior can be designed for different roles, e.g. client, server, proxy.
The test definitions defined for one role should be grouped together.

– use cases: a test behavior corresponds to a type of interaction, i.e. use case, with the
SUT. Multiple use cases can be treated within the same test specification. To avoid
mixing the test behaviours from different use cases, a common practice is to group
together the definitions related to a use case.

Automated Maintainability of TTCN-3 Test Suites 421

– version: a test specification may refer to multiple versions of the tested SUT’ spec-
ification. A common practice is to avoid that test definitions for different SUT ver-
sions are mixed.

The information from the architectural level is used to structure the test specification
and, consequently, imposes guideline rules to the two levels below. At the language
level, the architectural information is used to group related test definitions into TTCN-3
modules and groups. Additionally, naming conventions can also be used in order to
embed architectural information into the TTCN-3 identifiers.

We give as example an SUT which has two interfaces: Interface1 and Interface2. An
architecture level guideline rule should say that the test definitions related to each in-
terface should be placed in the same group. At the logical level we have several options
to propagate the architectural rule. We may either define two TTCN-3 modules or two
groups. In either case the definitions will be grouped together:
Interface1 Definitions Module (or Group) and
Interface2 Definitions Module (or Group). A further option is to use also
naming conventions for the involved TTCN-3 types, templates or testcases such as
tc interface1 Test1, tc interface1 Test2, where the prefix tc stands
for testcase abbreviation. However, the three posibilities can be combined. For in-
stance, the tc interface1 Test1 can be added to a group of testcases for In-
terface1 Interface1 Testcases Group which is defined in a module named
Interface1 Definitions Module as illustrated in Listing 1.1.

Listing 1. 1. Test Structuring Example

1 module I n t e r f a c e 1 D e f i n i t i o n s M o d u l e {
2 group I n t e r f a c e 1 T e s t c a s e s G r o u p {
3 t e s t c a s e t c i n t e r f a c e 1 T e s t 1
4 runs on C system S {
5 . . .
6 }
7 t e s t c a s e t c i n t e r f a c e 1 T e s t 2
8 runs on C system S {
9 . . .

10 }
11 }
12 }

At the physical level, the architectural information is used to store the test definitions
into files and folders. Also in this case, naming convention rules can be used to name
the files and folders. Following the example provided above, we can store all definitions
related to each interface into separate folders such as: types/interface1/File1.ttcn3, com-
ponents/interface1/File2.ttcn3, etc. When more than one architectural guideline rules
apply, they can be combined in an arbitrary order.

422 G. Din, D. Vega, and I. Schieferdecker

3.2 Language Level

The language level contains guideline rules for writing the TTCN-3 code. They can be
classified into:

– formatting rules related to indentation, braces, white spaces, blank lines, new lines,
control statements, line wrapping and comments

– naming conventions related to the names of the identifiers of the TTCN-3 constructs
(types, templates, testcase, components, etc.)

– structural rules related to grouping the test definitions into groups and modules.

The naming conventions concern prefixing (and sometimes postfixing) rules and ap-
ply to all TTCN-3 elements which require an identifier: types, templates, functions,
altsteps, testcases, groups, modules, variables, etc. For easier localization, the TTCN-3
identifiers can be prefixed with a string indicating a group of definitions of the same
category. For example, the message types can be prefixed by strings such as Type,
type, type , T etc. Multiple prefixes can occur. For example, type definitions can
be grouped into types of messages to be sent to SUT, e.g. Send Msg, and types of
messages to be received, e.g. Received Msg. If multiple prefixes are used, they can
simply be concatenated or separated by the “ ” character.

The structural rules concern the grouping of the definitions into groups and modules.
This can be realized in many ways:

– grouping by categories: the definitions of the same category can be grouped to-
gether (e.g., types in a group of types, templates in a group of templates).

– grouping by libraries: the reusable definitions which are at the same time also gen-
eral enough to apply to different test suites should be grouped into libraries.

3.3 Physical Level

The physical level offers further structuring possibilities of TTCN-3 definitions:

– files: store particular groups of definitions in separate files
– folders: files can be further grouped into folders and subfolders.

Also at the physical level the naming conventions should appear. They are usually
propagated from the upper levels and impose prefixes for the names (or even impose the
name itself) of files or folders. For example, a file located as /types/interface1/
usecase1/sending.ttcn3 combines information from the architectural level i.e.
interface1 and usecase1 with information from the language level i.e. types
and sending. This file name means that it contains all types of messages to be sent to
SUT defined for usecase1 and for interface1.

4 Test Analyzability and Refactoring

To ensure that a guideline is followed consistently along the whole test specification,
a guideline checker is needed. Test analyzability is the characteristic of a test to be
validated against a guideline and it includes the mechanisms to define and check guide-
line rules. Refactoring is the mechanism which enables to fix inconsistencies detected
during the analyzability phase.

file:/types/interface1/usecase1/sending.ttcn3
file:/types/interface1/usecase1/sending.ttcn3

Automated Maintainability of TTCN-3 Test Suites 423

4.1 Guideline Checker Types

Guideline checking implies that all guideline rules are verified on top of a test spec-
ification. Our realization approach is illustrated in Fig. 2. The guideline rules are all
managed by a common repository and are loaded by the guideline checker. Another in-
put of the checker is the test specification itself. The guideline checker consists of rule
checkers which are of different types. Moreover, each checker type can be instantiated
for an arbitrary number of times (one instance per guideline rule). The checker reports
for each rule how many identifiers matched that rule and how many of them did comply
with it.

Fig. 2. Guideline Rules Checkers

We identify two types of checkers: naming conventions checkers and structural check-
ers. A guideline rule is instantiated in one of these checker types and it is applied to all
identifiers of a test specification. The naming convention checkers evaluate the name of
the identifier and determines if it is composed correctly. The structural checkers verify
whether the test definition whose identifier is evaluated is placed in the correct structure
(group, subgroup, module, file and folders).

4.2 Checking Rules Specification

A guideline rule consists of three parts: a filtering criterion which indicates which iden-
tifiers should follow the rule, a relation and an entity. The relation and the entity define
what the test definition selected by the filtering criterion should comply with.

Table 1. Rules examples

Rule1 (testcase)(naming:prefix)(tc)
Rule2 (testcase)(inclusion:module)(“Testcases”)
Rule3 (testcase)(naming:prefix)(arch info:interface)
Rule4 (testcase)(inclusion:group)(arch info:use-case)

Fig. 3 depicts the structure of a rule. There are two types of relations: naming rela-
tions, which define how the identifiers should be created, and inclusion relations, which
describe where to place a test definition into a structural element (group, module or file).

424 G. Din, D. Vega, and I. Schieferdecker

Fig. 3. Rule Specification

The entity can be a TTCN-3 identifier of a structural construct (group or module), a
non-structural TTCN-3 construct (component, testcase, etc.), a file system identifier (of
a file or folder) or an architectural information (role, interface, version or use case).

As shown in the figure, an inclusion relation is not possible between an identifier
and an architectural information. The naming relation is possible with an architectural
information since an identifier can be prefixed with such information.

To illustrate how these rules are created we provide a few examples in Table 1. An
identifier should match all rules which apply to it in a top-down order. All four rules
defined in the table have as filtering criterion the TTCN-3 construct “testcase” and means
that all testcases in the test specification should comply with these rules. The Rule1 and
Rule3 concern prefixing information which means that a valid testcase identifier should
be prefixed with the information provided in the rule’s entity. A valid testcase identifier
is tc Interface1 test1 since it is prefixed first with tc according to Rule1 and
withinterface1 according with Rule3. Thetc test2 is not correct since it does not
comply with the Rule3. The second rule says that all testcases should be defined within
the module with the name “Testcases” given as a string. The forth rule requires that the
testcases are grouped into groups which have names derived from use-cases names.

4.3 Refactoring

Refactoring has been discussed in detail in [9]. For testing, refactoring is defined similar
to software engineering refactoring, as the manual or automated improvement of the
structure of a test specification. There are many types of refactorings we can encounter
in a test specification. We highlight here the most used ones:

– formatting: implies indentation and changes of the locations of test definitions in a
file in terms of lines and columns.

– renaming of identifiers:gives the possibility to rename an identifier (TTCN-3 lan-
guage element, file name, etc). Some parts of the identifier (e.g. if the identifier should
be prefixed by the module name but it is not) can be changed in an automated way.
The refactoring task should also change all references to that identifier in the associ-
ated visibility scope. This type of refactoring is used for situations when an identifier
does not follow a naming convention rule, as for instance: a component type should
be prefixed by CT or should start with capital letter but it does not.

– moving a definition into another group: we distinguish between moving an iden-
tifier into a group in the same module or into a different module or file. The lat-
est two cases fit into the next refactoring schemas since they affect the module

Automated Maintainability of TTCN-3 Test Suites 425

importing and file inclusion settings. If an identifier is moved to a group within
the same module, the refactoring mechanism has to take care whether the identifier
name should be prefixed by the group name. This type of refactoring is needed
to handle inconsistencies such as, for instance, a component type definition is not
placed in the group which should contain component definitions.

– moving a definition into another module: in this case, the moved test definition has
to be imported in the modules where it is referred by using the import construct.
Also in this case, the refactoring has to be consistent with the naming conventions
regarding identifier prefixing.

– moving a definition into another file: has the same constraints as the case of moving
an identifier to another module (moving a test definition to another file implies
moving to another module as well) but also impacts the file inclusion settings for
the whole project with respect to compilation.

Sometimes, for a given non-consistency, more than one refactoring possibilities may
apply. In these situations the manual intervention is required.

Many refactoring rules can be derived from software engineering [9] and applied
to TTCN-3 as presented in [10]. However, our aim was not to identify all of them but
rather to develop a method to classify the guideline rules on various levels (architectural,
language and physical) and understand how they propagate from one level to another.
The refactoring schemes are only example of how non-consistencies can be handled in
an automated manner.

5 An Example - The IPv6 Test Suite

We selected for our analysis the standardized TTCN-3 test suite IPv6 [5] published and
free to download from ETSI web site [3]. Test specifications for IPv6 protocols are
foreseen to cover both conformance testing and interoperability testing for IPv6 core
protocols (such as IPv6 specification, neighbor discovery and stateless address auto-
configuration) and extended protocols (such as security, mobility, and transition).

5.1 Test Specification Analysis

Architectural and Physical Level Guidelines Analysis. Fig. 4 shows a view of how
the ATS has been structured at the physical level. Three important guideline rules have
been applied at this level:

– folder structuring guideline: First, the TTCN-3 files which belong to a common
logical functionality are grouped together. This structure combines an architectural
level rule with the physical level and it is reflected in the existence of two types
of folders: a) with common functionality, i.e. library folders such as libCommon,
Libcore, etc. and b) with specialized functionality, e.g. AtsCommon,AtsCore.

– folder/file/module naming convention guideline: Two guideline rules have been ap-
plied in top-down order. The first rule regards the association between a file and a
folder. It is reflected by the naming convention which requires that the file name
has to start with the name of the folder that contains that module,

426 G. Din, D. Vega, and I. Schieferdecker

Fig. 4. IPv6 Physical Level Guidelines

e.g. LibCommon AbstractData.ttcn3 is placed in the folder LibCommon.
The second rule specifies that the file name has to encapsulate the description of
the predominant type of TTCN-3 elements enclosed in the analyzed module.

– structuring based on architecture information: The testcases have been grouped in
files caring the names of the use cases such as initialization, neighbor discovery:
AtsIpv6 Initialize Testcases,
AtsIpv6 NeighborDiscovery Testcases, etc.

With respect to guideline checking, the validation of the first guideline is difficult
to automate since it is not possible to decide which functionality should belong to a
library. However, the second and the third guidelines can be checked in an automated
manner since they only verify the established naming or inclusion convention.

Language Level Guideline Compliance. There are many naming conventions used
in this specification. We provide, as example, the naming convention for the behavioral
names. These are based on the rule:

Automated Maintainability of TTCN-3 Test Suites 427

<protocol> <main functionality> <role>
<functionality> <type> <nnn>

The <protocol> is the IPv6 specification (IP6). <main functionality>
separates definitions by protocol header type into Header (HDR) and Extension header
(EHR). The roles are also used for classification. <role> is one of following: Host
(HST), Router (RTR), Node (NOD), Source Host (SOH) and Destination Host (DEH).
The <functionality> is used to classify test definitions by use case into General
(GEN), hop-by-hop options header (HBH), destination options header (DSH), routing
header (ROH), fragmentation header (FRH) and IPsec headers (SEC). <type> further
classifies test definitions into Valid Behavior, Invalid Behavior, Inopportune Behavior
and Timers (TI). The <nnn> is a simple sequential number between (001 999) to dis-
tinguish different tests of the same category.

Many naming conventions rules regarding other TTCN-3 constructs are presented in
Fig. 5 together with their statistics.

5.2 Implementation

For the automation process of guideline checking we provide an implementation based
on the TTworkbench [11] tool, an Eclipse-based IDE that offers an environment for
specifying and executing TTCN-3 tests. The main reason for selecting this tool, is that
it provides a metamodel for the TTCN-3 language which is technically realized on top
of Eclipse EMF [12]. EMF is a Java framework and code generation facility which
helps turning models rapidly into efficient, correct, and easily customizable Java code.

Fig. 5. Guidelines Rules Compliance View

428 G. Din, D. Vega, and I. Schieferdecker

Our work on the automated guideline checker follows up an earlier work [13] where
TTCN-3 test quality indicators are derived from a static analysis of a TTCN-3 test suite,
i.e. only the test sources are need. This is different from a dynamic analysis where the
investigations regard the test execution as well. The implementation is designed as a
plug-in whose invocation triggers the following actions:

– access the EMF metamodel instance of the TTCN-3 test specification
– traverse and correlate the elements of interest
– validate the guidelines and store the results
– refactor the whole test specification according to guideline rules.

We implemented and applied the set of ETSI TTCN-3 naming conventions [14] on
the Ipv6 test specification. An intuitive guideline compliance statistic is always wel-
come by test developers and has the advantage of a rapid identification of the issues
in the test specification. Therefore, we choose the tabular presentation format encapsu-
lated in a new Eclipse View. Fig. 5 presents the applied naming convention and what
level of compliance has been achieved, i.e. in a statistical manner:

ComplianceLevel = No of non respectig elements
No of elements

Each line in the table corresponds to a rule and consists of a) the expression-pattern
that the name has to follow, b) an example, and c) the obtained statistic. The list of
non-consistencies can be visualized in a separate window presenting the identifiers of
non-conforming entities. Each identifier can be replaced with a new one; the refactoring
process behind will refactor the new name along the whole test suite.

Looking into the results, we notice that the ETSI IPv6 test suite respects integrally the
naming conventions except the ones related to the group and variable names. As the Fig. 5
indicates, 262 out of 343 groups do not respect the convention of lower-case initial letter.

With respect to refactoring, the user has then the possibility to select one of the
rules which are not entirely fulfilled, e.g., the rule selected in Fig.5 is not satisfied by
5 identifiers out of 78. Next, the GUI provides the list of inconsistencies for that rule.
For each inconsistency the user is asked to introduce a new identifier. By applying the
new modifications, the old identifier is replaced with the new introduced one within the
whole test suite.

6 Related Work

The guidelines are designed to help the developer in writing better code. They are avail-
able for almost any programming language and have impact on different levels such as:
coding level, for instance for C++ in [15], design level, for instance for Java in [16],
formatting level, comments level, etc.

On the testing side, the existing work focuses more on the guidelines regarding the
effectivity of various types of tests: unit tests, integration tests, system tests etc. The
work in [17] highlights a set of 27 guideline rules for writing jUnit tests.

With respect to TTCN-3, reusability has been explored in [18]. This work concen-
trate in great detail on guidelines for writing reusable TTCN-3 code. Maintainability

Automated Maintainability of TTCN-3 Test Suites 429

aspects, and in particular refactoring, have been concerned in [19] where catalog of 20
refactoring rules derived from Java [9] have been proposed and implemented. Refactor-
ing is seen as a technique to systematically restructure code to improve its quality and
maintainability while preserving the semantics.

7 Conclusion

In this paper we introduced, analyzed and classified TTCN-3 test specification guide-
lines. In order to investigate and identify the compliance to guidelines, a reverse engi-
neering mechanism is needed. The automation of this process is essential as long as the
nowadays test specifications consists of thousands of test definitions.

The introduced concepts ensure a structured and rule oriented thinking of guide-
lines. The novelty of this approach relies on identifying the levels of guideline rules
for TTCN-3 test specifications. Additionally, we take into account the rule propagation
from one level to another.

We foresee several possible extensions. The guideline rules can be extended to fur-
ther rules such as: ontology based naming conventions, code documentation, etc. An-
other idea to be explored in future work is the combination of guideline rules obtained
from the architectural information with test definition generation. This will make possi-
ble the systematic generation of test specification skeletons from a minimal information
about the SUT (interfaces, use cases, roles, versions).

References

1. ETSI: Etsi standard es 201 873-1 v3.1.1 (2005-06): The testing and test control notation
version 3; part 1: Ttcn-3 core language. European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (2005)

2. Willcock, C., Dei, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An Introduction to TTCN-3.
John Wiley & Sons, Ltd, Nokia Research Center, Nokia, Germany, Nokia, Finland (April
2005)

3. ETSI: European Telecommunication Standards Institute - ETSI
4. Zeiß, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the ISO 9126

Quality Model to Test Specifications Exemplified for TTCN-3 Test Specifications. In: Soft-
ware Engineering 2007 (SE 2007), March 2007. Lecture Notes in Informatics (LNI), Copy-
right Gesellschaft für Informatik, Köllen Verlag, Bonn (2007)

5. European Telecommunication Institute - ETSI: Internet Protocol version 6 (IPv6) Confor-
mance Test Specification (2006)

6. Wiles, A.: ETSI testing activities and the use of TTCN-3 (2001)
7. European Telecommunication Institute - ETSI: Session Initiation Protocol (SIP) Confor-

mance Test Specification (2006)
8. European Telecommunication Institute - ETSI: MTP Level 3 User Adaptation Layer (2002)
9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston

(1999)
10. Zeiß, B.: A Refactoring Tool for TTCN-3. Master’s thesis, Masterarbeit im Studien-

gang Angewandte Informatik am Institut für Informatik, ZFI-BM-2006-05, ISSN 1612-
6793 (Tippfehlerbereinigte Version), Zentrum für Informatik, Georg-August-Universität
Göttingen (March 2006)

430 G. Din, D. Vega, and I. Schieferdecker

11. TestingTechnologies: TTworkbench: an Eclipse based TTCN-3 IDE,
http://www.testingtech.de/products/ttwb intro.php

12. Eclipse: Eclipse Modeling Framework (EMF) (2008)
13. Vega, D.E., Schieferdecker, I.: Towards quality of TTCN-3 tests. In: Gotzhein, R., Reed, R.

(eds.) SAM 2006. LNCS, vol. 4320. Springer, Heidelberg (2006)
14. ETSI: ETSI Naming Conventions (2007)
15. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading (1986)
16. Sun Microsystems, I., Javasoft: Java Look & Feel Design Guidelines. Addison-Wesley Long-

man Publishing Co., Inc., Boston (1999)
17. Services, G.S.: Unit testing guidelines (2007)
18. Mäki-Asiala, P.: Reuse of ttcn-3 code. Master’s thesis, VTT Electronics Helsinki (2005)
19. Zeiß, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and Metrics for

TTCN-3 Test Suites. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp.
148–165. Springer, Heidelberg (2006)

http://www.testingtech.de/products/ttwb_intro.php

	Automated Maintainability of TTCN-3 Test Suites Based on Guideline Checking
	Introduction
	A Short TTCN-3 Overview
	Guideline Rules Classification
	Architectural Level
	Language Level
	Physical Level

	Test Analyzability and Refactoring
	Guideline Checker Types
	Checking Rules Specification
	Refactoring

	An Example - The IPv6 Test Suite
	Test Specification Analysis
	Implementation

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

