
A SAT-Based Approach to Size Change
Termination with Global Ranking Functions

Amir M. Ben-Amram1 and Michael Codish2

1 School of Computer Science, Tel-Aviv Academic College, Israel
2 Department of Computer Science, Ben-Gurion University, Israel

amirben@mta.ac.il, mcodish@cs.bgu.ac.il

Abstract. We describe a new approach to proving termination with
size change graphs. This is the first decision procedure for size change
termination (SCT) which makes direct use of global ranking functions. It
handles a well-defined and significant subset of SCT instances, designed
to be amenable to a SAT-based solution. We have implemented the ap-
proach using a state-of-the-art Boolean satisfaction solver. Experimen-
tation indicates that the approach is a viable alternative to the complete
SCT decision procedure based on closure computation and local ranking
functions. Our approach has the extra benefit of producing an explicit
witness to prove termination in the form of a global ranking function.

1 Introduction

Program termination is a cornerstone problem of program verification, as well as
being the quintessential example for undecidability. In practice, however, there
is a growing conviction that automated termination analysis is viable. This can
be explained by the hypothesis that in realistic, correct programs, termination
usually follows from reasons that are not very complex. The challenge of ter-
mination analysis is to design a useful program abstraction that captures the
properties needed to prove termination as often as possible, while making ter-
mination checking decidable.

The Size-Change Termination method (SCT) is such an approach. Formally
introduced in [17], SCT is a program abstraction where termination is decidable.
Briefly, an abstract program is a directed control-flow graph (CFG), where each
arc is an abstract transition, specified by its source and target locations and
annotated by a size-change graph. The latter describes how the sizes of program
data are affected by the transition. The abstract program terminates if and only
if every infinite CFG path implies that a value descends infinitely. We assume
that the values described by the size-change graphs are well-founded, so infinite
descent is impossible.

The size-change termination method has been successfully applied in a va-
riety of different application areas [18,8,15,24,23,1,19]. A significant factor in
the success of the method is that, in line with other recent work [5,10,11,13],
it departs from the classic approach of seeking a termination proof in the form
of a global ranking function—a function that ranks program states so that the
rank decreases on every transition. Instead [17] gave an algorithm that takes

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 218–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A SAT-Based Approach to Size Change Termination 219

a local approach, covering all possible CFG cycles and proving termination of
each. In [6], the SCT condition is expressed in terms of assigning a local ranking
function to every possible cycle. That paper shows that it suffices to restrict
local ranking functions to a very simple form—namely sums of subsets of the
(abstract) program variables. But local ranking functions cannot serve as a wit-
ness to termination that can be checked against any transition, in the way a
global ranking function can be used.

It is this difference that motivates our interest in global ranking functions:
the ranking expression (i.e., the formula that represents the ranking function)
is useful as a certificate, which can be used to verify the claim that a program
terminates. As pointed out in [16], such a setup allows a theorem prover to certify
the termination claim while allowing the tool that searches for the termination
proof to stay outside the trusted (formally verified) code base. One can also
consider applications to proof-carrying code, where again the desire is for the
proof to be given as a certificate that is easier to check than to find.

Thus reconciling the SCT method with the global ranking function approach
is a theoretical challenge with a practical motivation. Initially, it had not been
clear whether there is any constructive way to characterize an SCT termination
proof in terms of a global ranking function. A break-through was achieved by
Chin Soon Lee [12], who characterized a class of expressions that are sufficient
for globally-ranking any terminating SCT program, and showed that the ranking
expression can be effectively constructed from the size-change graphs. While this
class of expressions is syntactically simple, the ranking expressions themselves
can be exponentially large (the upper bound in [12] is triple-exponential). This
makes its usage as a certificate difficult.

As Krauss [16] points out, there is a complexity-theoretic argument that pre-
cludes the existence of short and simple certificates for size-change termination:
the SCT decision problem is PSPACE-complete, and such problems do not have
polynomially-verifiable certificates. Ben-Amram [2] gives a more detailed proof,
that shows that the assumption “polynomially verifiable” can be replaced with
the even humbler “polynomially computable.”

Our proposition, presented in this paper, for solving this difficulty is to define
a subset of SCT instances that is rich enough for practical usage and has concise
(polynomial) global ranking expressions. Such a set would naturally be in NP,
and thus our proposition also gives an answer to a natural theoretical curiosity—
namely is there an interesting subset of SCT at the NP level. If a set is in NP, it
is amenable for solution strategies not available for PSPACE-complete problems;
in particular, it is reducible to SAT, and given the performance of state-of-the
art SAT solvers, this is practically significant.

A subset of SCT, decidable in polynomial time and hence called SCP, was
presented in [4]. This subset is, however, defined implicitly, by giving an algo-
rithm, also called SCP which can be seen as a heuristic to recognize programs in
our class, analogically called SCNP. Thus, SCNP is the natural SCT subset that
encompasses the instances handled by SCP. The arguments and examples given
in [4] to explain the usefulness of SCP provide initial assurance that SCNP is rich
enough. Now, we can also support this claim by ample experimental evidence.

220 A.M. Ben-Amram and M. Codish

Contributions of this work. We identify a class of expressions that are useful for
globally ranking size-change terminating programs: the expressions are concise,
they are constructed so that proving the descent in every transition is relatively
simple, and they are expressive enough for practical usage of SCT. We define
SCNP as the class of SCT instances for which this proof strategy works. We
turn this characterization into an effective algorithm using SAT and constraint-
solving technology. We have thus created the first tool that not only verifies that
an SCT instance terminates, but also produces a ranking expression. To further
improve its usefulness for certification, our tool also outputs the justification,
that is, the argument that links the ranking function to the size-change graphs.

Here are some observations related to comparison between the different SCT
algorithms. The standard algorithm for deciding SCT in full is based, as men-
tioned above, on the local approach and composition closure computation. The
SCP algorithm of [4] already handles some examples of the following kinds: (1)
instances which need exponentially many local ranking-functions (see [2]), there-
fore driving the closure algorithm to exponential behavior; and (2) instances
where any ranking expression of the form used in [12] must be exponentially
big [3]. Thus, our method also handles such examples. We also illustrate where
our method outperforms SCP.

The next two sections contain fuller definitions and background facts on SCT
and ranking functions. Section 4 describes our class of ranking functions and
some related theory, and Sections 5–6 describe the implementation and experi-
ments performed so far.

2 Size Change Termination

This section introduces the SCT abstraction, and reviews the major facts about
SCT decision procedure(s). Terminology is not uniform across the related pub-
lications and we have made an arbitrary choice. For instance, we use the term
program point where some references use, e.g., flow-chart point, program location
and function, the latter obviously in a functional-programming context.

An abstract program is a set of abstract transitions. An abstract transition is
a relation on abstract program states. The approach is programming-language
independent and focuses solely on abstract states and transitions. A front-end
analyzes concrete programs and creates the abstraction for our analysis. Appro-
priate front ends exist for various programming systems [8,24,23,1,19,16].

Definition 1 (program). An (abstract) program consists of a finite set P of
program points, where every program point p is associated with a fixed list Arg(p)
of argument positions; and of a finite set of size-change graphs, defined below,
representing possible transitions. The number of argument positions for p is called
the arity of p. We sometimes write p/n to denote that p is of arity n.

Definition 2 (program state). Let Val be a fixed, infinite well-ordered set.
An (abstract) program state is given by associating a value from Val to each
argument position of a program point p. The set of all states is S t.

A SAT-Based Approach to Size Change Termination 221

In this paper we write a program state down as a term p(u1, . . . , un), where n
is understood to be the arity of p. The argument positions may represent actual
data in the program (of type consistent with Val), but quite often they represent
some “size measures” or “norms” associated with the actual data.

Definition 3 (size-change graph). A size-change graph is formally a triple
g = (p, q, A) where p, q are program points and A ⊂ Arg(p) × SizeLabel × Arg(q)
is a set of size-change arcs with SizeLabel = {↓, ↓=} indicating strict or non-strict
descent between an argument of p and an argument of q.

As an alternative notation, we represent a size-change graph as a constraint logic
programming clause p(x̄) :– π; q(ȳ) with x̄ = x1, . . . , xn, ȳ = y1, . . . , ym, and π
a conjunction of constraints of the form (xi > yj) or (xi ≥ yj). We also write
π |= φ to indicate that proposition φ (involving values x̄ and ȳ) holds under the
assumptions π.

Since the size-change graphs implicitly reveal the set of (relevant) program
points, we identify an abstract program with a set G of size change graphs. The
control-flow graph (CFG) of the program is the directed (multi-)graph over P
underlying G (namely, every size-change graph corresponds to an arc).

Definition 4 (transitions). A state transition is a pair (s, s′) of states. Let
g = p(x̄) :– π; q(ȳ) be a size-change graph. The associated set of transitions is
Tg = {(p(x̄), q(ȳ)) | π}. The transition system associated with a set of size-change
graphs, G, is TG =

⋃
g∈G Tg.

Definition 5 (termination). Let G be an SCT instance. A run of TG is a
(finite or infinite) sequence of states s0, s1, s2 . . . such that for all i, (si, si+1) ∈
TG. Transition system TG is uniformly terminating if it has no infinite run.

An SCT instance G is positive (or, satisfies SCT) if TG is uniformly terminating.
Fortunately, this is not dependent on the specific choice of Val, which justifies
considering it as a property of G. This “semantic” definition is not the one given
in [17]; indeed, in that paper a “combinatorial” definition is given, in terms of
the graphs, and it is a significant result that the given property is equivalent
to uniform termination. However, since they are equivalent, we can forego the
combinatorial definition, as its details are not used in this work.

It was proved in [17] that the set of positive SCT instances is decidable and its
complexity class was determined: it is PSPACE-complete. Decidability is proven
in two ways, one of which is direct, i.e., an algorithm that specifically solves this
problem. It is based on computing the composition-closure of G, a technique al-
ready used by other termination analyzers [18,8]. Such an algorithm is obviously
exponential-time. Most current implementations of SCT use this algorithm, but
an obvious concern regarding its complexity prompted Lee and Ben-Amram to
look for a polynomial-time decidable subset of SCT. A polynomial-time algo-
rithm (SCP, for Size-Change termination in Ptime) that decides such a subset is
presented in [4]. In experiments, it performed very well on the benchmark used in
that work—a collection of example programs obtained from researchers working

222 A.M. Ben-Amram and M. Codish

on Prolog termination. An interesting part of [4] is an attempt to explicate the
capabilities of this algorithm, since it is heuristic and it is not a priori obvious
why or when it should be successful. The explanation given links the algorithm
to specific “size-change patterns”—including lexicographic descent, multiset de-
scent, and dual-multiset descent (the last two terms are defined later in this
paper). These observations form the starting point of the current work.

3 Ranking Functions

In this section we introduce ranking functions and describe some known facts
regarding SCT and ranking functions.

Definition 6 (quasi-order). A quasi-order over a set D is a binary relation
� ⊆ D × D which is transitive and reflexive. Its strict part � is defined by
x � y ⇐⇒ x � y ∧ y �� x. A well-quasi-order means a well-founded one.

Definition 7 (ranking function). Let G be a set of size change graphs. A
function ρ which maps program states to a well-quasi-order (D, �) is a (global)
ranking function for G if for every graph g = p(x̄) :– π; q(ȳ) ∈ G, it holds that
π |= ρ(p(x̄)) � ρ(q(ȳ)).

The qualifier global is used to distinguish this notion of a ranking function from
another (local) one (which is not used in this work). When depicting graphs we
use solid and dashed lines to respectively indicate strict and nonstrict edges.

Example 1. Consider the following two size-change graphs:

p :

p :

x1

�� ���
�

� x2

���
�

�
x3

y1 y2 y3

p :

p :

x1 x2

����
��

�
���
� x3

��
y1 y2 y3

A ranking function for this set is ρ(x1, x2, x3) = max{〈x1, 1, x3〉, 〈x2, 0, x3〉}
where tuples are ordered lexicographically.

We remark that lexicographic ordering is used throught this work, and we rely
on the well-known fact that if D is well-founded then so is the set of tuples over
D of a fixed length, or of a bounded length (when comparing tuples of differing
lengths, if one is a prefix of the other, it is considered smaller).

It is obvious that the existence of a ranking function for G implies termination.
This is, in fact, an equivalence (for the other direction, take TG as a quasi-order).
The ranking technique has been known for a long time and seems to be the
natural way to prove termination of transition systems. Even if we know that a
system terminates, an explicit ranking function conveys interesting information
about the way that computation progresses towards its finish line.

Another view is that a ranking function (given explicitly as some kind of ex-
pression) constitutes a witness, or certificate, to termination. When presented

A SAT-Based Approach to Size Change Termination 223

with the expression, one only has to verify that it does decrease on every tran-
sition This is conceptually easier than establishing a termination proof from
scratch, essentially because it only requires arguing about a single transition at
a time. Thus, the argument needed to prove termination, given a ranking func-
tion, is logically simpler than the argument necessary for a termination proof
using only the SCT graphs, even though this is possible. This simplification is an
advantage for users who wish to establish the termination of a program within
a theorem-prover [16]. Depending on the form of the ranking function, verifying
a certificate may also be easier in a computational-complexity sense (and per-
haps a programming sense) than proving termination from the graphs. These
considerations are important in “proof-carrying code” scenarios [21].

The SCT criterion was proved in [17] to be decidable, but the algorithms given
do not construct a ranking function. The question of whether it is at all possible
to obtain an explicit expression for the ranking function (we know that a function
exists, once termination is proved!) has only been settled (in the positive) a few
years later, in a paper by Chin Soon Lee [12]. The size of the ranking expression
in this work is triply-exponential in the worst-case. Recent progress [3] reduces
this to a single exponent, but obviously this is still a deterring complexity for
practical usage (such as for certification).

However, these works provide an important theoretic underpinning to working
with ranking functions for SCT, as they exhibit a class of functions within which
all SCT instances can be ranked.

Theorem 1 (Lee 2007). If G is SCT, it has a ranking function, effectively
constructible from the size-change graphs, of the form: ρ(s) = min{M1, M2, . . . }
where Mi is max{ti1, t

i
2, . . . } and each tij is a tuple of arguments (of the state s)

and constants.

The ranking function in Example 1 has precisely this form (degenerate in that
the min operator is unnecessary).

Lee’s result indicates a small and yet sufficient set of operators for constructing
ranking functions, and also shows that a very limited way of combining them is
sufficient. The fact that the expressions are very limited makes the theoretical
result even more remarkable. However, it is natural to expect that by narrowing
down the class of expressions, we make it more likely that the representation of
the ranking function will be big.

In general, we cannot expect any reasonable class of expressions to beat the
exponential upper bound. This follows from complexity-theoretic considerations,
as explained in [2]. However, it is easy to find instances where the use of addi-
tional operators or expression structures can allow for more concise expressions.

Example 2. The function ρ(x1, x2, . . . , xn) = 〈max{x1, x2}, . . . , max{xn−1, xn}〉
is of linear size. Expressing it in the form max-of-tuples leads to an expression
with 2n/2 tuples. Thus, simply changing the nesting structure suffices for an
exponential improvement in size.

In this work we use several expression constructors that yield concise expres-
sions where, in some cases, the simple forms would lead to exponential size. On

224 A.M. Ben-Amram and M. Codish

the other hand, our class of expressions is not universal. Its specific design is a
crucial ingredient in our work and is unveiled in the next section.

4 SCNP: Size-Change Termination NP Subset

This section introduces a class SCNP of size change termination problems. Its
definition is derived from a specific form of ranking functions. We first define
a class of functions; then we define SCNP to include an SCT instance if and
only if it has a ranking function of our class. Thus, this definition is based on
ranking functions and the fact that the resulting subset is NP is an immediate
consequence of showing that our ranking functions have polynomial size and
that the problem of checking a function against a set of graphs is also in NP.

The building blocks for our construction are four types of well-quasi-orders
and certain level mappings which are functions mapping program states into
these orders. These are defined next.

Definition 8 (multiset extensions). Let (D, �) be a total order and (D, �)
its strict part. Let ℘(D) denote the set of multisets of elements of D of at most
n elements, where n is fixed by context1. The μ-order extension of (D, �), for
μ ∈

{
max, min, ms, dms

}
, is the quasi-order (℘(D), �μ) where:

1. (max order) S �max T holds iff max(S) � max(T), or T is empty; S �max T
holds iff max(S) � max(T), or T is empty while S is not.

2. (min order) S �min T holds iff min(S) � min(T), or S is empty; S �min T
holds iff min(S) � min(T), or S is empty while T is not.

3. (multiset order [14]) S �ms T holds iff T is obtained by replacing a non-
empty sub-multiset U ⊆ S by a (possibly empty) multiset V such that U �max

V ; The weak relation S �ms T holds iff S �ms T or S = T .
4. (dual multiset order [4]) S �dms T holds iff T is obtained by replacing a

sub-multiset U ⊆ S by a non-empty multiset V with U �min V ; The weak
relation S �dms T holds iff S �dms T or S = T .

Example 3. Let S =
{

4, 3, 3, 0
}

and T =
{

4, 3, 2, 1, 1
}
. We have T >min S,

S ≥max T and T ≥max S. We have S >ms T because U = {3, 0} is replaced
by V = {2, 1, 1}, where all elements are smaller than max(U). We don’t have
S >dms T , but T >dms S.

We give the following well-known facts without proof.

Lemma 1. When the underlying order is total, so are all the multiset exten-
sions. If (D, �) is well-founded, then so is each of the extensions (D, �μ).

Note however that the min/max orders are not partial orders, but rather quasi
orders as anti-symmetry does not hold. Why these four orders? The motivation
lies in previous work with SCT, as mentioned at the end of Section 2.

1 Given an SCT instance G, n is the maximum arity in G.

A SAT-Based Approach to Size Change Termination 225

Definition 9 (level mappings). Let G be a set of size change graphs involving
N program points; and let M be the sum of arities of all program points. A level
mapping is a function f from St to a certain (quasi) ordered set. In this work,
level mappings are one of the following:

Numeric: f maps each program state s = p(ū) to a natural number 0 ≤ f(s) <
N , such that f(s) only depends on the program-point.

Plain: f maps a program state p(ū) to a multiset
{

v1, . . . , vk

}
∈ ℘(Val) where

v1, . . . , vk are arguments in ū; the selection of argument positions only de-
pends on the program point.

Tagged: f maps a program state p(ū) to a multiset {(v1, n1), . . . , (vk, nk)} ∈
℘(D×N) where v1, . . . , vk are elements of ū and n1, . . . , nk are natural num-
bers less than M (called tags). The selection of argument positions as well
as the tags is determined by the program point.

We use a subscripted annotation on f to indicate the order associated with its
range and write fμ with μ ∈

{
max, min, ms, dms

}
for the multiset orders (both

over Val and over Val × N). We write fω for the numeric level mapping, where
the order �ω is the natural order ≥ on integers.

Example 4. The following are plain and tagged level mappings (respectively),
assuming a program with program points p/2 and q/3:

fμ(s) =

⎧
⎪⎨

⎪⎩

{u, v} if s = p(u, v)
{u} if s = q(u, v, w)
∅ otherwise

f ′
μ(s) =

⎧
⎨

⎩

{(u, 0)} if s = p(u, v)
{(u,1), (w,0)} if s = q(u, v, w)
∅ otherwise

Definition 10 (SCNP). A set of size change graphs is in SCNP if it has a
ranking function which is a tuple of level mappings.

Example 5. Consider the size change graphs below with the level mappings fμ

and f ′
μ (with μ = max) from Example 4.

G =
{

p(x1, x2) :– x1 > y1, x2 ≥ y2, x1 ≥ y3; q(y1, y2, y3),
q(x1, x2, x3) :– x1 ≥ y1; p(y1, y2)

}

Function ρ(s) = 〈f ′
max(s), fmax(s)〉 is a ranking function for G; the reader may

find it interesting to figure out the justification before reading further.

Definition 11 (orienting graphs). We say that a level mapping fμ orients a
size-change graph g = p(x̄) :– π; q(ȳ) if π |= f(p(x̄)) �μ f(q(ȳ)); it orients g
strictly if π |= f(p(x̄)) �μ f(q(ȳ)); and it orients a set G of size-change graphs
if it orients every graph of G, and at least one of them strictly.

The next lemma is immediate from the definitions.

Lemma 2. Let f1, . . . , fm be level mappings. The function

ρ(s) = 〈f1(s), f2(s), . . . , fm(s)〉

is a (lexicographic) ranking function for G if and only if for every g ∈ G, there
in an i ≤ m such that g is oriented by f1, . . . , f i and strictly oriented by f i.

226 A.M. Ben-Amram and M. Codish

Definition 12. Function ρ(s) = 〈f1(s), f2(s), . . . , fm(s)〉 is irredundant if for
all i ≤ m, f i orients all graphs that are not strictly oriented by f j for some
j < i, and strictly orients at least one of these graphs.

Observe that an irredundant function is a tuple of length at most |G|. Verifying
such a ranking function reduces to the problem of testing whether a graph is
(strictly) oriented by a given level mapping. We elaborate on this test for each
kind of level mapping. We assume that a level mapping f is given explicitly,
by listing the set of argument positions and/or natural number associated with
every program point. For the case of numeric level mappings the test is trivial.

Plain level mappings Let fμ be a plain level mapping and g = p(x̄) :– π; q(ȳ). It
is convenient to view g as a graph (in the way of Definition 3). Thus π |= x ≥ y
is equivalent to g having an arc x → y, while π |= x > y if the arc is strict. By gt

we denote the transpose of g (obtained by inverting all the arcs). Let S ⊆ x̄ be
the set of argument positions selected by fμ(p(x̄)) and similarly T for fμ(q(ȳ)).
The definition of �μ indicates precisely what π has to satisfy. We elaborate,
assuming that S, T are nonempty.

1. max order: for non-strict descent, every y ∈ T must be “covered” by an
x ∈ S such that π |= x ≥ y. Strict max-descent requires x > y.

2. min order: Same conditions but on gt (thus, now T covers S).
3. multiset order: for non-strict descent, every y ∈ T must be “covered” by an

x ∈ S such that π |= x ≥ y. Furthermore each x ∈ S either covers each
related y strictly (x > y) or covers at most a single y. Descent is strict if
there is some x of the strict kind.

4. dual multiset order: Same conditions but on gt (now T covers S).

Example 6. Consider again G from Example 5, and fμ from Example 4. The first
SCG (from p to q) is oriented strictly taking μ = max and μ = ms, but not at
all under their duals. The second SCG is oriented weakly for μ = min and not
under any other of the orders.

Tagged level mappings These are just like plain level mappings except that the
underlying order is modified by the presence of tags. So to decide whether π |=
f(p(x̄)) �μ f(q(ȳ)) where f is a set of tagged arguments, we use the rules given
above for the multiset-extension μ, plus the following facts:

π |= (x, i) � (y, j) ⇐⇒ (π |= x � y) ∧ (π |= x � y ∨ i > j)
π |= (x, i) � (y, j) ⇐⇒ (π |= x � y) ∨ (π |= x � y ∧ i ≥ j)

As an example the reader may want to verify that the function f ′, defined
in Example 4, orients the graphs of Example 5 under max ordering, with the
second one oriented strictly. This is, of course, used in arguing the correctness
of the ranking function in that example.

We are now in position to state the following Theorem.

Theorem 2. SCNP is in NP.

A SAT-Based Approach to Size Change Termination 227

Proof. If a ranking function of the desired form exists, then there is an irredun-
dant one of polynomial size. Checking the condition in Lemma 2, according to
the rules given above for the different orderings, is clearly polynomial-time.

Since the problem is in NP it is known that it can be reduced to SAT. In fact
it is possible to transform a complete problem instance into one big Boolean
formula whose satisfying assignment will encode the sought solution. To find
the assignment we can make use of an off-the-shelf SAT solver. However, it is
far more efficient to make use of the structure of the problem and call the SAT
solver several times, on smaller SAT instances.

Our algorithm has the following top-level structure: as long as G is not empty,
find a level mapping f that orients G. Remove the graphs oriented strictly by f ,
and repeat.

Basically, the instruction “find a level mapping” is performed by trying each of
the level-mapping types in turn, so that the smaller NP problems that we reduce
to SAT are of the form: given G and μ, find out if there is a level mapping fμ

that orients it. Numeric level mappings have a special role in this algorithm.
Since such a level mapping ignores the argument values we write it as f(p()).

Claim. If there is a numeric level mapping f that orients G and program point
q is reachable from p then f(p()) ≥ f(q()).

This (obvious) property implies that f is constant in every strongly connected
component (SCC) of G (considered as a graph with abstract transitions as arcs).
Only inter-component transitions can be strictly oriented by f and in fact all
of them can, by assigning f values according to reverse topological order of the
SCCs. Now, after deleting the strictly-oriented transitions, SCCs will become
disconnected from each other which allows them to be processed separately. We
obtain the following revised algorithm.

1. Initialize ρ to the empty tuple.
2. Perform the following steps as long as G is not empty:
3. Compute the decomposition of G to strongly connected components (SCC’s).

If G has inter-component transitions, define a numeric level mapping f by
reverse topological ordering of the SCC’s. Extend ρ by f and remove the
inter-component transitions.

4. If G has a non-trivial SCC2, perform the following for each such component
C in turn: (a) Apply SAT solving, as described in Section 5, to find a level
mapping f that orients C. If no level mappings exists, exit with a failure
message; and (b) Define the value of f as ∅ for all program points not in C.
Append f to ρ and remove the transitions strictly oriented by f .

We conclude this section by discussing the relations of SCNP, SCT and SCP.
Viewing all three as decision problems (sets of instances), we have:

SCP ⊂ SCNP ⊂ SCT.

Arguments for these relations are as follows:
2 That is, an SCC that contains at least one arc.

228 A.M. Ben-Amram and M. Codish

1. SCNP ⊆ SCT because SCNP is a sound termination condition. The inclusion
is strict because there are terminating instances not in SCNP. Here is such
an example (from [4]).

Example 7.
{

p(x, y, z, w) :– x ≥ x′, x ≥ y′, w > w′; p(x′, y′, z′, w′),
p(x, y, z, w) :– y > x′, y ≥ y′, z > z′; p(x′, y′, z′, w′)

}

2. SCNP handles some examples not handled by SCP; for instance, Example 1
on page 222 for which ρ(x1, x2, x3) = 〈max

{
(x1, 1), (x2, 0)

}
, max

{
x3

}
〉 is

a ranking function.
3. Finally, the claim SCP ⊆ SCNP follows from an analysis of the SCP algo-

rithm that cannot be included in this conference paper, however we refer the
reader to [4, Section 5] where some ideas of this analysis are already given.

On the point of complexity, it is interesting to observe that the hard cases
for the SCT algorithms based on the local-ranking approach are not necessarily
hard for our approach based on global ranking functions. In [2], an SCT instance
is described, having n + 1 arguments and n size-change graphs, that requires 2n

different local ranking functions of the kind discussed in [6]. This means that
the closure-based SCT algorithms are driven to exponential behavior. But this
instance is handled by SCNP and even SCP.

Finally, we prove that SCNP is complete for NP. Thus solving it with SAT is
not an overkill in a complexity-theoretic sense.

Theorem 3. SCNP is NP-complete.

Proof. We will prove NP-hardness of a simplified problem—given G is there any
level mapping that orients G? We give a reduction from the well-known Set
Covering problem SC, defined as follows:

INSTANCE: 〈n, [S1, . . . , Sm], k〉, where each Si ⊆ {1, . . . , n}, and k ≤ n.
CONDITION: {1, . . . , n} can be covered by k of the sets Si.
Given an instance of SC, construct size-change graphs as follows. Let x̄ =
〈x1, . . . , xn, xn+1, . . . , x2n−k〉. We have a single program point p(x̄) and graphs
gi = p(x̄) :– πi; p(x̄′) for i = 1, 2 with:

π1 = {xi > x′
j | j ∈ Si} ∪ {xi ≥ x′

j | i ≤ n, j > n}
π2 = {xi ≥ x′

i+1 | i < 2n − k} ∪ {x2n−k ≥ x′
1}.

Observe that the CFG is strongly connected, so a numeric level mapping is
ruled out. Graph g2 is easily seen to defeat any multiset based level mapping
that does not include all the arguments. Assuming k < n, graph g1 defeats min
and dms ordering, because xn+1 is not covered in gt

1. It is easy to see that g1
is oriented by max, but only weakly (and we cannot use tagging because of g2).
So, to orient g1 strictly we need the ms ordering, and (because of g2) the set
has to include all arguments. Now, arguments xn+j for j = 1, . . . , n−k can only
be covered non-strictly, and so n − k different source arguments are needed to
cover them (recall that a source argument can only cover one target argument if
it covers it non-strictly). The remaining k arguments among x1, . . . , xn have to
cover x′

1, . . . , x
′
n which clearly implies a solution to the Set Covering instance.

A SAT-Based Approach to Size Change Termination 229

This reduction is interesting in that it shows that even if we know the level
mapping (in this case, fms(p(x̄)) = {x1, . . . , x2n−k}) it is still NP-hard to ver-
ify it, just because of not knowing which arcs of the size-change graph to use.
This observation motivates us to report not only the level mapping but also its
justification as part of the output of our tool.

5 A SAT Based Implementation

This section is dedicated to our solution of the subproblem—finding an orient-
ing level mapping—with the aid of a SAT solver. We use an approach described
in [9], where the problem to be solved is encoded into Boolean and partial order
constraints. The latter are propositional statements which contain both propo-
sitional variables and atoms of the form (f > g) or (f = g) where f and g
are partial order symbols. A satisfying assignment assigns Boolean values to the
propositional variables and integer values to the partial order symbols.

Let G be a set of size change graphs and μ ∈
{

max, min, ms, dms
}
. We

construct a propositional formula (with partial order constraints) to determine
if there exists a tagged level mapping which μ-orients G. We remark that a
plain mapping need not be handled separately: it is a special case of the tagged
mapping where all tags are the same. The proposition has the form ΦG

μ = ϕG∧ϕG
μ

where ϕG is a representation of G and ϕG
μ is specific for μ.

Encoding a set of size change graphs. Let g = p(x1, . . . , xn) :– π; q(y1, . . . , ym).
We create propositional variables eg

c with c of the form (pi > qj) or (pi ≥ qj).
Intuitively, eg

c represents the fact π |= (xi, tag i
p) > (yj , tagj

q) (or ≥). The encoding
introduces partial order constraints on the tag values tagi

p and tagj
q . We define

ϕG =
∧

g∈G ϕG . The following formula encodes graph g. The propositions π |=
xi > yj (or xi ≥ yj) that appear in it are replaced by true or false according
to the size-change graph.

ϕg =
∧

1≤i≤n

1≤j≤m

(
(eg

xi>yj
↔ (π |= xi > yj) ∨ (π |= xi ≥ yj) ∧ (tagi

p > tagj
q))

∧ (eg
xi≥yj

↔ (π |= xi > yj) ∨ (π |= xi ≥ yj) ∧ (tagi
p ≥ tagj

q))

)

Example 8. Let g = p(x1, x2, x3) :– x1 > y1, x1 ≥ y2; q(y1, y2, y3). The encoding
is a conjunction of subformulae. Let us consider several of them: The constraint
x1>y1 contributes the conjuncts eg

x1>y1
and eg

x1≥y1
; The constraint x1≥y2 con-

tributes the conjuncts (eg
x1>y2

↔ tag1
p > tag2

p), and (eg
x1≥y1

↔ tag1
p ≥ tag2

p). The
absence of a constraint between x1 and y3 contributes ¬eg

x1>y3
and ¬eg

x1≥y3
.

For the μ specific part of the encoding, the propositional variables weakg
μ

and strictgμ are interpreted as specifying that graph g is weakly (resp. strictly)
oriented by μ respectively. Hence the encoding takes the form:

ϕG
μ =

(
∧

g∈G
weakg

μ

)

∧
(

∨

g∈G
strictg

μ

)

∧ ψG
μ

230 A.M. Ben-Amram and M. Codish

The first two conjuncts specify that there exists an fμ which orients G. The
third conjunct ψG

μ constrains variables weakg
μ and strictgμ so that they are true

exactly when the corresponding graphs are weakly (resp. strictly) oriented by
μ. The propositional variables p1, . . . , pn and q1, . . . , qm indicate the argument
positions of p and q selected for the level mapping.

Encoding the max set ordering: The following formula encodes the conditions
described in Section 4.

ψG
max =

∧

g=p(x̄) :– π;q(ȳ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

weakg
max ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

(pi ∧ eg
xi≥yj

)

⎞

⎠ ∧

strictg
max ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

(pi ∧ eg
xi>yj

)

⎞

⎠ ∧
∨

1≤i≤n

pi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Encoding the multiset ordering: We follow the encoding for the multiset ordering
described in [22]. The operator ⊕ specifies that exactly one of a set of propositional
variables is true. For each graph g, propositional variables γg

i,j specify that in size
change graph g = p(x̄) :– π; q(ȳ) the ith argument of p/n covers the jth argument of
q/m. The propositional variables εg

i specify if whatever the ith argument of p/n covers
is weak (then it may cover only one) or strict (then it may cover several).

The conjunct for graph g has four parts. The first subformula encodes the conditions
for weakly orientation by multiset ordering (see Section 4). The second subformula
expresses a strict covering. The third subformula specifies that γg

i,j and εg
i agree with

their intended meaning. The fourth subformula states that if pi is selected and εg
i

indicates weak cover, then position i covers exactly one position j.

ψG
ms =

∧

g=p(x̄) :– π;q(ȳ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

weakg
ms ↔

∧

1≤j≤m

⎛

⎝qj →
∨

1≤i≤n

γg
i,j

⎞

⎠ ∧

strictg
ms ↔

∨

1≤i≤n

(pi ∧ ¬εg
i) ∧

∧

1≤i≤n

1≤j≤m

γg
i,j → pi ∧ qj ∧ eg

xi≥yj
∧ (¬εg

i ↔ eg
xi>yj

) ∧

∧

1≤i≤n

pi → εg
i → ⊕

{

γg
i,j

∣
∣
∣
∣ 1 ≤ j ≤ m

}

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Encoding the min and dual-multiset orderings: The encodings are obtained through
the respective dualities with the max and multiset orderings.

ψG
min =

∧

g=p(x̄) :– π;q(ȳ)

(
weakg

min ↔ weakgt

max ∧
strictg

min ↔ strictgt

max

)

ψG
dms =

∧

g=p(x̄) :– π;q(ȳ)

(
weakg

dms ↔ weakgt

ms ∧
strictg

dms ↔ strictgt

ms

)

A SAT-Based Approach to Size Change Termination 231

We have implemented the algorithm in Prolog. After creating the partial order
constraints, our program calls the solver described in [9]. This solver transforms the
partial order constraint to a CNF which is passed on to the MiniSAT solver for Boolean
satisfaction [20] through its Prolog interface described in [7].

6 Experimentation

We have tested our implementation on two benchmark suites. The first is described
in [4]. It originates from a logic programming test suite for termination analysis and con-
sists of 123 examples (abstract programs). The second suite originates in a benchmark
suite for termination of term rewriting systems (TPDP version 4.0 [25]). It consists of
4062 abstract programs generated when AProVE, a tool to automatically prove ter-
mination of term rewriting systems, applied the SCT method based on the embedding
order, as described in [24]. The first suite can be obtained via Amir Ben-Amram’s web
page. The second can be found at http://www.cs.bgu.ac.il/ mcodish/Software/
trs suite for sct.zip

For the first suite, 84 of the 123 examples are SCT positive. All of these are also
in SCP and, with no surprises, also in SCNP. The SAT based implementation is much
slower than the implementations for SCP and SCT described in [4]. However, analysis
times are reasonable (under 3 seconds for the entire suite) and we have the benefit that
ranking functions are provided for the SCNP instances.

For the second suite, 3820 of the 4062 examples are in SCT. There is only one exam-
ple which is SCT but not SCP. In fact, this is Example 7 which was designed expressly
to defeat SCP. Here too SCNP agreed with SCP. Again ranking functions are provided
for all the verified instances and the entire suite is analyzed in approximately 20 sec-
onds. Our implementation is not optimized and analysis times are only reported to give
an idea of their magnitude and show that the use of SAT solving is not prohibitive.

Acknowledgment

We thank Samir Genaim for help with the benchmarking and Peter Schneider-Kamp
for harvesting the collection of 4062 sets of size-change graphs. This work was done
while Amir Ben-Amram was visiting DIKU, the University of Copenhagen, Denmark;
and Michael Codish was visiting the CLIP group at the Technical University of Madrid,
supported by a mobility grant (SAB2006-0189) from the Spanish Ministry of Science
and Education.

References

1. Avery, J.: Size-change termination and bound analysis. In: Hagiya, M., Wadler, P.
(eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

2. Ben-Amram, A.M.: A complexity tradeoff in ranking-function termination proofs
(submitted for publication 2007)

3. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination II. In:
9th International Workshop on Termination (WST 2007) (July 2007)

4. Ben-Amram, A.M., Lee, C.S.: Size-change analysis in polynomial time. ACM
Transactions on Programming Languages and Systems 29(1) (2007)

http://www.cs.bgu.ac.il/~mcodish/Software/trs_suite_for_sct.zip
http://www.cs.bgu.ac.il/~mcodish/Software/trs_suite_for_sct.zip

232 A.M. Ben-Amram and M. Codish

5. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
TOPLAS 29(2) (2007)

6. Codish, M., Lagoon, V., Stuckey, P.J.: Testing for termination with monotonicity
constraints. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
326–340. Springer, Heidelberg (2005)

7. Codish, M., Lagoon, V., Stuckey, P.J.: Logic programming with satisfiability. The-
ory and Practice of Logic Programming (2007)

8. Codish, M., Taboch, C.: A semantic basis for termination analysis of logic pro-
grams. The Journal of Logic Programming 41(1), 103–123 (1999)

9. Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for LPO
termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer,
Heidelberg (2006)

10. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

11. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Schwartzbach, M., Ball, T. (eds.) Proc. PLDI, pp. 415–426. ACM Press, New York
(2006)

12. Lee, C.S.: Ranking functions for size-change termination (submitted 2007)
13. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework

for automatic termination analysis of logic programs. Applicable Algebra in Engi-
neering, Communication and Computing 12(1–2), 117–156 (2001)

14. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

15. Jones, N.D., Bohr, N.: Termination analysis of the untyped lambda calculus. In: van
Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004)

16. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

17. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Proc. POPL 2001, January 2001, vol. 28, pp. 81–92. ACM Press,
New York (2001)

18. Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: Termilog: A system for checking ter-
mination of queries to logic programs. In: Grumberg, O. (ed.) CAV 1997. LNCS,
vol. 1254, pp. 444–447. Springer, Heidelberg (1997)

19. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

20. MiniSAT solver (Viewed December 2005),
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

21. Necula, G.C.: Proof-carrying code. In: Proc. POPL, pp. 106–119. ACM Press, New
York (1997)

22. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termi-
nation using recursive path orders and sat solving. In: Konev, B., Wolter, F. (eds.)
FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg (2007)

23. Sereni, D., Jones, N.: Termination analysis of higher-order functional programs. In:
Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg (2005)

24. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-
nation of term rewriting. Applicable Algebra in Engineering, Communication and
Computing 16(4), 229–270 (2005)

25. The termination problem data base. http://www.lri.fr/∼marche/tpdb/

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
http://www.lri.fr/~marche/tpdb/

	A SAT-Based Approach to Size Change Termination with Global Ranking Functions
	Introduction
	Size Change Termination
	Ranking Functions
	SCNP: Size-Change Termination NP Subset
	A SAT Based Implementation
	Experimentation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

