

P. Forbrig and F. Paternò (Eds.): HCSE/TAMODIA 2008, LNCS 5247, pp. 221–228, 2008.
© IFIP International Federation for Information Processing 2008

Involving End Users in Distributed Requirements
Engineering

Steffen Lohmann, Jürgen Ziegler, and Philipp Heim

University of Duisburg-Essen,
Lotharstrasse 65, 47057 Duisburg, Germany

{lohmann,ziegler,heim}@interactivesystems.info

Abstract. Active involvement of end users in the development of interactive
systems is both highly recommended and highly challenging. This is particu-
larly true in settings where the requirements of a large number of geographi-
cally distributed users have to be taken into account. In this paper, we address
this problem by introducing an integrated, web-based approach that enables us-
ers to easily express their ideas on how the interaction with a system could be
improved. In addition, the user input is contextualized, allowing for highly
structured means to access, explore, and analyze the user requirements.

Keywords: Distributed Requirements Engineering, User Involvement, Global
Software Development, Web-based Participation, Distributed Participatory
Design.

1 Motivation

The active involvement of end users in the analysis and design of interactive systems
has become to be known as Participatory Design (PD) [8][12]. Over the years, a
couple of methods, techniques, and tools have been developed to support PD [2].
However, though most of these approaches work well for co-located stakeholders,
they lack supporting the engineering of interactive systems where needs and desires
of a large number of geographically dispersed users have to be met. As this becomes
increasingly common in a globalized world, PD has to face new challenges. This is
addressed by the emerging research area of Distributed Participatory Design (DPD)
[3] which investigates PD with regard to physical, temporal, and organizational
distribution.

Against the background of DPD, we are working on methods and tools that support
end user participation in distributed requirements engineering within the SoftWiki
project [13]. In the following, we present an approach for the elicitation of user re-
quirements in the evolutionary development of interactive systems. It enables distrib-
uted users to express requirements on basis of their interaction experience. We first
give a brief overview on related work. Then, we describe the overall approach for
distributed elicitation of user requirements, its implementation, and the underlying
model. Subsequently, we provide a short insight into different ways to access, ex-
plore, and analyze the gathered user requirements and into the tools and visualizations

222 S. Lohmann, J. Ziegler, and P. Heim

we are currently working on to support these activities. The paper ends with a short
discussion and an outlook on future work.

2 Related Work

Research regarding the participation of distributed end users in the development of
interactive systems is – next to DPD – mainly conducted under the terms of Distrib-
uted or Global Software Development (DSD, GSD). The majority of the existing
approaches are of a very general nature in that they consider support for as many
stakeholder groups as possible rather than focusing specifically on the end user's ex-
pectations and needs. Furthermore – though the quantity is reduced – most approaches
still heavily rely on physical meetings and direct communication (cp. e.g. ARENA [5]
or DisIRE [4]).

Other attempts try to equip the users with extensive possibilities to annotate or
even design the interface. Moore [10], for instance, proposes the use of GUI elements
without functionality to allow end users to express their requirements: The users are
enabled to create “mock user interface constructions” and augment them with textual
descriptions. However, it cannot be expected that users normally have the time and
skills to develop GUI proposals without any guidance. Thus, this approach is not
feasible in most situations with large, distributed user groups.

A more promising approach for distributed settings is to allow users to express re-
quirements on the basis of an existing application or test prototype. One possibility is
Digital Annotation (DA): Tools such as Annotate!Pro [1] can be used to enable end
users to express requirements intuitively by annotating applications using free-form
drawing and send in a snapshot of their annotations to the developing team. Rashid et
al. [11] present a solution that specifically aims to support end user participation in
requirements elicitation by providing a DA toolset and some predefined templates that
have been developed with the needs of requirements formulation in mind.

Though DPD approaches that are based on DA can be very intuitive, they still re-
quire some effort and skills of the users in expressing their requirements and demand
time-consuming interpretation in the course of analyzing and understanding the anno-
tated screens. The possibilities for structured access or machine readability are very
limited. It is nearly impossible, for instance, to automatically detect similar or identi-
cal requirements. For these reasons, the mentioned approaches do not sufficiently
support settings with large user groups and provide only limited means for developers
to explore, filter, and evaluate the collection of user requirements.

3 Web-Based Elicitation of User Requirements

Our approach focuses on the elicitation of user requirements for web-based systems.
The implementation is seamlessly integrated into the end user's web browser and
provides some advantages compared to stand-alone applications:

1. A contributing user does not have to change the environment. He can express his
requirement immediately when it occurs while interacting with the system.

 Involving End Users in Distributed Requirements Engineering 223

2. Parts of the usage and system context can be captured along with the user require-
ment, allowing for more structured means to analyze and utilize the requirements
as well as a better understanding of their intended meaning.

3. The user is enabled to explicitly point at parts of the interface the requirement
refers to. Thus, requirements can be directly linked to the application structure.

3.1 Scenario and Application

The general idea of our approach is best illustrated by a brief scenario that uses the
application we developed for the elicitation of user requirements (cp. Fig. 1).

1

2

3

4

5

7

6b

6a

Fig. 1. Web-based interface for the submission of requirements

Imagine an employee who uses the company's web-based mail application in her
daily business. While checking her e-mails, the employee misses a feature that she
would like to see realized in one of the next releases, in this case, a possibility to hide
all e-mails that have been detected to be spam at one click. Thus, she presses a button
that is integrated in the user interface of her web browser (1). A pop-up window ap-
pears (2) containing a web form where she enters a description of her requirement (3)
and optionally adds an adequate title (4) and some keywords (5). If her requirement
refers to an element of the visible web page, she does not have to textually describe
the element but can directly point to it as follows: While the pop-up window is
opened, selected elements are highlighted (6a) and can be copied to the web form (6b)

224 S. Lohmann, J. Ziegler, and P. Heim

simply with a click1. Finally, the employee submits her requirement, receives a con-
firmation, the pop-up window closes and she returns to the web application where she
continues to check her e-mails.

The user interface is reduced to its essential elements so that it is immediately un-
derstandable, minimizes user effort and hence encourages participation. In the exam-
ple given, the user does not even have to classify her requirement into a pre-defined
taxonomy or a collection of existing requirements but is simply asked to provide some
meaningful, freely chosen keywords. In order to further ease participation, require-
ments that are identified as similar to the one the user is entering are displayed below
the web form (7)2: That way, the user does not need to formulate a requirement a
second time that already exists. Furthermore, the amount of redundant requirements is
reduced, leading to lower effort in analyzing the requirements.

3.2 Conceptual Model and Gathered Information

The conceptual model underlying our approach is shown in Fig. 2. It is divided into
four parts. As is common in requirements engineering, the basic data consists of a
description and title of the requirement that in our case are formulated by the user,
and an automatically assigned identification (ID). An automatically generated full-text
index of the title and description together with the user added keywords ease access
and are used for searching in the requirements and calculating the similarity measure,
amongst others.

Along with the user input, additional information regarding the usage and system
context is captured. Following Kaltz et al. [6], we break down the usage context into
the facets User & Role, Location, Time, Device, and Task. Technically, this context
data is derived via several mechanisms using header information of the transfer proto-
cols and additional information that is gathered and sent by the web browser plug-in
in combination with user profiles, geolocation, and lookup tables3. The context facet
User & Role takes into account that a user may want to be able to state requirements
out of different roles in some situations – for instance, a director of a company might
also want to express a requirement from his perspective as an ordinary user of the
system.

The Task facet of the usage context is highly related to the concepts System State
and System Pointer that together form the system context. The former expresses that
each user requirement occurs within a specific state of the system that it can be linked
with4. The latter represents elements that the user explicitly refers to when formulat-
ing his requirement (see Sec. 3.1). Depending on the implementation of the web ap-
plication and its internal structure, these general model concepts can be further broken
down and filled accordingly. For instance, if a model-driven web engineering

1 Hyperlinks in the web page are temporarily deactivated for this purpose.
2 The similarity measure is calculated in the background while the user types in her requirement

using asynchronous server requests as well as statistical and linguistic algorithms.
3 Depending on the particular use case, the derived context data cannot be expected to be per-

fectly correct.
4
 The state of the system and usage context when the requirement is entered by the user is,
strictly speaking, not necessarily identical to that when the requirement occurs; but in most
situations this is likely to be the case.

 Involving End Users in Distributed Requirements Engineering 225

approach [9] has been used to develop the application, links between requirements
and parts of the system models can be explicitly set. However, this requires that the
models are accessible by the web browser plug-in at runtime and that the correspond-
ing system state is represented in these models accordingly.

+ : obligatory | a : automatically derived | u : user input | : captured | : inferred

System Context

Usage Context

User & Role Location Time+ Device Task

System State+Keywords Fulltext Index+

Index

Title

ID+

Description+

u
u u a

u

a
a/uaa/u

a/u

a System Pointer

a

User Requirement

Basic Data

Fig. 2. The user requirement is linked to a number of model concepts

Our basic implementation follows a generic approach to determine the system con-
text: The System State is derived from the URL of the corresponding web page and
variables provided by the transfer protocol. The System Pointer consists of the paths
of the selected elements according to the Document Object Model (DOM). Of course,
the expressiveness of relations to the system context is limited in this generic
approach.

As already mentioned, information regarding the task that the user performs when
the requirement occurs might be inferred from the system models to some degree.
Such as in case of the other model concepts, the Task concept can be further broken
down depending on the implementation of the specific use case.

4 Analyzing the User Requirements

The information that is captured along with each requirement provides multiple ways
to access the requirements collection and thus eases its exploration and analysis.
Again, this is best illustrated by an example:

Figure 3a shows a screenshot of a web-based prototype we developed for analyzing
the requirements that are elicited on the basis of the tool and underlying model de-
scribed in Sec. 3. The interface consists of a main view on the requirements collection
and a sidebar containing visualizations that offer various options for filtering the re-
quirements according to the model facets. Two visual filters are implemented in the
current prototype: a map visualization that shows the requirements according to their
geo-coordinates and can be used for location-based filtering, and a tag cloud visuali-
zation that alphabetically lists the user-assigned keywords, each with a size that corre-
sponds to its usage frequency.

226 S. Lohmann, J. Ziegler, and P. Heim

Fig. 3. a) Web interface for the analysis of user requirements, b) Alternative graph visualization

Continuing the scenario outlined in Sec. 3.1, one of the developers of the com-
pany's webmail application is going to define specifications for the next software
release. Assume that the developer is particularly interested in all user requirements
regarding the topic spam that have been stated by the employees working at company
sites in Europe. He thus changes the visible area of the map so that only Europe is
shown. Then, he selects all keywords that deal with the topic spam – in this case he
chooses the synonyms spam and junk – and defines that these keywords should be
interconnected by the logical OR operator. As a result, only requirements are listed
that meet these criteria. Furthermore, the developer can take a look at the contextual
situation as it was when a specific requirement has been entered by an employee. For
this purpose, a pop-up window simulates the presentation of the application according
to the context data that has been captured along with the requirement (e.g., the corre-
sponding web page, the size of the content area, etc.). If references to parts of the web
page were set by the employee (see Sec. 3.1), these elements are highlighted in the
simulated view5.

Besides the map and tag cloud visualization, further filter options are possible ac-
cording to the model presented in Sec. 3.2. Furthermore, we investigate alternative
ways of presenting the requirements collection in the main view. Figure 3b shows a
prototype of a graph visualization that helps the analyst to reveal relationships, simi-
larities, and conflicts between requirements that are otherwise hidden in the
list view.

5 Discussion and Future Work

The presented approach differs from related work in that it is integrated into the user's
web browser. That way, the user does not have to change the environment to express

5 In our current prototype, the highlighting works properly only in cases where the DOM path

to the selected web page elements remains the same.

 Involving End Users in Distributed Requirements Engineering 227

an idea on how the interaction with a web-based system could be improved. The user
input can furthermore be related to the system and usage context. This is possible
mainly due to the fact that web applications are predominantly based on script lan-
guages that are interpreted by the web browser at runtime. However, with the advent
of user interface markup languages for operating systems (e.g., XAML [14]), the
application of a slightly adapted approach is also increasingly feasible outside the web
browser.

We paid special attention to the balancing of our approach by minimizing the effort
for users who express requirements and, at the same time, capturing sufficient meta-
data to enable structured analysis and further processing of the requirements. This is
best demonstrated by the possibility to select interface elements a requirement refers
to (see Sec. 3.1): On the one hand, the user does not have to describe GUI elements
but can simply point at them, and, on the other hand, the developer does not have to
guess what element is meant and can work with the reference, for instance, aggregate
all requirements that have been related to one GUI element.

Generally, the presented approach can be used in all settings where users shall be
enabled to give feedback regarding a web-based system, ranging from feature re-
quests and bug tracking to remote usability testing. The overall aim is to establish a
closer relationship between users and developers in settings with large and distributed
user groups. First tests showed that the general approach and the developed tools are
quickly understood by users. Currently, we are preparing a comprehensive case study
that examines the developed applications within the larger context of the SoftWiki
project.

In order to increase participation and create an awareness of what happens with the
user input, we are investigating different requirements tracking, user feedback, and
gratification mechanisms. In addition, we study how users might discuss, reformulate,
or vote for a requirement that has already been stated by someone else and is identi-
fied as possibly related.

References

1. Annotate!Pro (June 11, 2008), http://www.annotatepro.com/
2. Bødker, K., Kensing, F., Simonsen, J.: Participatory IT Design – Designing for Business

and Workplace Realities. MIT Press, Cambridge (2004)
3. Danielsson, K., Naghsh, A.M., Gumm, D., Warr, A.: Distributed Participatory Design. In:

Extended Abstracts of the 2008 Conference on Human Factors in Computing Systems
(CHI 2008), Florence, Italy, pp. 3953–3956. ACM, New York (2008)

4. Geisser, M., Heinzl, A., Hildenbrand, T., Rothlauf, F.: Verteiltes, internetbasiertes Re-
quirements-Engineering. Wirtschaftsinformatik 49(3), 199–207 (2007)

5. Grünbacher, P., Braunsberger, P.: Tool Support for Distributed Requirements Negotiation.
In: Cimititle, A., De Lucia, A., Gall, H. (eds.) Cooperative Methods and Tools for Distrib-
uted Software Processes, FrancoAngeli, Milano, pp. 56–66 (2003)

6. Kaltz, J.W., Ziegler, J., Lohmann, S.: Context-aware Web Engineering: Modeling and Ap-
plications. Revue d’Intelligence Artificielle 19(3), 439–458 (2005)

7. Kaser, O., Lemire, D.: Tag-Cloud Drawing: Algorithms for Cloud Visualization. In: Pro-
ceedings of the WWW 2007 Workshop on Tagging and Metadata for Social Information
Organization (2007)

228 S. Lohmann, J. Ziegler, and P. Heim

8. Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns. Computer Sup-
ported Cooperative Work 7, 167–185 (1998)

9. Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web Engineering
and the MDA. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modelling and Implementing Web Applications, pp. 353–382. Springer, Heidelberg (2008)

10. Moore, J.M.: Communicating Requirements Using End-User GUI Constructions with Ar-
gumentation. In: Proceedings of the 18th IEEE International Conference on Automated
Software Engineering (ASE 2003), Montreal, Canada, pp. 360–363. IEEE, Washington
(2003)

11. Rashid, A., Meder, D., Wiesenberger, J., Behm, A.: Visual Requirement Specification in
End-User Participation. In: Proceedings of the 1st International Workshop on Multimedia
Requirements Engineering. IEEE, Washington (2006)

12. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Erlbaum, Hills-
dale (1993)

13. SoftWiki – Research project, funded by the German Federal Ministry of Education and
Research (BMBF). For more information, http://softwiki.de/

14. Extensible Application Markup Language (XAML) (June 11, 2008),
http://msdn.microsoft.com/en-us/library/ms752059.aspx

	Involving End Users in Distributed Requirements Engineering
	Motivation
	Related Work
	Web-Based Elicitation of User Requirements
	Scenario and Application
	Conceptual Model and Gathered Information

	Analyzing the User Requirements
	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

