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Abstract. Performance analysis tools are only as useful as the data
they collect. Not just accuracy of performance data, but accessibility,
is necessary for performance analysis tools to be used to their full ef-
fect. The diversity of performance analysis and tuning problems calls for
more flexible means of storing and representing performance data. The
development and maintenance cycles of high performance programs, in
particular, stand to benefit from exploration of and expansion of the
means used to record and describe program execution behavior. We de-
scribe a means of representing program performance data via a time
or event delineated series of performance profiles, or profile snapshots,
implemented in the TAU performance analysis system. This includes
an explanation of the profile snapshot format and means of snapshot
analysis.
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1 Introduction

In the evolution of parallel performance tools, the two general methods of mea-
surement and analysis – profiling and tracing – have each found their strong
advocates and critics, yet both continue to be dominant in performance engi-
neering practice. In fundamental terms, the differences between the two are clear.
Profiling methods compute performance statistics at runtime based on measure-
ments of events made either through sampling or direct code instrumentation.
Tracing, on the other hand, merely records the measurement information for each
event in a trace for future analysis. Whereas the statistics calculated in profil-
ing can be computed by trace analysis, certain performance results can only be
generated from traces. These results are best characterized as time-dependent.
Indeed, tracing is fundamentally distinguished from profiling in that the trace
data retains complete event timing information.

If the potential for temporal analysis of performance is tracing’s forte, its
weakness is the generation of large, sometime prohibitively large, traces. In gen-
eral, trace sizes are proportional to both the number of processes in a parallel
application and the total execution time. Applications of a thousand processes
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running several hours can easily produces traces in the hundreds of gigabytes.
While tracing systems have made excellent advances in dealing with trace size
in measurement and analysis (e.g., the Vampir [1] and Kojak/Scalasca projects
[2,3]), the use of profiling methods does not suffer such drastic size concerns.

Unfortunately, profiling also loses track of time, to put it simply. The statistics
it produces are summary in nature and do not allow performance to be observed
in a time relative manner. At least, this is a reasonable synopsis of what we might
call “classical profiling.” An interesting question is whether profiling methods
could be enhanced to introduce a time reference, in some way, in the performance
data to allow time-oriented analysis.

In this paper, we introduce the concept of parallel profile snapshots and de-
scribe how profile snapshots are implemented in the TAU performance systemTM

[4]. While the approach we describe in Section §2 is simple, it is powerful in that
it opens many opportunities for its use and generates a few problems to resolve
along the way. Section §3 discusses the TAU implementation of parallel profile
snapshots, both the measurement mechanisms and the profile snapshot output.
Performance profiles snapshots can also be generated from trace analysis. Sec-
tion §4 discusses how this is done in the TAU trace-to-profile tool. However, the
goal of a profile snapshot capability is to add temporal analysis support to per-
formance profiling, while avoiding resorting to tracing methods. In Section §5 we
show results from the application of profile snapshots. We provide background
on related work in Section §6 and give final remarks in Section §7.

2 Design

A parallel profile snapshot is a recording of the current values of parallel profile
measurements during program execution. It is intended that multiple profile
snapshots are made, with each snapshot marked by a time value indicating when
it took place. In this manner, by analyzing the profile snapshot series, temporal
performance dynamics are revealed. Figure 1 shows a high-level view of the
performance profile snapshot workflow. For any snapshot, the profile data for
each thread of execution is recorded. Depending on the type of parallel system,
thread-level (process-level) profiles may be stored in different physical locations
during execution. However, analysis of temporal performance dynamics requires
all parallel profile snapshots to be merged beforehand.

A snapshot trigger determines when a profile snapshot is taken. Triggers are
defined with respect to actions that occur during execution, either externally,
within the performance measurement system, or at the program level. Timer-
based triggers initiate profile snapshots at regular fixed time internals. These
intervals can be changed during the execution. Triggers can be conditional, de-
termined by performance or application state. The key issue is where trigger
control is located. User-level trigger control allows a profile snapshot to be taken
at any point in the program. The performance measurement system can invoke
triggers at points where it has gained execution control.
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Fig. 1. Profile snapshot architecture

Because the profile snapshots being taken are from parallel executions, the
triggers are also executed in parallel. There may be different triggers for different
threads of execution and they may be based on different conditions. Thus, it is
possible for profile snapshots to be made at different times for different threads
for different reasons. Profile snapshots can also record any portion of the parallel
profile state by selecting which performance events are of interest and what
performance data (e.g., time and counters) should be stored.

A series of parallel profile snapshots is a time-sequence representation of the
changing performance measurements of a program’s execution. Flexibility in trig-
ger control and profile snapshot selection is important to allow the desired views
of temporal performance dynamics to be obtained. For instance, timer-based
triggers allow performance frequency and rates to be calculated. However, inter-
preting the relationship between profile snapshots and between different threads
of execution for the same ‘logical’ snapshot can be tricky, especially when the per
thread snapshots are recorded at different time points. One of the challenges of
parallel profile snapshots is capturing “synchronized” performance state across
the whole parallel execution. As the application scales, this becomes more diffi-
cult. In general, by associating profile snapshots (triggers and profile selection)
with application semantics (e.g., between computation phases), analysis results
can be more meaningfully interpreted.

3 Profile Snapshots in TAU

We have implemented profile snapshot data collection in TAU. The measurement
system, API, and analysis tools have all been extended to support this new
technique.

We have implemented a new file format in TAU to support scalable profile
snapshot data collection. We created an open XML based format with concise
data blocks for raw performance data. Identifier information is normalized and
separated in definition blocks. Metadata blocks store machine and OS informa-
tion collected by the measurement system. The format supports streamability
for use in online performance monitoring. This is achieved through incremental
definition blocks interleaved with performance data blocks such that there is
no final index that must be read before data can be interpreted. Additionally,
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full definition blocks can recur in the stream to support readers that may start
reading partway through the stream. Record blocks can be split across multiple
files. The measurement system writes the snapshots for each thread of execution
in a separate file. This way there is no need for locking between threads and
no need for synchronization across process boundaries. The files can be merged
by simply appending one to another, or they can be interleaved, which could
be done during online monitoring using a tree network such as MRNet [5] or
Supermon [6]. Indeed, we have already shown how a performance measurement
system can be integrated with a transport layer such as Supermon [7] to trans-
port distributed profiles at runtime from many sources to a single sink. We have
also integrated TAU output with MRNet [8], which allows us to utilize data
reductions and filters as profiles are collected through the system.

Profile snapshots are created by applications instrumented with TAU using an
API call similar to existing calls for exporting profiles to disk. Some identifying
information such as a character string and/or integer value can be associated
with each snapshot to correlate them with application level events. For example,
in many scientific simulations, there is a main iteration or timestep loop. We
would instrument this by placing a snapshot call before the loop begins (called
the initialization snapshot), then another at the end of the loop, identified with
the iteration number. The initialization snapshot is necessary so that the first
iteration of the loop is distinguished from the execution of the application before
the main loop begins. At the end of execution, a final snapshot is written. The
raw data from the final snapshot is the same as what would normally be written
as regular profile.

The option to perform snapshot profiling is orthogonal to all of the other
profiling options in TAU. It can be combined with callpath profiling, phase
profiling, and any other specialized profiling options. We capture both interval
events with begin/end semantics (such as timers) as well as atomic user-defined
events that are triggered with application specific data values.

We have tested the scalability of this format with hundreds of processors and
hundreds of events on long running applications. Depending on the application,
creating snapshots at coarse intervals still provides a wealth of useful informa-
tion. Our profile snapshot format typically requires on the order of 20 bytes per
event recorded. In the execution of a 6 minute simulation of FLASH across 128
processors, we generated 320MB of uncompressed data (58MB compressed) with
6.3% overhead above regular profiling (which had a 4.6% overhead) . By com-
parison, with tracing, the same run generated 397GB of trace data and imposed
a 130.3% overhead (13m31s).

We have extended the PerfDMF [9] system to support reading the new snap-
shot format. For those components that cannot interpret the intermediate snap-
shot data, such as PerfExplorer [10], the data is interpreted as a single profile
representing the entire execution, just as if regular profiling had been done. Other
tools, such as ParaProf [11], can take advantage of the full range of snapshot
profiles.
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ParaProf has been significantly enhanced to support profile snapshots. Each
chart and table can display both individual and cumulative data from snapshots,
all linked through a separate window with a slider to control snapshot position.
Because the snapshots are timestamped, we present it as a timeline and allow
automatic playback of the execution.

4 Trace File Conversion

In addition to generating profile snapshots via TAU instrumentation, we have
implemented a tool for extracting them from existing trace data. A full program
trace implicitly contains all profile data that might have been extracted from the
traced application. By converting traces to profile snapshots we open the wealth
of data contained in traces to profile and profile snapshot analysis methods.

We developed the trace-to-snapshot functionality by extending an existing
trace-to-profile utility in TAU. It operates by reading trace files and maintaining
a time-stamped callstack of trace events. From this, it is able to produce profile
files through simulation of the original program execution, essentially using the
trace data as a script.

Each thread of execution in the trace is assigned an individual callstack which
records the inclusive and exclusive time spent in routines as they are entered and
exited. The callstack data structure also aggregates any user defined event data
contained in the trace. Profile snapshots are produced by periodically finalizing
the current callstacks, as if all active routines exited at the current timestamp.
The collected profile data is then written to disk. The converter then resumes
the simulation with a non-finalized version of the callstack.

The trace-to-profile converter generates snapshots on the basis of specified
time intervals by default. However, all collected metrics remain visible to the
snapshot logic throughout the conversion process. Wall clock time intervals are
merely one special case. Other triggers for snapshot generation, such as inclusive
or exclusive time spent in a given routine, the number of calls to a given routine
or the value of a given hardware counter can be just as easily designated as
triggers for snapshot generation. Because they are driven by program behavior
rather than static time increments, snapshots generated by these triggers may
reveal more about the program’s behavior with respect to certain phases of
execution.

The process of converting multi-threaded traces to profile snapshots is em-
barrassingly parallel. So long as the trace files themselves are not merged, the
trace-to-profile converter can be independently invoked on the trace output of
distinct processes. No programmatic means of taking advantage of this paral-
lelism, which also exists in merged traces, has been implemented, however.

Because event driven trace files typically share analogous content it is straight-
forward to extend the converter’s format recognition. We leveraged this innate
flexibility by separating the trace event processing routines from the trace reader
API in use. This makes it fairly simple to extend the converted to support other
trace formats.
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5 Application of Profile Snapshots

We have applied our profile snapshot technique to the FLASH [12] application
from the ASC Flash Center at the University of Chicago.

FLASH is a parallel adaptive-mesh multi-physics simulation code designed
to solve nuclear astrophysical problems related to exploding stars. The FLASH
code solves the Euler equations for compressible flow and the Poisson equation
for self-gravity.

We instrumented FLASH with TAU using PDT [13] for routine level timing
information. The instrumentation has been optimized so that not all routines are
instrumented (to reduce overhead, small routines which are called with very high
frequency are often excluded [14]). We instrumented the main iteration loop for
snapshots using the method described in section §3. Each iteration of the loop
takes a different amount of time due to a variety of factors. The profile snapshot
technique allows us to verify what is happening in the simulation.

Some iterations perform different tasks such as checkpointing and AMR re-
gridding. Regular profiling will tell us the aggregate time that these operations
take for the entire execution, but the per-iteration snapshots will show how these
operations perform within the context of the iteration. Additionally, we find that
the amount of work per iteration increases due to the mesh refinement. There
are more total leaf blocks in the grid and thus more work to do. We can verify
this behavior and its effects with snapshot profiles.

Figure 2 shows a variety of analysis displays from ParaProf showing perfor-
mance data from each of the profile snapshots. The data shown here is for MPI
rank 0 from a 6 minute 128 processor run on LLNL’s Atlas machine. Figure 2(a)
shows the time taken in each of the top 20 events for each snapshot, across a
timeline, as a stacked bar chart. The data here is differential, meaning that the
snapshots are viewed as the difference between the timing information at the
start of the snapshot vs. the end of the snapshot. Alternatively, we can view
each chart in cumulative mode. Figure 2(b) shows a line chart of the number of
calls for the top 20 routines. The AMR grid used in FLASH is refined as the
simulation proceeds, so we expect to see more calls and more time spent in later
timesteps. This is verified by the data we see in the profile snapshots.

Figure 2(c) shows the differential per call exclusive time. Because the per call
value can decrease between snapshots, the values here can be negative. Here we
see that the MPI Alltoall() call has spikes of large per-call values during certain
iterations. While the regular snapshot view would show us that more time is
spent in this routine, it could be due to more MPI Alltoall() calls being made,
however, with this view, we are able to determine that the duration of each call
has actually increased.

Figure 2(d) shows the cumulative exclusive percent of time spent in each of
the top 20 routines. As expected, the cumulative percentage of time spent in
each routine stabilizes as the simulation proceeds.

Each of ParaProf’s regular displays can show cumulative or differential snap-
shot data. A slider is used to select which snapshot is currently viewed across
all windows. Additionally, the execution history can be replayed automatically
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a. Differential exclusive time, stacked b. Differential number of calls, line chart

c. Differential exclusive time per call d. Cumulative exclusive percent

Fig. 2. ParaProf charts of profile snapshots from FLASH

Snapshot 50
T=75s
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Fig. 3. Three-dimensional scatterplots from cumulative snapshots showing the change
in clustering over time



Observing Performance Dynamics Using Parallel Profile Snapshots 169

and the user can watch as each window animates through the history of the
execution, similar to a saved history of an online monitoring framework.

Figure 3 shows one of the three dimensional charts from ParaProf for two
different snapshots. The 3D scatterplot can be used to determine performance
data clustering. With a snapshot profile, we can see how the clustering changes
over the course of the execution of the application.

Using the new capabilities provided by profile snapshots in TAU, we are able
to verify our understanding of the execution of FLASH and look for inconsistent
program behavior over time.

6 Related Work

The concept of parallel profile snapshots complements the work by Fürlinger on
“incremental profiling” [15,16] of OpenMP parallel programs. Incremental pro-
filing shares the same objectives as TAU’s profile snapshot to capture temporal
performance dynamics. Fürlinger developed the ompP tool and has shown it to
be effective at tracking variations in performance properties of OpenMP loops
over time, in particular overheads associated with loop imbalance and thread
synchronization. Our work on profile snapshots generalizes incremental profil-
ing to operate with any parallel program and at any scale. TAU implements a
broader spectrum of snapshot triggers than ompP’s regular, fixed-length time
triggers. Also, a wider choice of analysis and display is available. We should note
that the incremental profile data captured by ompP can be easily converted to
the TAU profile snapshot format, making it possible to use ParaProf’s perfor-
mance displays with ompP.

Both TAU and ompP use direct measurement for performance profiling. Other
tools use statistical sampling to build profile data. The Intel Thread Profiler, part
of the VTune Performance Envionment [17], and the Sun Studio Performance
Analyzer [18] both use statistical profiling. In addition, they provide views of
performance dynamics. The Intel Thread Profiler has a timeline view that high-
lights thread state and performance activity. Similarly, the Sun Studio Perfor-
mance Analyzer captures a profile sample trace for every thread of execution
that includes data about call stacks, thread microstate, synchronization delay,
memory allocation, and operating system interactions, and then displays this in-
formation as a function of time. However, because they are based on statistical
sampling, both tools are limited in their support for general parallel programs
and profile snapshot points (i.e., triggers) are constrained to sampling events
(e.g., timer interrupts). In contrast, TAU performance snapshots are more scal-
able and flexible in both measurement and analysis.

Statistical profiling systems include those that can externally measure ap-
plication performance and provide online access to the data. The Digital Con-
tinuous Profiling Infrastructure (DPCI) [19], OProfile [20], and Sun’s DTrace
[21] all implement infrastructure for gathering a wide variety of application and
system statistics, and connecting with daemons to process and store the results.
While providing the capability to observe temporal performance dynamics, these
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technologies are application agnostic and not targeted to parallel applications
per se. They lack the generality of the profile snapshot approach in TAU to
capture and study performance behavior with respect to application semantics
and performance optimization needs.

7 Conclusions and Future Work

Profile snapshots extend the capability of profiling systems with the addition of
temporal data analysis without the need for full application tracing. This new
capability opens up an area of time-based differential profile analysis that allows
us to see how an application’s performance changes through the course of its
execution.

Our future plans include enhancing the snapshot triggering mechanism of both
the runtime measurement system and the trace conversion utility. We would like
to be able to specify and create a more rich set of triggers for snapshot creation
based on runtime measurements, application level events, and conditionals. Addi-
tional enhancements to the trace-to-profile tool will include the option to specify
lock step or thread-specific snapshot generation.

Profile snapshots are an ideal vehicle for integration with an online analysis
infrastructure. We plan to create a robust, extendable online analysis system.
Several key additions to the snapshot infrastructure will be necessary. We will
need the capability to perform selective snapshots (e.g. subsets of events, coun-
ters), and allow for a reverse control channel for runtime adjustment of this
selection. Along these lines, we can also build in mechanisms to buffer snapshot
data for those cases where scalable I/O is not available or not necessary, in the
case of online data collection.
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