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Abstract. The Lernmatrix, which is the first known model of asso-
ciative memory, is a heteroassociative memory that can easily work as
a binary pattern classifier if output patterns are appropriately chosen.
However, this mathematical model undergoes fundamental patterns mis-
classification whenever crossbars saturation occurs. In this paper, a novel
algorithm that overcomes Lernmatrix weaknesses is proposed. The cross-
bars saturation occurrence is solved by means of a dynamic threshold
value which is computed for each recalled pattern. The algorithm ap-
plies the dynamic threshold value over the ambiguously recalled class
vector in order to obtain a sentinel vector which is used for uncertainty
elimination purposes. The efficiency and effectiveness of our approach is
demonstrated through comparisons with other methods using real-world
data.

Keywords: Associative Memories, Dynamic Threshold, Lernmatrix,
Pattern Classification, Supervised Learning.

1 Introduction

Karl Steinbuch, a pioneer of artificial neural networks, was one of the first
researchers that developed functional structures (square arrays known as cross-
bars) which use conditional connections for adaptation purposes in categoriza-
tion tasks [1]. Lernmatrix transcendence is evidenced by Kohonen’s statement,
where he points out that Correlation Matrices substitute Steinbuch’s Lernmatrix
[2]. The Lernmatrix, which is the first known model of associative memory, is a
heteroassociative memory that can easily work as a binary pattern classifier if
output patterns are appropriately chosen [3]. Nonetheless, complete recall is not
guaranteed whenever crossbars saturation occurs [4]. In the following section, a
brief description of associative memories fundamentals is presented. In Section
3, Thresholded Learning Matrix foundations are presented. An illustrative ex-
ample is presented in Section 4 while in Section 5 some experimental results are
shown using real-world data. The Thresholded Learning Matrix advantages, as
well as a short conclusion will be discussed in Section 6.
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2 Associative Memories

An associative memory M is a system that relates input patterns and output
patterns as follows: x −→ M −→ y with x and y, respectively, the input
and output pattern vectors. Each input vector forms an association with its
corresponding output vector. For each k integer and positive, the corresponding
association will be denoted as: (xk, yk). Associative memory M is represented by
a matrix whose ij-th component is mij [5]. Memory M is generated from an a
priori finite set of known associations, called the fundamental set of associations.
If μ is an index, the fundamental set is represented as: {(xμ, yμ) | μ = 1, 2, ..., p}
with p as the cardinality of the set. The patterns that form the fundamental set
are called fundamental patterns. If it holds that xμ = yμ ∀μ ∈ {1, 2, ..., p} M is
auto-associative, otherwise it is heteroassociative; in this case, it is possible to
establish that ∃μ ∈ {1, 2, ..., p} for which xμ �= yμ. If we consider the fundamental
set of patterns {(xμ, yμ) | μ = 1, 2, ..., p} where n and m are the dimensions of
the input patterns and output patterns, respectively, it is said that xμ ∈ An,
A = {0, 1} and yμ ∈ Am. Then the j-th component of an input pattern is
xμ

j ∈ A. Analogously, the j-th component of an output pattern is represented as
yμ

j ∈ A. A distorted version of a pattern xk to be recuperated will be denoted
as x̃k. If when feeding an unknown input pattern xω with ω ∈ {1, 2, ..., k, ..., p}
to an associative memory M , it happens that the output corresponds exactly to
the associated pattern yω, it is said that recuperation is correct [6].

2.1 The Steinbuch’s Lernmatrix

The Lernmatrix is a heteroassociative memory that can easily work as a binary
pattern classifier if output patterns are appropriately chosen [3]. Typically it
accepts binary patterns suchlike xμ ∈ An, A = {0, 1} as input and returns
binary patterns suchlike yμ ∈ Am as output; it is worth pointing out that there
are m different classes, each one coded by a simple rule: class k ∈ {1, 2, ..., m}
will be represented by a column vector whose components will be assigned by
yμ

k = 1, so yμ
j = 0 for j = 1, 2..., k − 1, k+1, ...m; hence, the class statements are

given in a 1-out-of-m-code [1], also known as one-hot codification [7].

Learning Phase. Find the adequate operators and a way to generate a matrix
M that will store the p associations of the fundamental set

{(

x1, y1
)

, ..., (xp, yp)
}

,
where xμ ∈ An and yμ ∈ Am ∀μ ∈ {1, 2, ..., p}. The following matrix, will keep
the pattern association values after the Learning Phase is completed:

xμ
1 · · · xμ

j · · · xμ
n

yμ
1 m11 · · · m1j · · · m1n

...
...

...
...

yμ
i mi1 · · · mij · · · min

...
...

...
...

yμ
m mm1 · · · mmj · · · mmn

(1)
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Step 1. Each one of the mij components of M in (1) is initialized with zero.
Step 2. For each fundamental pattern association {(xμ, yμ) |μ = 1, 2, ..., p},

modify each one of the mij components of M in (1) according to the following
rule:

mij = mij + Δmij (2)

where Δmij is obtained as follows:

Δmij =

⎧

⎨

⎩

+ε if yμ
i = 1 = xμ

j

−ε if yμ
i = 1 and xμ

j = 0
0 otherwise

(3)

and ε is any positive constant, previously chosen.

Recalling Phase. The Recalling Phase for the Steinbuch’s Lernmatrix consists
of finding the class which an input pattern xω ∈ An belongs to. Finding the class
means getting yω ∈ Am that corresponds to xω ; according to the construction
method of all yμ, the class should be obtained without ambiguity. The i-th
component of yω

i is obtained according to the following rule, where ∨ is the
maximum operator:

yω
i =

{

1 if
∑n

j=1 mij .x
ω
j =

∨m
h=1

[

∑n
j=1 mhj .x

ω
j

]

0 otherwise
(4)

It has to be mentioned that Steinbuch’s Lernmatrix undergoes fundamental
patterns misclassification every time crossbars saturation occurs. In order to get
a better understanding of the crossbars saturation phenomenon, it is important
to include the concept of characteristic set introduced by Sánchez-Garfias in [8].

Definition 1. Let A = {0, 1} and xω ∈ An be a pattern. We call characteristic
set of xω to the index set T ω =

{

j |
(

xω
j > 0

)}

and its cardinality is denoted by
|T ω|.

Definition 2. Let A = {0, 1} and xα, xβ ∈ An be two patterns, then xα � xβ if
∀j ∈ {1, 2, ..., n} it holds that xα

j = 1 → xβ
j = 1.

Lemma 1. Let A = {0, 1} and xα, xβ ∈ An be two patterns, then xα � xβ ←→
T α ⊆ T β.

The proof of this lemma appears in [9]. The lemma means that an order relation
between patterns implies an order relation between their characteristic set and
vice versa. Misclassification usually takes place either when yω has more than
one bit as class identifier, which is clearly an erroneously coded class vector, or
whenever the characteristic set of one or more learned patterns is a subset of the
characteristic set of another fundamental pattern. In any of these cases correct
classification in not guaranteed [10].
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3 Thresholded Learning Matrix

In this section, a novel algorithm that overcomes Lernmatrix weaknesses is pro-
posed. Due to the fact that an order relation between patterns implies an order
relation between their characteristic set and vice versa, crossbars saturation oc-
currence can be solved along the recalling phase by means of a dynamic threshold
value which is computed for each recalled pattern. Thresholded Learning Matrix
algorithm applies the same learning phase as the Lernmatrix, while a completely
different recalling phase is proposed.

Definition 3. Let A = {0, 1} and xω ∈ An be a pattern, so the ij-th component
of an associative memory M is denoted by mij, then an ambiguously recalled
class vector Cω is obtained according to the following rule:

Cω
i =

n
∑

j=1

mij .x
ω
j (5)

Definition 4. Let ∨ be the maximum operator and ε be any positive constant,
then the dynamic threshold value θω is obtained according to the following rule:

θω =
1
ε

p
∨

h=1

[Cω
h ] (6)

If we substitute (5) in (6), the dynamic threshold value θω can be expressed as
follows:

θω =
1
ε

p
∨

h=1

⎡

⎣

n
∑

j=1

mhj .x
ω
j

⎤

⎦ (7)

Definition 5. Let ε be any positive constant and mij be the ij-th component of
an associative memory M , then the positive contribution value of each one of
the fundamental patterns is obtained according to the following rule:

Ui =
1
ε

n
∑

j=1

{mij | (mij > 0)} (8)

Definition 6. Let θω be the dynamic threshold value, ε be any positive constant
and mij be the ij-th component of an associative memory M , then a thresholded
class vector Zω is obtained according to the following rule:

Zω
i =

{

1 if
∑n

j=1
1
ε

(

mij .x
ω
j

)

= θω

0 otherwise
(9)

Definition 7. Let U be the positive contribution value of each one of the funda-
mental patterns and θω be the dynamic threshold value, then the sentinel vector
Sω is obtained according to the following rule:

Sω
i =

1
θω

Ui (10)



Thresholded Learning Matrix for Efficient Pattern Recalling 449

Definition 8. Let Zω be a thresholded class vector and Sω be the sentinel vec-
tor, then the unambiguously recalled class vector Rωis obtained according to the
following rule:

Rω
i = Zω

i .Sω
i (11)

Using the previous definitions it is possible to enunciate The Thresholded Learn-
ing Matrix Recalling Rule. The i-th component of yω is obtained according to
the following rule:

yω
i =

{

1 if Rω
i = 1

0 otherwise ; ∀i ∈ {1, 2, ..., p} (12)

where ∨ is the maximum operator and Rω is the unambiguously recalled class
vector.

Learning Phase. Generate a matrix M that will store the p associations of
the fundamental set

{(

x1, y1
)

, ..., (xp, yp)
}

, where xμ ∈ An and yμ ∈ Am ∀μ ∈
{1, 2, ..., p} according to Step 1 and Step 2 as stated in Section 2.1. Once the
learning phase is completed, an associative memory M will be obtained.

Recalling Phase. Find the class which an input pattern xω ∈ An belongs to.
Finding the class means getting yω ∈ Am that corresponds to xω . Using the
previous definitions it is possible to enunciate The TLM Recalling Phase.

Step 1. Obtain the dynamic threshold value θω using (7).
Step 2. Obtain the positive contribution value of each one of the fundamental

patterns using (8).
Step 3. Obtain the thresholded class vector Zω using (9).
Step 4. Obtain the sentinel vector Sω using (10).
Step 5. Obtain the unambiguously recalled class vector Rω using (11).
Step 6. Obtain the class yω which an input pattern xω belongs to.using (12).

After the Recalling Phase is completed and according to the construction
method of all yμ, the class yω is obtained without ambiguity for each one of the
fundamental patterns xμ ∈ An ∀μ ∈ {1, 2, ..., p}.

4 Numerical Results

Example 4.1. Let p = 3, n = 5, m = 3. Given the fundamental patterns
{(xμ, yμ) | μ = 1, 2, ..., p}, obtain a Thresholded Learning Matrix. The fun-
damental associations will be denoted as: {(x1, y1), (x2, y2), ..., (x3, y3)}.

x1 =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
0
0
1

⎞

⎟

⎟

⎟

⎟

⎠

; x2 =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
1
0
1

⎞

⎟

⎟

⎟

⎟

⎠

; x3 =

⎛

⎜

⎜

⎜

⎜

⎝

1
0
1
0
0

⎞

⎟

⎟

⎟

⎟

⎠

;

y1 =

⎛

⎝

1
0
0

⎞

⎠ ; y2 =

⎛

⎝

0
1
0

⎞

⎠ ; y3 =

⎛

⎝

0
0
1

⎞

⎠
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Learning phase. Generate a matrix M that will store the p associations of
the fundamental set, according to Step 1 and Step 2 as stated in Section 2.1.
Obtain the positive contribution value U of each one of the fundamental patterns
using (8).

M =

⎛

⎝

ε −ε −ε −ε ε
ε −ε ε −ε ε
ε −ε ε −ε −ε

⎞

⎠ ; U =

⎛

⎝

2
3
2

⎞

⎠

Once the learning phase is completed, an associative memory M will be ob-
tained, as well as the positive contribution value U of each one of the fundamental
patterns.

Recalling Phase. Find the class which an input pattern xω ∈ An belongs to.
Finding the class means getting yω ∈ Am that corresponds to xω . The dynamic
threshold value θω is obtained using (7).

C1 = M · x1 =

⎛

⎝

2ε
2ε
0

⎞

⎠ ; θ1 = 2

Using (9) a thresholded class vector Zω is obtained, as well as the sentinel
vector Sω using (10).

Z1 =

⎛

⎝

1
1
0

⎞

⎠ ; S1 =

⎛

⎝

1
1.5
1

⎞

⎠

Using (11) the unambiguously recalled class vector Rω is obtained.

R1 = Z1 · S1 =

⎛

⎝

1
1
0

⎞

⎠

⎛

⎝

1
1.5
1

⎞

⎠ =

⎛

⎝

1
1.5
0

⎞

⎠ → y1 =

⎛

⎝

1
0
0

⎞

⎠

Finally, the class yω which an input pattern xω belongs to is obtained using
(12). Due to paper space limitations, only the first association (x1, y1) recalling
results are shown. The reader can easily verify that the whole fundamental set
of patterns is completely recalled.

5 Experimental Results

In order to estimate how the Thresholded Learning Matrix algorithm performs
with high dimensional data, 20 grayscale images obtained from the Third In-
ternational Fingerprint Verification Competition (FVC2004) were used as fun-
damental patterns (Figure 1). The experimental phase was implemented using
Matlab v.7.0 (R14) over a PC with an Intel Core 2 Duo microprocessor @ 2.13
GHz with 2048 MB of RAM and 120 GB of hard disk space. Each one of the
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Fig. 1. Fundamental Input Patterns

Table 1. Averaged recalling results

Algorithm1 [1] Algorithm2 [10] TLM
Number of vectors 20 20 20
Vector size, n 153600 bits 153600 bits 153600 bits
Learning time 11.69 (sec) 11.69 (sec) 11.69 (sec)
Recalling time 10.52 (sec) 11.82 (sec) 10.75 (sec)
Error rate (%) 11.2 9.6 0

fundamental patterns produces a 160 x 120 x 8 bits vector. Accordingly, each
pattern association results in a 153600 bits vector, consequently, a 20 by 153600
bits matrix is obtained after the learning phase is completed.

The experimental phase was carried out as follows: after a 20 by 153600 bits
matrix initialization process was concluded, the first association was learned
and recalled. Subsequently, the first and second associations were learned and
recalled; after that, the same procedure continued in a consecutive manner until
the fundamental set of patterns was completely learned and recalled. The above
mentioned procedure was executed 10 times, each time changing the fundamental
patterns order randomly. The averaged recalling results are shown in Table 1.
A relevant thing to mention about the recalling criterion that was used along
the experimental phase is that, in this case, perfect recall means that all of
the 153600 bits were exactly recovered. Particularly, outstanding results were
achieved by the Thresholded Learning Matrix algorithm (the whole fundamental
set of patterns was perfectly recalled).

6 Conclusions and Ongoing Research

In this paper a new algorithm which is based on the first known model of associa-
tive memory has been introduced. Lernmatrix weaknesses are solved by means
of a dynamic threshold value which is computed for each recalled pattern. The
algorithm applies the dynamic threshold value over the ambiguously recalled
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class vector in order to obtain a sentinel vector which is used for uncertainty
elimination purposes. Experimental results have shown that this algorithm is
an efficient way to improve classifier accuracy; furthermore, our recalling rule
proposal not only is simpler but swifter than the ones presented in [1] and [10].
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Polytechnic Institute, Mexico (CIC, SIP, PIFI, COFAA) , CONACyT and SNI.
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