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Abstract. Motivated by the desire to develop more realistic models
of, and protocols for, interactions between mutually distrusting parties,
there has recently been significant interest in combining the approaches
and techniques of game theory with those of cryptographic protocol de-
sign. Broadly speaking, two directions are currently being pursued:

Applying cryptography to game theory: Certain game-theoretic
equilibria are achievable if a trusted mediator is available. The question
here is: to what extent can this mediator be replaced by a distributed
cryptographic protocol run by the parties themselves?

Applying game-theory to cryptography: Traditional cryptographic
models assume some honest parties who faithfully follow the protocol,
and some arbitrarily malicious players against whom the honest play-
ers must be protected. Game-theoretic models propose instead that all
players are simply self-interested (i.e., rational), and the question then
is: how can we model and design meaningful protocols for such a setting?

In addition to surveying known results in each of the above areas, I
suggest some new definitions along with avenues for future research.

1 Introduction

The fields of game theory and cryptographic protocol design are both concerned
with the study of “interactions” among mutually distrusting parties. These two
subjects have, historically, developed almost entirely independently within differ-
ent research communities and, indeed, they tend to have a very different flavor.
Recently, however, motivated by the desire to develop more realistic models of
(and protocols for) such interactions, there has been significant interest in com-
bining the techniques and approaches of both fields.

Current research at the intersection of game theory and cryptography can be
classified into two broad categories: applying cryptographic protocols to game-
theoretic problems, and applying game-theoretic models and definitions to the
general area of cryptographic protocol design. In a bit more detail:
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– Certain game-theoretic equilibria are possible if parties rely on the existence
of an external trusted party called a mediator. (All the relevant definitions
are given in Section 2.) This naturally motivates a cryptographer1 to ask:
can the trusted mediator be replaced by a protocol that is run by the parties
themselves? Research aimed at understanding the conditions under which
the answer is positive, and developing appropriate protocols in such cases,
is described in Section 3.

– Traditionally, cryptographic protocols are designed under the assumption
that some parties are honest and faithfully follow the protocol, while some
parties are malicious and behave in an arbitrary fashion. The game-theoretic
perspective, however, is that all parties are simply rational and behave in
their own best interests. This viewpoint is incomparable to the cryptographic
one: although no one can be trusted to follow the protocol (unless it is in their
own best interests), the protocol need not prevent “irrational” behavior. The
general question here is: what models and protocols are appropriate for this
setting? This work is discussed in Section 4.

This paper surveys recent work in both the directions listed above, with a cryp-
tographic audience in mind. This survey focuses more on the problems being
addressed than on the solutions that have been proposed, and will thus em-
phasize definitions rather than concrete results. I also propose new definitional
approaches to some of the problems under discussion, and have made a particular
effort to highlight promising directions for future research.

Dodis and Rabin have recently written an excellent survey [16] that covers
very similar ground as the present work. The present survey is perhaps a bit more
technical, and somewhat more opinionated. Surveys more tangentially related to
the topics considered here include those by Linial [33] and Halpern [25].

It is fascinating to observe that the recent growth of interest in blending
game theory and cryptography has paralleled a surge of attention focused on
game theory by computer scientists in general, most notably (for the purposes
of this work) in the fields of computational complexity (see, e.g., [38, Chap. 2]),
networking and distributed algorithms (see, e.g., [38, Chap. 14]), network secu-
rity (see, e.g., [10] and [38, Chaps. 23, 27]), information security economics [38,
Chap. 25], and more. These are all well beyond the scope of the present work.

Note: Due to space limitations, this survey has been shortened somewhat. A full
version will be posted and maintained at http://eprint.iacr.org. Comments
and corrections are very much appreciated.

2 A Crash Course in Game Theory

This section reviews some central game-theoretic concepts. I have tried to sim-
plify things when, in my view, nothing of essence is lost (vis-a-vis the results
presented here). For extensive further details, the reader is referred to [39,19].

1 Although, interestingly, the question was first asked in the economics community.
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We begin by introducing the notion of normal form games. A n-player game
Γ = ({Ai}n

i=1, {ui}n
i=1), presented in normal form, is determined by specifying,

for each player Pi, a set of possible actions Ai and a utility function ui : A1 ×
· · · × An �→ R. Letting A

def= A1 × · · · × An, we refer to a tuple of actions
a = (a1, . . . , an) ∈ A as an outcome. The utility function ui of party Pi expresses
this player’s preferences over outcomes: Pi prefers outcome a to outcome a′ iff
ui(a) > ui(a′). (We also say that Pi weakly prefers a to a′ if ui(a) ≥ ui(a′).) We
assume that the {Ai}, {ui} are common knowledge among the players, although
the assumption of known utilities seems rather strong and it is preferable to
avoid it (or assume only limited knowledge).

The game is played by having each party Pi select an action ai ∈ Ai, and
then having all parties play their actions simultaneously. The “payoff” to Pi is
given by ui(a1, . . . , an) and, as noted above, Pi is trying to maximize this value.

Two-player games (for reasonably sized A1, A2) can be represented conve-
niently in matrix form by labeling the rows (resp., columns) of the matrix with
the actions in A1 (resp., A2). The entry in the cell at row a1 ∈ A1 and column
a2 ∈ A2 contains a tuple (u1, u2) indicating the payoffs to P1 and P2, respectively,
given the outcome a = (a1, a2). For example, the following represents a game
where A1 = {C, D}, A2 = {C′, D′}, and, e.g., u1(C, D′) = 1 and u2(C, D′) = 3:

Table 1. A two-player game

C′ D′

C (2, 2) (1, 3)
D (3, 1) (0, 0)

Types, and games of incomplete information. The above definition cor-
responds to so-called games of perfect (or complete) information. One can also
consider extensions that model different features of “real-world” interactions,
such as inputs provided to the parties at the beginning of the game whose val-
ues affect players’ utilities. (In the game theory literature these inputs are said
to determine the type of each party.) We now provide a simplified definition
incorporating this situation; see [39,19] for the general case.

Let Γ = ({Ai}, {ui}) be as above, where the {ui} are now functions from
({0, 1}∗)n×A to the reals. Let D be a distribution over vectors (t1, . . . , tn), where
each ti is a binary string. A game is now played as follows: first, (t1, . . . , tn) is
sampled according to D, and Pi is given ti. Next, each player Pi plays an action
ai ∈ Ai as before; once again, these are all assumed to played simultaneously.
Then, each player Pi receives payoff ui(t1, . . . , tn, a1, . . . , an).

2.1 Nash Equilibria

If parties play a game (of perfect information), what can we expect to hap-
pen? Say P1 knows the actions a2, . . . , an that the other parties are going to
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take. Then it will choose the action a1 ∈ A1 that maximizes u1(a1, . . . , an);
we call this a1 a best response of P1 to the actions of the other players. (A
best response need not be unique.) Given this action chosen by the first player,
P2 will then choose a best response a′

2 ∈ A2, and so on. We see that a tuple
a = (a1, . . . , an) is “self-enforcing” only if each ai represents Pi’s best response
to a−i

def= (a1, . . . , ai−1, ai+1, . . . , an). A tuple with this property is called a Nash
equilibrium, and this serves as the starting point for all further analysis of the
game. Formally, if we let (a′

i, ai) denote (a1, . . . , ai−1, a
′
i, ai+1, . . . , an), we have:

Definition 1. Let Γ = ({Ai}n
i=1, {ui}n

i=1) be a game presented in normal form,
and let A = A1 × · · · × An. A tuple a = (a1, . . . , an) ∈ A is a (pure-strategy)
Nash equilibrium if for all i and any a′

i ∈ Ai it holds that ui(a′
i, a−i) ≤ ui(a).

Another way of expressing this is to say that ai ∈ Ai weakly dominates a′
i ∈ Ai

relative to a−i if ui(ai, a−i) ≥ ui(a′
i, a−i). Then a is a Nash equilibrium if, for

all i, the action ai weakly dominates all actions in Ai relative to a−i.
In the example of Table 1, (C, D′) is a pure-strategy Nash equilibrium: given

that P1 plays C, the second player prefers to play D′; given that P2 plays D′,
the first player prefers to play C. A second Nash equilibrium is given by (D, C′).

In the above definition of a pure-strategy Nash equilibrium, the “strategy”
of Pi was to deterministically play ai (hence the name pure strategy). If we
limit players to such strategies, a Nash equilibrium may not exist in a given
game. To remedy this, we allow players to follow randomized strategies as well.
Specifically, if σi is a probability distribution over Ai then we also let σi represent
the strategy in which Pi samples ai ∈ Ai according to σi and then plays this
action. (We recover deterministic strategies by letting σi assign probability 1 to
some action.) Given a strategy vector σ = (σ1, . . . , σn), we overload notation and
let ui(σ) denote the expected utility of Pi given that all parties play according
to σ. (We remark that although this is the standard way to assign utilities to
distributions over outcomes, doing so makes the generally unrealistic assumption
that players are risk neutral in that they care only about their expected utility.)
The strategy σi is a best response to σ−i if it maximizes ui(σi, σ−i). Then:

Definition 2. Let Γ = ({Ai}n
i=1, {ui}n

i=1) be as above, and let σi be a distribu-
tion over Ai. Then σ = (σ1, . . . , σn) is a (mixed-strategy) Nash equilibrium if for
all i and any distribution σ′

i over Ai it holds that ui(σ′
i, σ−i) ≤ ui(σ).

One can verify that in the two-party game of Table 1, the strategy vector in which
P1 plays C with probability 1/2, and in which P2 plays C′ with probability 1/2
is a (mixed-strategy) Nash equilibrium.

The celebrated theorem of Nash [37] is that any game of perfect information
where the {Ai} are finite has a (mixed-strategy) Nash equilibrium. The finite-
ness assumption is necessary, as there are examples of two-player games with
countably-infinite action sets where no mixed-strategy Nash equilibrium exists.

Nash equilibria for games of incomplete information can be defined in the
natural way based on the above. Here the strategy of player Pi corresponds to
a function mapping its received input ti to an action ai ∈ Ai; pure strategies
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correspond to deterministic functions. Note that here we must take into account
parties’ expected utilities even when considering pure-strategy Nash equilibria,
since the utility of Pi may depend on the types of the other players, and these
are unknown at the time Pi chooses its action.

2.2 Other Equilibrium Concepts

Nash equilibria are considered by many to be the fundamental equilibrium no-
tion for games. Nevertheless, it is of interest to explore various refinements and
strengthenings of this concept.

Dominated strategies and iterated deletion. GivenagameΓ =({Ai}, {ui}),
we say that action ai ∈ Ai is strictly dominated with respect to A−i if there exists a
randomized strategy σi ∈ Δ(Ai) such that ui(σi, a−i) > ui(ai, a−i) for all a−i ∈
A−i (where A−i

def= ×j �=iAj). I.e., ai is strictly dominated if Pi can always improve
its situation by not playing ai. An action ai ∈ Ai is weakly dominated with respect
to A−i if there exists a randomized strategy σi ∈ Δ(Ai) such that (1) ui(σi, a−i) ≥
ui(ai, a−i) for alla−i ∈ A−i, and (2) there existsa−i ∈ A−i such thatui(σi, a−i) >
ui(ai, a−i). I.e.,Pi cannever improve its situationbyplaying ai, and can sometimes
improve its situation by not playing ai.

It seems that a rational player will never choose a strictly dominated action.
In fact, it is not hard to show that in any Nash equilibrium, no player assigns
positive probability to any strictly dominated action. Arguably, a rational player
should also never choose a weakly dominated action (although the argument in
this case is less clear). If we accept this assumption, then a Nash equilibrium in
which some party plays a weakly dominated action with positive probability is
not expected to occur in practice. For example, consider the following game:

C′ D′

C (10, 10) (1, 1)
D (10, 0) (2, 2)

(C, C′) is a Nash equilibrium. However, action C of player P1 is weakly dom-
inated by action D. Thus, we may expect that P1 plays D — but this forces
us to the Nash equilibrium (D, D′). Note that both players now end up doing
worse! Intuitively, both players prefer the Nash equilibrium (C, C′), but this is
not “stable” in a sense we will define below.

Say we are given a game Γ 0, and we have eliminated the weakly dominated
actions of each player from consideration. This leaves us with “effective” action
sets {A1

i } for each player. We may now iterate the process, and remove any
actions that are weakly dominated in the “reduced game” Γ 1 =

(
{A1

i }, {ui}
)
,

etc. This leads to the following definition.

Definition 3. Given Γ = ({Ai}, {ui}) and Â ⊆ A, let DOMi(Â) denote the set
of strategies in Âi that are weakly dominated with respect to Â−i. For k ≥ 1,
set Ak

i
def= Ak−1

i \ DOMi(Ak−1). Set A∞
i

def= ∩kAk
i . A Nash equilibrium σ of Γ

survives iterated deletion of weakly dominated strategies if σi ∈ Δ(A∞
i ) for all i.
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Stability with respect to trembles. Another means to distinguish among a
set of Nash equilibria is to ask how stable each such equilibrium is to “mistakes”
(or trembles) of the other players. Such mistakes might correspond to a real
mistake on the part of some player (e.g., a player chooses an irrational strategy
by accident), some “out-of-band” event (e..g, a network failure), or the fact that
a player’s utility is slightly different than originally thought.

To define stability with respect to trembles, we must first define a metric d on
the strategy space Δ(A) of the players. Assuming A is finite, a natural candidate
is statistical difference and we assume this in the definition that follows. Various
notions of stability with respect to trembles have been considered in the game
theory literature, although some of them seem problematic in a cryptographic
setting. The following seems best for our context:

Definition 4. Let Γ = ({Ai}, {ui}), and let σ be a Nash equilibrium in Γ . Then
σ is stable with respect to trembles if there exists an ε > 0 such that for all i and
every σ′

−i ∈ Δ(A−i) with d(σ−i, σ
′
−i) < ε, the strategy σi is a best response to

σ′
−i. I.e., for every σ′

i ∈ Δ(Ai) it holds that ui(σ′
i, σ

′
−i) ≤ ui(σi, σ

′
−i).

That is, even if Pi believes there is some small probability that the other players
will make a mistake (and not play according to σ−i), it is still in Pi’s best
interests to play according to σi.

As an example, consider the following two-player game:

A′ B′ C′

A (10, 2) (1, 0) (0, 1)
B (10, 0) (0, 0) (100, 100)

(A, A′) is a Nash equilibrium, but it is not stable with respect to trembles: if P1
believes that P2 might play C′ with any positive probability ε (but still plays B′

with probability 0), then P1 will prefer to play B rather than A. On the other
hand, (C, C′) is a Nash equilibrium that is stable with respect to trembles: for
small enough ε > 0, even if P1 believes that P2 might play something other
than C′ with probability ε, it is still in P1’s best interest to play C.

I am not aware of any results stating conditions under which stable equilibria
are guaranteed to exist.

Coalitions. Thus far, we have only been considering single-player deviations,
i.e., whether it is in any single player’s best interests to deviate from some pre-
scribed strategy. Cryptographers generally prefer to think in terms of coalitions
of players acting together. In general, a Nash equilibrium provides no “protec-
tion” against such coalitions.

What does it mean for a coalition C to prefer one outcome to another? There
are at least four natural possibilities:

– C prefers σ to σ′ only if every player in C weakly prefers σ to σ′, and some
player in C strictly prefers σ to σ′.

– C prefers σ to σ′ only if the sum of the utilities of the parties in C improves;
i.e., if

∑
i∈C ui(σ) >

∑
i∈C ui(σ′). (Note that for this to make sense, we must
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assume that the utility functions of all players in C are measured in the same
units.) This definition can be viewed as capturing the ability of players in C
to make “side payments” to each other before or after the game.

– C prefers σ to σ′ if any player in C prefers σ to σ′, i.e., if ui(σ) > ui(σ′)
for some i ∈ C. The definition makes sense if we think of one adversarial
party corrupting other parties and taking complete control over their actions.
Note also that preference of σ to σ′ with respect to this definition implies
preference with respect to the previous two definitions.

– Another possibility is to simply assume utility functions uC for each possible
coalition C, and then define preference in the obvious way. This is the most
general approach (it subsumes the previous three), but requires additional
assumptions about players’ utilities.

We adopt the third definition here.
Given a set C = {i1, . . . , it} ⊂ [n] and a vector σ = (σ1, . . . , σn), we let

AC
def= ×i∈CAi, σC

def= (σi1 , . . . , σit), and σ−C
def= σ[n]\C . Then:

Definition 5. Let Γ = ({Ai}n
i=1, {ui}n

i=1). Then for 1 ≤ t < n the strategy
vector σ = (σ1, . . . , σn) is a t-resilient equilibrium if for all C ⊂ [n] with |C| ≤ t,
all i ∈ C, and any σ′

C ∈ Δ(AC), it holds that ui(σ′
C , σ−C) ≤ ui(σ).

That is, for every coalition C of size at most t, no member of the coalition
improves its situation no matter how the members of C coordinate their actions.

Observe that a 1-resilient equilibrium is a Nash equilibrium. Extending other
equilibrium concepts to the case of coalitions seems not to have been explored
significantly.

Mixed models. It is standard in game theory to assume that all players are
rational. Recent work [1,35,2] has explored models where most parties are ratio-
nal, but some players are malicious and behave arbitrarily. Treating players as
malicious can be viewed (to some extent) as treating their utilities as completely
unknown. It is also possible to assume that some players honestly follow the pro-
scribed protocol — perhaps out of altruism or laziness — rather than seeking
to improve their utility (although it should be in these players’ interests to run
the protocol altogether). These are interesting directions that are not discussed
any further in this survey.

2.3 Correlated Equilibria

Correlated equilibria [3] offer another solution concept with some advantages
relative to Nash equilibria. In some games, there may exist a correlated equi-
librium that, for every party Pi, gives a better payoff to Pi than any Nash
equilibrium (see [36] for an example). More generally, correlated equilibria have
payoffs outside the convex hull of all Nash equilibria, and therefore give more op-
tions to the players. Finally, correlated equilibria of any game can be computed
in polynomial time, something not believed to be the case for Nash equilibria.
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Given a game Γ = ({Ai}, {ui}), we define a mediated version of Γ which
relies on a trusted, external party M called the mediator. The game is now
played in two stages: first, the mediator chooses a vector of actions a ∈ A
according to some known distribution M, and then hands the recommendation
ai to player Pi. The players then play Γ as before by choosing any action in their
respective action sets. Players are “supposed” to follow the recommendation of
the mediator, and a correlated equilibrium is one in which it is in each player’s
best interests to do so. To formally define this notion, let ui(a′

i, a−i | ai) denote
the expected utility of Pi, given that it plays action a′

i after having received
recommendation ai and all other parties play their recommended actions a−i.
(The expectation here is over a sampled according to M.)

Definition 6. Let Γ = ({Ai}, {ui}). A distribution M ∈ Δ(A) is a correlated
equilibrium if for all a = (a1, . . . , an) in the support of M, all i, and all a′

i ∈ Ai,
it holds that ui(a′

i, a−i | ai) ≤ ui(a | ai).

Any Nash equilibrium is a correlated equilibrium, but Nash equilibria correspond
to the special case where M is a product distribution over the Ai.

Let ui(M) denote the expected utility of Pi when all parties follow their actions
as recommended by M. A definition equivalent to the previous one, but better
suited for extensions to coalitions as well as the computational setting, is:

Definition 7. Let Γ = ({Ai}, {ui}). A distribution M ∈ Δ(A) is a correlated
equilibrium if for all i and any fi : Ai → Ai it holds that

ui(fi(ai), a−i) ≤ ui(M),

where a is sampled according to M.

As an example of a game with a correlated equilibrium that is not a Nash
equilibrium, consider the two-party game of Table 1 and the distribution that
assigns probability 1/3 to each of (C, D′), (D, C′), and (C, C′). One can check
that neither party has any incentive to deviate from their recommended action,
and each player has expected utility 2 (an improvement on the mixed-strategy
Nash equilibrium described in Section 2.1).

In games of incomplete information (as we have defined them in Section 2), a
mediated game is played as follows: first, a vector (t1, . . . , tn) is sampled accord-
ing to a distribution D, and ti is given to Pi. Then, each party Pi sends some
t′i to the mediator. Based on the vector t′ = (t′1, . . . , t′n) received, the mediator
samples a vector a ∈ A according to a distribution M(t′), and recommends
action ai to player Pi. The parties then play as before, choosing whether or
not to follow the mediator’s recommendation. Correlated equilibria in this situ-
ation are defined as the natural extension of the above, through we stress that
a player’s strategy now determines both what value t′i it sends to the mediator
(as a function of the received input ti) as well as what action it plays in the
game. A correlated equilibrium is said to be truthful if it is in each party’s best
interest to send t′i = ti to the mediator. The revelation principle characterizes
when truthful correlated equilibria exist.
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Correlated equilibria in the presence of coalitions. The basic approach
used to handle coalitions in Definition 5 can be extended in the natural way to the
case of correlated equilibria. Two variants of the definition are obtained, however,
depending on the details of how the mediated game is played. If ex ante collusion
is allowed, the parties in a coalition C may coordinate their strategies in advance,
but are assumed unable to communicate after the mediator provides them with
their recommended actions. If ex post collusion is allowed, the parties in C can
communicate even after receiving their recommendations from the mediator.

Definition 8. Let Γ = ({Ai}, {ui}) be an n-party game, and let 1 ≤ k < n. A
distribution M ∈ Δ(A) is an ex ante t-resilient correlated equilibrium if for all
C ⊂ [n] with |C| ≤ k, any functions {fi : Ai → Ai}i∈C, and all i ∈ C it holds that
ui ({fi(ai)}i∈C , a−C) ≤ ui(M), where a is sampled according to M.

M is an ex post t-resilient correlated equilibrium if for all C as above, any
function fC : AC → AC, and any i ∈ C it holds that ui(fC(aC), a−C) ≤ ui(M),
where a is sampled according to M.

2.4 Extensive Form Games

Extensive form games remove the assumption that players act simultaneously.
Such games are best described as occurring in a sequence of rounds, where in
any given round the game might specify that all parties play simultaneously (as
in a normal form game) or that some subset of designated parties plays. Play of
the game thus defines a history of the actions taken by the players thus far, and
a player Pi’s strategy σi now specifies, for each round in which it is Pi’s turn
to move, a (randomized) function mapping possible histories to actions. Players’
utilities are now functions of terminal histories (i.e., histories that occur at the
end of the game), rather than functions of the strategy vector of the players. We
rely on the above intuitive description rather than present a formal definition.

We provide a simple example of an extensive form game, which also demon-
strates how introducing alternation can affect the outcome of a game. Consider
a seller P1 and a buyer P2, where P1 can either sell high (H) or low (L), and P2
can choose either to buy (B) or not (N). Payoffs are given by the matrix on the
left, but we will assume that the seller announces its action first. This gives an
extensive form game in which the buyer can follow any of four (pure) strategies;
we let XY denote the strategy where P2 chooses X if the seller chooses H , and
P2 chooses Y if the seller chooses L. This extensive form game is represented in
normal form in the matrix on the right.

Table 2. An extensive form game presented in normal form

B N

H (10, 1) (0, 0)
L (5, 6) (0, 0)

BB BN NB NN

H (10, 1) (10, 1) (0, 0) (0, 0)
L (5, 6) (0, 0) (5, 6) (0, 0)
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Looking at the game on the right, we see that (L, NB) is a Nash equilibrium.
The strategy being followed by P2 is to refuse to buy if the buyer charges the
higher price, and if the seller knows that P2 will follow this strategy then it is in
the seller’s best interest to charge a low price. In contrast, the game on the left
(where parties move simultaneously) has the unique Nash equilibrium (H, B).

Something odd about the Nash equilibrium (L, NB) of the extensive form
game is that P2 is, in essence, threatening to play irrationally if P1 plays H
(since, conditioned on P1 playing H , the buyer is better off playing B than N).
Another way to say this is that P2 plays rationally given any realizable history
(where history h is realizable with respect to σ if this history occurs with positive
probability when all parties play according to σ), but P2 threatens to play irra-
tionally at some non-realizable history. In the following section, we will discuss
a refinement of Nash equilibria that eliminates such “empty threat” strategies.

2.5 Equilibrium Concepts in Extensive Form Games

Any game in extensive form can be viewed as a normal form game by letting
the set of allowable actions correspond to the players’ strategies. Thus, all the
equilibrium concepts we have discussed previously can be applied to extensive
form games as well. However, it is often more natural to view certain games in
extensive form, and thinking of games in this way motivates new equilibrium con-
cepts. In particular, a question that arises with regard to extensive form games
is whether we need to “pay attention” to players’ strategies at non-realizable his-
tories. In some cases paying attention to such strategies makes intuitive sense,
while in other cases the situation is less clear.

Subgame perfect equilibria. As noticed in the previous section, certain strat-
egy vectors may be Nash equilibria but contain “empty threats” by one or more
of the players. Subgame perfect Nash equilibria eliminate this possibility. To de-
fine this concept, we introduce (informally) the notion of the reduced game Γ h

of an extensive form game Γ . Basically, Γ h corresponds to Γ where some initial
history h is fixed; we may view Γ h as the continuation of Γ conditioned on the
fact that history h has been observed thus far. A strategy σi in Γ naturally
induces a strategy σh

i in Γ h by setting σh
i (h′) = σi(h‖h′).

Definition 9. Let Γ be an extensive form game, and let σ be a Nash equilibrium
in Γ . Then σ is subgame perfect if for all possible histories h of Γ , the strategy
vector σh is a Nash equilibrium of the reduced game Γ h.

Recall that a history h is realizable (with respect to σ) if it occurs with positive
probability when all parties follow σ. If the definition above only quantified over
realizable histories, then every Nash equilibrium would satisfy the definition.

In the game of Table 2 the Nash equilibrium (L, NB) is not subgame perfect
because, conditioned on the (non-realizable) history in which P1 plays H , player
P2 prefers to play B instead of N . Equilibrium (H, BB) is subgame perfect.
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Stability with respect to trembles. There are two possible ways to extend
the definition of stability with respect to trembles to extensive form games,
depending on whether or not subgame perfection is also required. The following
definition does not take subgame perfection into account. Say two strategies
σi, σ

′
i of Pi yield equivalent play with respect to σ if for every history h realizable

with respect to σ it holds that σi(h) = σ′
i(h). (This just means that, assuming

all other parties play σ−i, play proceeds identically whether Pi plays σi or σ′
i.)

Definition 10. Let Γ be an extensive form game, and let σ be a Nash equilib-
rium in Γ . Then σ is stable with respect to trembles (for realizable histories) if
there exists an ε > 0 such that for all i and every σ′

−i with d(σ−i, σ
′
−i) < ε there

exists a σ′
i that is a best response to σ′

−i and such that σi and σ′
i yield equivalent

play with respect to σ.

2.6 Cryptographic Considerations

In a cryptographic setting, it is natural to modify the way games are treated
and the way various equilibrium notions are defined. We give an example of
how this might be done for the specific case of parties running a protocol in the
standard cryptographic sense, though it can be easily extended for more general
scenarios (for examples, parties running a protocol and then taking some action
as in Section 3, or parties who receive some initial input as in Section 4).

As usual in the cryptographic setting, we introduce a security parameter k
provided to all parties at the beginning of the game. The action of a player Pi now
corresponds to running an interactive Turing machine (ITM) Mi. This ITM Mi

takes as input some current state and incoming messages from the other parties,
and outputs the next message of player Pi along with updated state. The message
mi is then sent to all other parties (we are assuming here that communication
is over a broadcast channel). We require Mi to run in probabilistic polynomial-
time, which we take to mean that the next message function is computed in time
polynomial in k. This definition allows Mi to run for an unbounded number of
rounds and, if desired, we can additionally require that the expected number of
rounds for which Mi runs is also polynomial.

Utility functions take the security parameter k as input, and are functions
mapping transcripts of a protocol execution to the reals that can be computed
in time polynomial in k. We stress that, as in extensive form games, utilities
depend only on the “observable outcome” of the game play.

For the purposes of this section, we define a computational game Γ to be
one in which the actions of each player correspond to the set of probabilistic
polynomial-time ITMs, and where the utilities of each player are polynomial-
time computable. We remark that we no longer need to consider mixed strategies,
since a mixed strategy that can be implemented in polynomial time corresponds
to a pure strategy (since pure strategies correspond to randomized ITMs).

An important difference between the cryptographic setting and the setting we
have considered until now is that now parties are assumed to be indifferent to
negligible changes in their utilities. For example:
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Definition 11. Let Γ = ({Ai}, {ui}) be a computational game. A strategy vec-
tor M = (M1, . . . , Mn) is a computational Nash equilibrium if for all i and any
probabilistic polynomial-time ITM M ′

i there is a negligible function ε such that

ui(k, M ′
i , M−i) − ui(k, M ) ≤ ε(k).

I am unaware of any result characterizing conditions under which Nash equilibria
exist in computational games.

Subgame perfection and related notions. Execution of a protocol can nat-
urally be regarded as an extensive form game. Extending equilibrium notions for
extensive form games to the computational setting is, however, less obvious. For
example, a first approach to extending the notion of subgame perfection to the
computational setting would be to say that the strategy vector σ of the game Γ
is subgame perfect if for all possible histories h of Γ , the strategy vector σh is a
computational Nash equilibrium of the reduced game Γ h. However, this ignores
the probability with which history h is reached! On the other hand, it is unclear
how to assign a probability to a non-realizable history. We are not aware of any
definition of computational subgame perfection that deals with these issues.

A recent definition suggested by Kol and Naor [29] explicitly rejects the idea
of “weighting” the utility of strategies according to the probability with which
a given history is reached. Instead, informally, they require that conditioned on
reaching any history that occurs with positive probability, players’ strategies
should remain in equilibrium. In their definition of a computational game, they
allow players to use ITMs which run in time polynomial in k + r, where r is the
number of rounds that have been played thus far. (Thus, the next-message func-
tion in their case may be viewed as a function from the entire history/transcript
thus far to a next message, rather than from some internal state and a set of
incoming messages to a next message, as defined above.) For lack of any better
name, we refer to ITMs of this sort as running in liberal polynomial time and
refer to the notion of t-resilient∗ equilibria for strategy vectors that remain in
equilibrium even with respect to this stronger class of machines. Finally, we let
ui(· | h) denote the expected utility of Pi conditioned on history h. We now give
the definition of Kol and Naor:2

Definition 12. Let Γ be a computational game. A strategy vector M = (M1,
. . ., Mn) is computationally t-immune3 if for every history h realizable with respect
to M and every i, the strategy vector Mh is a t-resilient∗ Nash equilibrium in
the reduced game Γ h. I.e., for every C ⊂ [n] with |C| ≤ t and every liberal
polynomial-time ITM M ′

C there is a negligible function ε such that

ui(k, M ′
C, M−C | h) − ui(k, M | h) ≤ ε(k).

2 One change we introduce is to condition on observable histories rather than on
players’ random coins (which may be private).

3 Note that immunity refers to an entirely different concept in [1].
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2.7 Critiques of Game Theory

Without going into much detail here, I will simply say that it is not at all clear
whether game theory provides the “best” way of modeling interactions, both in
general as well as specifically in a cryptographic setting. (All of the critiques
I mention here are well-known, and not in any way novel.) For starters, it is
unclear the extent to which the behavior of most people can be modeled as
rational. (Social economists study exactly this issue.) Even if we are willing to
believe that people act rationally, it is not always clear when a protocol designer
can assume any knowledge of their utilities.

Irrespective of the above, many of the solution concepts are unsatisfying. The
notion of a Nash equilibrium is perhaps the most intuitively appealing one, but
in cases where multiple Nash equilibria exist it is unclear which one the parties
will settle on or even if they can agree to settle on one at all. Other notions have
been introduced in an effort to distinguish among various Nash equilibria, but
it seems that for every such notion there exists a game in which applying the
notion goes against one’s intuition. (See, e.g., [19, pp. 462–463] for an example
in the context of iterated deletion of weakly dominated strategies where it is to
one party’s advantage to publicly burn their money.)

3 Implementing Mediators Using Cryptography

As we have seen in Section 2.3, if parties are willing to assume the existence of
a trusted mediator then they can potentially achieve certain equilibria that may
be “preferable” to any of the available Nash equilibria. If a trusted mediator is
not available, the question becomes: to what extent can the parties themselves
run a protocol in place of the mediator?

This question was first explored in the economics community [14,6,18,9,42,43,4]
(see [2] for a summary of these results), where researchers suggested “cheap talk”
protocols by which parties could communicate amongst themselves to implement
a correlated equilibrium. (As the terminology suggests, communication among the
players is “cheap” in the sense that it costs nothing; it is also “worthnothing” in the
sense that players are not “bound” to any statements they make; e.g., there is no
legal recourse if someone lies). In the cryptography community, the question was
first addressed by Dodis, Halevi, and Rabin [15].

3.1 Defining the Problem

Let us begin by defining the basic problem. (Other variants and extensions will
be explored below.) We are given some n-party game Γ = ({Ai}, {ui}) in normal
form, along with a correlated equilibrium M. We then define the extensive form
game ΓCT in which all parties hold a common security parameter k and first
communicate in a “cheap talk” phase. The parties then play Γ , making their
moves simultaneously (as always). Following the game-theoretic convention, all
parties must play some action in Γ . (I.e., we do not allow player Pi to “abort” in
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Γ unless this is an action in Ai.) On the other hand, following the cryptographic
convention we do allow players to abort (and refuse to send any more messages)
during the cheap talk phase.

We make no assumptions regarding the exact communication model during
the cheap talk phase. For now, however, we assume that colluding parties can
communicate “out of band” throughout the entire game. (This assumption is
removed in Section 3.4.) Thus, for now we focus on ex post correlated equilibria
which are resilient to coalitions even when such communication is allowed.

A player’s strategy in ΓCT determines both the protocol it runs in the cheap
talk phase as well as the action it plays in Γ . We may now define the basic goal:

Definition 13. Let Γ be a game, and let M be an ex post t-resilient correlated
equilibrium in Γ . Let ΓCT be the cheap talk extension of Γ , and let σ be an
efficient strategy vector in ΓCT . Then σ is a t-resilient implementation of M if
(1) σ is a t-resilient computational equilibrium in ΓCT , and (2) for all i, it holds
that ui(k, σ) = ui(k, M).

One might strengthen the definition to require that the distribution of payoffs in
ΓCT (both for each party as well as when considering joint distributions among
multiple parties) is close to the distribution of payoffs in the original mediated
game. A stronger requirement of a different flavor is given by Lepinski et al. [30],
who require (informally) that any vector of expected payoffs achievable by C in
ΓCT (i.e., even ones that are sub-optimal for C) can also be achieved by C in the
original mediated game. We do not impose such requirements here.

3.2 A Simple Observation

It is instructive to begin with a relatively simple observation: if t, n, and the
communication model are such that completely fair secure multi-party compu-
tation [20, Def. 7.5.4] is possible, then any correlated equilibrium M of any
game Γ has a t-resilient implementation: During the cheap talk phase the par-
ties run a completely fair protocol Π computing a ← M, where Pi receives ai as
output. Following the cheap talk phase, each party plays the action it received
as output in Π . It is not hard to see that the strategy vector thus specified (i.e.,
“run Π and then play the result”) is a t-resilient (computational) equilibrium
with expected payoffs identical to those in the original mediated game.

Applying the above observation to the standard communication model, we see
that if parties are connected by pairwise point-to-point channels then a t-resilient
implementation of any correlated equilibrium exists when t < n/3. If a broad-
cast channel or a PKI is additionally assumed, then t-resilient implementations
exist whenever t < n/2. The above all follow from standard results in secure
multi-party computation [11,8,40,7]. Lepinski et al. [30] show how to achieve
completely fair secure computation for any t < n — and hence show t-resilient
implementations of any correlated equilibrium for t < n — in a non-standard
communication model where “secure envelopes” are assumed. (Completely fair
secure multi-party computation using point-to-point channels and broadcast is,
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in general, impossible for t ≥ n/2 [13].) Assuming secure envelopes may be rea-
sonable in some settings, but such envelopes seem impossible to realize (without
assuming trusted parties) in a distributed setting such as the Internet.

3.3 Implementing Mediators without Completely Fair MPC

The natural next question is: when can a correlated equilibrium be implemented
even though completely fair secure computation is ruled out? The initial result
in this direction is due to Dodis, Halevi, and Rabin [15], who examine the case
t = 1, n = 2. Before explaining their solution, we first introduce some termi-
nology. Let Γ be a game in normal form. Then the minimax profile against
player Pi is an action a−i ∈ A−i (or, more generally, in the product distribution
×j �=iΔ(Ai)) minimizing maxai∈Ai{ui(ai, a−i)}. In other words, a minimax pro-
file a−i “punishes” Pi by giving Pi its lowest possible utility, assuming Pi plays
a best response to the strategy of the other parties.

The basic idea of Dodis, Halevi, and Rabin is as follows: Let M be a cor-
related equilibrium in some two-party game Γ . In ΓCT , the two parties run a
protocol Π for computing (a1, a2) ← M, where party Pi receives ai as output.
This protocol Π is “secure-with-abort” (cf. [20, Def. 7.2.6]), which informally
means that privacy and correctness hold but fairness does not; in particular, we
assume it is possible for P1 to receive its output even though P2 does not. After
running Π , each party plays the action it received as output in Π ; if P2 does
not receive output from Π then it plays the minimax profile against P1.

It is not hard to see that this is a 1-resilient implementation of M. First, it
is immediate that if both parties play the indicated strategy, then the payoffs
of both parties in ΓCT are exactly the payoffs they would receive by playing
M in Γ . Let us now argue that this is a computational Nash equilibrium in
ΓCT . We first observe that P2 has no incentive to deviate: no matter how P2
plays when running Π , party P1 receives correctly-distributed output and plays
according to the correlated equilibrium. Given this, P2’s best action to play in
Γ is given by its own output from Π . We remark that here we are relying on
the assumption that P2 can only run polynomial-time strategies, and that P2
is indifferent to negligible differences in its expected utility, exactly as we have
defined things in Definition 11.

As for P1, the only way it can (effectively) deviate during the cheap talk
phase is by running Π until it receives its own output a1 and then possibly
aborting the protocol so that P2 does not receive any output. We claim that
it is never to P1’s advantage to abort. (Note that the analysis in [15] seems
to assume that P1 either never aborts or always aborts, but of course P1 can
determine whether to abort based on its output.) If P1 allows P2 to receive its
output, this induces some mixed strategy σ2 that will be played by P2. (I.e.,
σ2 represents the marginal distribution on P2’s recommended action according
to M, conditioned on the fact that P1’s recommended action is a1.) Since M is
a correlated equilibrium, a1 is a best response to σ2. If P1 aborts, then P2 will
play a minimax profile σ′

2 against P1. By definition of a minimax profile, P1’s
best response to σ′

2 cannot give P1 better utility than its best response to σ2.
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We conclude that P1 always does worse by aborting the execution of Π . Given
that both parties receive output in Π , it is obviously to P1’s advantage to play
its recommended action. This completes the proof.

Extensions. The above ideas do not extend easily to a more general setting.
For example, consider the case t = 1, n = 3 (with point-to-point communica-
tion). If these parties run a protocol Π in which a single deviating party can
abort the computation without being identified, then the remaining parties do
not know which player to “punish”. In fact, essentially this situation is inherent
in general [2, Theorem 4]. On the other hand, specific correlated equilibria may
be implementable using the general approach discussed below.

Next look at the case t = 2, n < 5. Observe that even if one party, say P1, is
identified as cheating, the naive approach of having the remaining parties play a
minimax profile against P1 may not work. For one thing, although such a profile
might result in a worse payoff for P1, it may actually lead to a better payoff for a
second player, say P2, colluding with P1. (And recall that 2-resilience only holds
if deviations help no one in the coalition.) Moreover, if players play a minimax
profile against P1, it may be possible for P2 (who, recall, is colluding with P1)
to deviate from the minimax profile and thus benefit P1.

We are thus motivated to define a stronger notion of “punishment”. Follow-
ing [1, Def. 5], though differing in some respects, we define:

Definition 14. Let Γ be an n-party game with correlated equilibrium M. A
strategy vector σ is a t-punishment strategy with respect to M if for all C ⊂ [n]
with |C| ≤ t, all σ′

C, and all i ∈ C it holds that ui(σ′
C , σ−C) ≤ ui(M).

That is, any coalition would be better off following the recommendations of M
rather than playing against σ−C .

If a t-punishment strategy is available for a given correlated equilibrium M,
then this gives hope that a variant of the Dodis-Halevi-Rabin approach can be
used to give a t-resilient implementation of M. See [1,2] for work along these
lines. Also relevant is the work of [31,27,28], discussed in more detail in the
following section. As we have mentioned earlier, a partial converse [2] of the
positive result just mentioned shows that, in general, if a t-punishment strategy is
not available for a given correlated equilibrium M, then this equilibrium cannot
be implemented. Further work is need to better characterize the exact conditions
under which a given correlated equilibrium can or cannot be implemented.

3.4 Implementing ex ante Equilibria (and More)

This section provides a brief discussion of work aimed at a slightly different as-
pect of the problem. Assume now that colluding parties cannot communicate
“out of band” once ΓCT begins; i.e., during the cheap talk phase of ΓCT all
communication is done over a public channel, and after the cheap talk phase —
when it is time for the parties to play Γ — there is no inter-party communica-
tion at all. (Colluding parties can try to communicate over the broadcast channel,
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but if they are obvious about it then this will be detected by the other parties
and punished.) It is then meaningful to ask whether it is possible to implement
an ex ante correlated equilibrium of Γ in the cheap talk extension ΓCT .

This problem is not immediately solved even if completely fair secure compu-
tation is possible. The problem is that covert channels may exist in the protocol
itself. If such covert communication is possible, an ex ante correlated equilibrium
may no longer remain an equilibrium. Informally, say a protocol is collusion free
if covert communication is impossible. (We remark, however, that it seems suf-
ficient here to prevent covert communication only after the parties have learned
their output, since communication between the colluding parties before they
learn their recommended actions will not affect an ex ante equilibrium.) Lep-
inski et al. [31] show how to construct a collusion-free protocol assuming the
existence of “secure envelopes”; their work is further developed in [27,28]. Some
impossibility results for collusion-free protocols are shown in [31], though it is
not clear what are the implications of these results for the specific problem of
implementing ex ante correlated equilibria.

Collusion freeness may also be interesting in other contexts; see [31,27,28] for
further discussion. Recent work [27,28] has looked at stronger notions of collusion
freeness, with the aim of achieving game-theoretic guarantees such as strategic
equivalence between a mediated game and the cheap talk implementation of it.
In that work, it is assumed that parties cannot communicate “out of band” even
before the protocol begins ; furthermore, a protocol should not only prevent covert
communication between parties but should also prevent parties from agreeing
on a common bit. We do not give further discussion here.

3.5 Future Directions

The immediate open question is to further characterize when a given ex post
correlated equilibrium of a game is implementable (in, say, the standard com-
munication model, either with or without broadcast). One direction to explore
is when using a partially fair protocol [34,17,13,12,21] might suffice. Also, recent
results [22] show that complete fairness for t ≥ n/2 is achievable for certain
functions in the standard communication model, thus giving hope that for cer-
tain restricted classes of correlated equilibria a cheap talk implementation might
be possible even when general fair computation is not. Yet another direction
is to explore other communication models, e.g., when a simultaneous broadcast
channel is available. Or, taking a cue from the work on collusion-free protocols,
we may ask what can be achieved under the assumption that colluding parties
cannot communicate once the protocol begins. (Cleve’s impossibility proof [13]
fails in both the aforementioned settings.) These questions are interesting both
in the current context as well as in a purely cryptographic sense.

In another direction, we can strengthen Definition 13 to require cheap talk
protocols to satisfy stronger game-theoretic notions such as subgame perfection.
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(See also the following section.) The Dodis-Halevi-Rabin approach, in particular,
will usually not yield a subgame perfect equilibrium.

4 Rational Multi-party Computation

We now briefly discuss the second research direction mentioned in the Introduc-
tion. Here, there is no underlying game; rather, the protocol itself is the game, in
the sense that parties’ utilities are now functions of the inputs and outputs of the
parties running the protocol. The difference between this setting and the stan-
dard setting of secure computation is that, in contrast to the standard setting
where some parties are assumed to follow the protocol and other may behave
arbitrarily, in the current setting we only guarantee that all players are rational.
(Thus, the models are incomparable.) The questions here are: how can we con-
struct “meaningful” protocols in this setting? and (more tantalizingly) does this
setting enable us to circumvent impossibility results that hold under the standard
definition of secure computation?

Let us jump right in with a “straw man” definition that, as far as I know, is
new. Assume a set of parties P1, . . . , Pn where party Pi begins holding input xi.
We assume the vector of inputs x = (x1, . . . , xn) is chosen according to some
known distribution D. The parties want to compute a possibly probabilistic
function f , where f(x) outputs a vector y = (y1, . . . , yn) and Pi receives yi. The
parties run some protocol Π = (Π1, . . . , Πn), and we assume this protocol is
correct in the sense that it yields the correct output if run honestly. (However, we
do not assume the parties use their given inputs; see below.) The utility function
of Pi is now a polynomial-time function of its view during the execution of Π ,
the initial inputs x, and the outputs y−i of all other parties. (Note that inputs
may be viewed as types in the sense defined in Section 2.) For treating coalitions,
it seems best to define, for each possible coalition C, a utility function uC that
is a function of the coalition’s view, the inputs x, and the outputs y−C of the
other parties. We let Γreal denote the real-world game thus defined.

In an ideal world computation of f (see [20]), a party Pi receiving input xi can
replace its input with some other value x′

i = δi(xi); we allow δi to be probabilistic
and allow x′

i =⊥, which is treated as an abort. After parties hand their inputs
to the ideal functionality, the functionality computes y = f(x′) and gives yi

to Pi. Each party then outputs an arbitrary (polynomial-time) function πi(·) of
its view; this is left implicit in what follows, and we thus let δi stand for the
entire strategy of Pi in the ideal world game Γf . The utility functions ui are as
above, except that these are now applied to the output of Pi, the inputs x, and
the outputs y−i of the other parties (and analogously for coalitions).

Shoham and Tennenholtz [41] define the class of NCC functions for which,
roughly speaking, setting δi to the identity function is a Nash equilibrium for
all D. Focusing on NCC functions appears to be a mistake that unnecessarily
limits the class of functions under study.

Let Πi ◦ δi denote the real-world strategy where Pi changes its input xi to
x′

i = δi(xi), and then runs Πi using input x′
i. Then:
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Definition 15. Let δ = (δ1, . . . , δn) be a Nash equilibrium of Γf with respect to
utilities {ui} and input distribution D. Then Π is a Nash protocol for f (with
respect to δ, {ui}, and D) if (1) Π ◦δ = (Π1 ◦δ1, . . . , Πn ◦δn) is a computational
Nash equilibrium in Γreal, and (2) for all i, it holds that ui(k, Π ◦ δ) = ui(k, δ).

A definition of t-resilience may be derived from the above. Note that privacy, etc.
are not explicitly required; it is our belief that questions of rationality should be
separated from questions of security against malicious behavior.

An easy observation is that any protocol for completely fair secure computa-
tion tolerating t malicious parties is a t-resilient protocol for any δ, {ui}, and D.
We also conjecture that if a protocol Π is resilient for all δ, {ui}, and D, then it
is completely fair. Thus, things only become interesting if (1) we are in a setting
where completely fair secure computation is impossible; and/or (2) we look at
equilibrium concepts stronger than a Nash equilibrium. We briefly discuss these
issues now. More extensive discussion will appear in the full version of this paper.

Constructing Nash protocols without completely fair MPC. This relates
to the question, raised earlier, as to when relying on rationality of the parties
might enable circumvention of impossibility results. As one example, depending
on the utilities assumed it is possible to achieve complete fairness (which, note,
is attained in the ideal model used in Definition 15) even in the presence of
coalitions consisting of half or more of the parties [1,35,24,29]. Similarly, it is
possible to implement Byzantine agreement over point-to-point channels even in
the presence of coalitions controlling 1/3 or more of the parties [23].

Rational secret sharing and stronger notions of equilibrium. Halpern
and Teague [26] were the first to suggest that Nash protocols do not suffice but,
instead, stronger notions are needed. As a motivating example [26], consider
t-out-of-n secret sharing (here, t < n) under the assumption that each party
(1) prefers to learn the secret above all else; and (2) otherwise, prefers other
parties not learn the secret. Consider the naive protocol in which each party
simply broadcasts their share. (We assume authenticated shares, so each party
can choose either to broadcast the correct value or nothing.) This is clearly a
Nash protocol, since no matter what any particular party does at least t par-
ties broadcast their share and everyone reconstructs the secret. Nevertheless, it
appears that each Pi would prefer not to broadcast: if at least t other parties
broadcast, then everyone (including Pi) gets the secret as before; however, if
fewer than t parties broadcast then only Pi recovers the secret. That is, fol-
lowing the protocol is weakly dominated by not following the protocol, and we
might expect that no one follows the protocol. (and hence the protocol is not
very useful).

To address this, Halpern and Teague suggest to look for Nash protocols where
players’ strategies survive iterated deletion of weakly dominated strategies. Such
protocols were constructed in [26,1,35,24].

Kol and Naor [29] argue that the requirement of surviving iterated deletion
does not suffice to rule out protocols that are, intuitively, irrational. The notion
is also difficult to work with and does not seem to capture intuition very well;
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moreover, it leads to other undesirable consequences such as the fact that, if we
do not assume simultaneous channels (and thus allow rushing), then protocols
in which two parties are supposed to speak in the same round are inherently
problematic. (Since each party will simply wait for the other to go first.) Kol
and Naor thus suggest another notion that we have given as Definition 12. Their
definition rules out protocols that, intuitively, seem rational to follow.

We suggest to explore using the notion of resistance to trembles. (cf. Defi-
nition 10). This requirement rules out the naive protocol mentioned above as
well as the counterexample of Kol-Naor; on the other hand, the protocols of
[26,1,35,24] appear to satisfy it.

The work of [27,28] offers other definitions of rational MPC.

4.1 Future Directions

The community has not yet settled on a definition for rational MPC, and finding
the “right” definition seems important for further progress in this area. Look-
ing at constructions, we note that almost all positive results for rational MPC
thus far assume the utility functions inherited from [26] (an exception is [23]); a
natural step is to characterize when rational MPC is possible for other classes
of utilities. One can also look for closer connections between the questions con-
sidered in Sections 3 and 4.

More broadly, one might explore applications of the ideas described here to
scenarios that are more complicated than function evaluation; trust inference
in distributed systems serves as one compelling example. Another direction is
to realize that secure computation does not happen in a vacuum, but instead
may occur within an existing legal framework; given this, game theory might be
profitably applied to analyze protocols satisfying the definitions of [5,32].
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