
Line Crossing Minimization on Metro Maps�

Michael A. Bekos1, Michael Kaufmann2, Katerina Potika1,
and Antonios Symvonis1

1 National Technical University of Athens,
School of Applied Mathematics & Physical Sciences,

15780 Zografou, Athens, Greece
mikebekos@math.ntua.gr, epotik@cs.ntua.gr, symvonis@math.ntua.gr

2 University of Tübingen, Institute for Informatics, Sand 13,
72076 Tübingen, Germany

mk@informatik.uni-tuebingen.de

Abstract. We consider the problem of drawing a set of simple paths
along the edges of an embedded underlying graph G = (V, E), so that
the total number of crossings among pairs of paths is minimized. This
problem arises when drawing metro maps, where the embedding of G de-
picts the structure of the underlying network, the nodes of G correspond
to train stations, an edge connecting two nodes implies that there ex-
ists a railway line which connects them, whereas the paths illustrate the
lines connecting terminal stations. We call this the metro-line crossing
minimization problem (MLCM).

In contrast to the problem of drawing the underlying graph nicely,
MLCM has received fewer attention. It was recently introduced by
Benkert et. al in [4]. In this paper, as a first step towards solving MLCM
in arbitrary graphs, we study path and tree networks. We examine several
variations of the problem for which we develop algorithms for obtaining
optimal solutions.

Keywords: Metro Maps, Crossing Minimization, Lines, Paths, Trees.

1 Motivation

We consider a relatively new problem that arises when drawing metro maps
or public transportation networks in general. In such drawings, we are given
an undirected embedded graph G = (V, E), which depicts the structure of the
underlying network. In the case of metro maps, the nodes of G correspond to the
train stations whereas an edge connecting two nodes implies that there exists a
railway line which connects them. The problem we consider is motivated by the
fact that an edge within the underlying network may be used by several metro
lines. Since crossings are often considered as the main source of confusion in a
visualization, we want to draw the lines along the edges of G, so that they cross
each other as few times as possible.
� This work has been funded by the project PENED-2003. PENED-2003 is co - funded

by the European Social Fund (75%) and Greek National Resources (25%).

S.-H. Hong, T. Nishizeki, and W. Quan (Eds.): GD 2007, LNCS 4875, pp. 231–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

232 M.A. Bekos et al.

In the graph drawing literature, the focus has been so far exclusively on draw-
ing the underlying graph nicely and not on how to embed the bus or the metro
lines along the underlying network. The latter problem was recently introduced
by Benkert et. al in [4]. Following their approach, we assume that the underly-
ing network has already received an embedding. The problem of determining a
solution of the general metro-line routing problem, in which the graph drawing
and line routing are solved simultaneously would be of particular interest as a
second step in the process of automated metro map drawing.

2 Problem Definition

We are given an undirected embedded graph G = (V, E). We will refer to G
as the underlying network. We are also given a set L = {l1, l2, . . . , lk} of simple
paths of G (in the following, referred to as lines). Each line li consists of a
sequence of edges e1 = (v0, v1), . . . , ed = (vd−1, vd) of G. The nodes v0 and vd

are referred to as the terminals of line li. We also denote by |li| the length of line
li. The main task is to draw the lines along the edges of G, so that the number of
crossings among pairs of lines is minimized. We call this the metro-line crossing
minimization problem (MLCM). Formally, the MLCM problem is defined as a
tuple (G, L), where G is the underlying network and L is the set of lines.

One can define several variations of the MLCM problem based on the type
of the underlying network, the location of the crossings and/or the location of
the terminals. In general, the underlying network is an undirected graph. In this
paper, as a first step towards solving MLCM problem in arbitrary graphs, we
study path and tree networks.

For aesthetic reasons, we insist that the crossings between lines that traverse
a node of the underlying network should not be hidden under the area occupied
by that node. This implies that the relative order of the lines should not change
within the nodes and therefore, all possible crossings have to take place along
the edges of the underlying network.

In our approach, we assume that the nodes are drawn as rectangles, which is
a quite usual convention in metro maps. Each line that traverses a node u has
to touch two of the sides of u at some points (one when it “enters” u and one
when it “leaves” u). These points are referred to as tracks. In general, we may
permit tracks to all four side of the node, i.e. a line that traverses a node may
use any side of it to either “enter” or “leave”. This model is referred to as 4-side
model (see Figure 1). A more restricted model referred to as 2-side model is the
one, where all lines that traverse a node use only its left and right sides (see
Figure 2). In the latter case, we only allow tracks at the left and right sides of
the node. Note that a solution for the MLCM problem should first specify the
number of tracks that enter each side of each station and, for each track, the
line of L that uses it.

A further refinement of the MLCM problem concerns the location of the
terminals at the nodes. A particularly interesting case - that arises under the
2-side model - is the one where the lines that terminate at a station occupy its

Line Crossing Minimization on Metro Maps 233

Fig. 1. 4-side model Fig. 2. 2-side model

Top station ends

Bottom station ends

Middle tracks

Fig. 3. Station ends, middle tracks

topmost and bottommost tracks, in the following referred to as top and bottom
station ends, respectively. The remaining tracks on the left and right sides of
the station are referred to as middle tracks and are occupied by the lines that
traverse the station. Figure 3 illustrates the notions of station ends and middle
tracks on the left and right sides of a station (solid lines correspond to lines
that terminate, whereas the dashed lines correspond to lines that traverse the
station). Based on these we introduce the following two variants of the MLCM
problem:

(a) The MLCM problem with terminals at station ends (MLCM-SE), where we
ask for a drawing of the lines along the edges of G so that (i) all lines
terminate at station ends and (ii) the number of crossings among pairs of
lines is minimized.

(b) The MLCM problem with terminals at fixed station ends (MLCM-FixedSE),
where all lines terminate at station ends and the information whether a line
terminates at a top or at a bottom station end in its terminal stations is
specified as part of the input. We ask for a drawing of the lines along the
edges of G so that the number of crossings among pairs of lines is minimized.

2.1 Related Literature

The problem of drawing a graph with a minimum number of crossings has been
extensively studied in the graph drawing literature. For a quick survey refer to
[2] and [6]. However, in the problems we study in this paper we assume that the
underlying graph has already received an embedding and we seek to draw the
lines along the graph’s edges, so that the number of crossings among pairs of
lines is minimized.

This problem was recently introduced by Benkert et. al in [4]. In their work,
they proposed a dynamic-programming based algorithm that runs in O(n2) time
for the one-edge layout problem, which is defined as follows: Given a graph G =
(V, E) and an edge e = (u, v) ∈ E, let Le be the set of lines that traverse e. Le

is divided into three subsets Lu, Lv and Luv. Set Lu (Lv) consists of the lines
that traverse u (v) and terminate at v (u). Set Luv consists of the lines that
traverse both u and v and do not terminate either at u or at v. The lines for
which u is an intermediate station, i.e., Luv ∪ Lu, enter u in a predefined order
Su. Analogously, the lines for which v is an intermediate station, i.e., Luv ∪ Lv,
enter v in a predefined order Sv. The number of pairs of intersecting lines is

234 M.A. Bekos et al.

then determined by inserting the lines of Lu into the order Sv and by inserting
the lines of Lv into the order Su. The task is to determine appropriate insertion
orders so that the number of pairs of intersecting lines is minimized. However,
Benkert et. al [4] do not address the case of larger graphs and they leave as an
open problem the case where the lines that terminate at a station occupy its
station ends.

For the latter problem, Asquith et al. [1] proposed an integer linear program,
which always determines an optimal solution regardless the type of the underly-
ing network. They mention that their approach can be generalized to support the
case where the set of the lines consists of subgraphs of the underlying network
of maximum degree 3.

A closely related problem to the one we consider is the problem of drawing
a metro map nicely, widely known as metro map layout problem. Hong et al.
[5] implemented five methods for drawing metro maps using modifications of
spring-based graph drawing algorithms. Stott and Rodgers [9] have approached
the problem by using a hill climbing multi-criteria optimization technique. The
quality of a layout is a weighted sum over five metrics that were defined for eval-
uating the niceness of the resulting drawing. Nöllenburg and Wolff [8] specified
the niceness of a metro map by listing a number of hard and soft constraints
and they proposed a mixed-integer program which always determines a drawing
that fulfills all hard constraints (if such exists) and optimizes a weighted sum of
costs corresponding to the soft constraints.

In Section 3, we consider the MLCM problem on a path. We show that the
MLCM-SE problem is NP -Hard and we present a polynomial time algorithm
for the MLCM-FixedSE problem. In Section 4, we consider the MLCM problem
on a tree and we present polynomial time algorithms for two variations of it.
We conclude in Section 5 with open problems and future work. Due to lack of
space, Theorem proofs are either sketched or omitted. Detailed proofs can be
found in [3].

3 The Metro-line Crossing Minimization Problem on a
Path

We first consider the case where the underlying network G is a path and its
nodes are restricted to lie on a horizontal line. We adopt the 2-side model where
each line uses the left side of a node to “enter” it and the right one to “leave”
it. Then, assuming that there exist no restrictions on the location of the line
terminals at the nodes, it is easy to see that there exist solutions without any
crossing among lines. So, we further assume that the lines that terminate at
a station occupy its top and bottom station ends. In particular, we consider
the MLCM-SE problem on a path. Since the order of the stations is fixed as
part of the input of the problem, the only remaining choice is whether each line
terminates at the top or at the bottom station end in its terminal stations. In
the following, we show that under this assumption, the problem of determining a

Line Crossing Minimization on Metro Maps 235

solution so that the total number of crossings among pairs of lines is minimized
is NP -Hard, by reducing to it the fixed linear crossing number problem [7].

Definition 1. Given a simple graph G = (V, E), a linear embedding of G is a
special type of embedding in which the nodes of V are placed on a horizontal line
L and the edges are drawn as semicircles either above or bellow L.

Definition 2. A node ordering (or a node permutation) of a graph G is a
bijection δ : V → {1, 2, . . . , n}, where n = |V |. For each pair of nodes u and v,
with δ(u) < δ(v) we shortly write u < v.

Masuda et al. [7] proved that it is NP -Hard to determine a linear embedding
of a given graph with minimum number of crossings, even if the ordering of the
nodes on L is fixed. The latter problem is referred to as fixed linear crossing
number problem.

Theorem 1. The MLCM-SE problem on a path is NP -Hard.

Proof. Let I be an instance of the fixed linear crossing number problem, consist-
ing of a graph G=(V, E) and a horizontal input line L, where V={u1, u2, . . . , un}
and E = {e1, e2, . . . , em}. Without loss of generality, we assume that u1 < u2 <
. . . < un. We construct an instance I ′ of the MLCM-SE problem on a path as
follows: The underlying network G′ = (V ′, E′) is a path consisting of n+2 nodes
and n+1 edges, where V ′ = V ∪{u0, un+1} and E′ = {(ui−1, ui); 1 ≤ i ≤ n+1}.
The set of lines L is partitioned into two sets LA and LB:

– LA consists of a sufficiently large number of lines (e.g. 2nm2 lines) connecting
u0 with un+1.

– LB contains m lines l1, l2, . . . , lm one for each edge of G. Line li which cor-
responds to edge ei of G, has terminals at the end points of ei.

u1 u2 u3 u4 u5 u6
L

Fig. 4. A linear embedding

u1 u2 u3 u4 u5 u6u0 u7

Fig. 5. An instance of MLCM-SE problem

Figures 4 and 5 illustrate the construction. First observe that all lines of LA

can be routed “in parallel” without any crossing among them (see Figure 5).
Also observe that in an optimal solution none of the lines l1, l2, . . . , lm crosses
the lines of LA, since that would contribute a very large number of crossings.
Thus, in an optimal solution each line of LB has both of its terminals either at
top or at bottom station ends. So, in a sense, we exclude the case where a line

236 M.A. Bekos et al.

li ∈ LB has one of its terminals at a top station end, whereas the second one
at a bottom station end. It is easy to see now that there exists an one-to-one
correspondence between the crossings among the edges of I and the crossings
among the lines in I ′, as desired. ��

3.1 The Metro-line Crossing Minimization Problem with Fixed
Positioned Terminals

Theorem 1 implies that, unless P = NP , we can not efficiently determine an
optimal solution of MLCM-SE problem on a path. The main reason for this is
that the information whether each line terminates at the top or at the bottom
station end in its terminal stations is not known in advance. In the following,
we assume that this information is part of the input, which is a reasonable
assumption, since terminals may represent physical locations within a station.
In particular, we show that the MLCM-FixedSE problem on a path can be solved
in polynomial time.

To simplify the description of our algorithm, we assume that each node ui

of the path G is adjacent to two nodes ut
i and ub

i , each of which will be the
terminal of the lines that terminated at the top and bottom terminal tracks of
node ui, respectively1. In the drawing of G, ut

i is placed directly on top of ui

(top leg of ui), whereas ub
i directly bellow it (bottom leg of ui), see Figure 6a. So,

instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we will equivalently consider that it terminates to two
leg nodes. We refer to this special type of graph which is implied by the addition
of the leg nodes as caterpillar with at most two legs per node.

A caterpillar with at most two legs per node consists of two sets of nodes. The
first set, denoted by Vb, contains n nodes u1, u2, . . . , un (referred to as backbone
nodes), which form a path. In the embedding of G, these nodes are collinear and
more precisely they are located on a horizontal line so that u1 < u2 < . . . < un.
The second set of nodes, denoted by Vl, contains n′ nodes v1, v2, . . . vn′ of degree
1 (referred to as leg nodes or simply as legs) each of which is connected to one
backbone node. In the embedding of G, we assume that for each backbone u one
of its legs is placed directly on top of it, whereas the second one directly bellow
it. Since each backbone node is adjacent to at most two legs, n′ ≤ 2n.

If v is a leg node, we will refer to its neighbor backbone node as bn(v). Edges
that connect backbone nodes are called backbone edges. Edges that connect back-
bone nodes with legs are called leg edges.

Definition 3. Let l ∈ L be a line that connects two terminals v and v′. If v is
located to the left of v′ in the embedding of the underlying network, i.e. v < v′,
then we consider v to be the origin of line l, whereas v′ to be its destination. We
also denote by Lt

i (Lb
i) the lines that have as origin the top (bottom) leg node

adjacent to backbone node ui.
1 In the degenerated case, where there exists no lines terminating either at the top or

bottom terminal tracks of node ui, we assume that either ut
i or ub

i does not exist,
respectively.

Line Crossing Minimization on Metro Maps 237

Definition 4. Let l and l′ be a pair of lines that have the same origin w and
destination nodes v and v′, respectively. We say that l precedes l′, if when we
start moving from w along the external face of G in counterclockwise direction
we meet v before v′. The notion of precedence defines an order � among the
lines that have the same origin, namely l � l′, if and only if l precedes l′.

Lemma 1. The number of tracks in the left and right side of each backbone node
that are needed in order to route all lines in L can be computed in O(n+

∑|L|
i=1 |li|)

time.

Proof. The number of tracks in the right side of the leftmost backbone node u1
is |Lt

1| + |Lb
1|. Due to the fact that no lines have as terminal a backbone node,

the same number of tracks are needed in the left side of node u2. We index
the needed tracks from top to bottom (refer to Figure 6b). We compute the
number of tracks in the left side of any backbone node ui as the number of lines
originating at nodes < ui and destined for nodes ≥ ui. Similarly, we compute
the number of tracks in the right side of any backbone node ui as the number
of lines originating at nodes ≤ ui and destined for nodes > ui.

Assuming that Lui is the set of lines that traverse a backbone node ui, then
the tracks at the left and right side of backbone node ui can be computed in
O(|Lui |) time, yielding to a total O(n +

∑|L|
i=1 |li|) time. ��

The lines of L are drawn incrementally by performing a left to right pass over
the set of backbone nodes and by extending them from station to station with
small horizontal or diagonal line segments. Therefore, each line l ∈ L is drawn
as a polygonal line.

In each leg edge, that connects leg node v to bn(v), we use |Lv| tracks indexed
from right to left (refer to Figure 6b), where set Lv consists of the lines that
either originate at or are destined for leg node v. These tracks will be used in
order to route the lines that either originate at or are destined for leg node v.

In each backbone node ui, we have to route the newly “introduced” lines, i.e.
the ones that originate either at the top or at bottom leg of ui. This procedure is
illustrated in Figure 6b. We first consider the top leg node ut

i of ui. We sort the
set Lt

i of the lines that originate at ut
i in increasing order � of their destinations

and store them in Sort(Lt
i). Based on this sorting we route the j-th line l in

Sort(Lt
i) through the j-th rightmost track at the top of ui. l is then routed to

the j-th top track in the right side of ui. We proceed by considering the bottom
leg node ub

i of ui. Again, we sort the set Lb
i of the lines that originate at ub

i in
decreasing order � of their destinations and store them in Sort(Lb

i). Based on
the sorting, we route the j-th line l in Sort(Lb

i) through the j-th rightmost track
at the the bottom of ui and then to the j-th bottom track in the right side of
ui. We then route the lines that go from the tracks of the left side to the tracks
of the right side of ui, by preserving their relative positions.

The next step is to route the lines from the right side of ui to the left side of
ui+1. This is done by performing three passes over the set of tracks of the right
side of ui.

238 M.A. Bekos et al.

(a)

2nd track from top

2nd track from bottom

1st track from top

1st track from bottom

1st track from right

ui

(b)

ui ui+1

right side of ui

left side of ui+1

(c)

Fig. 6. (a) A caterpillar with at most 2 legs per node, (b) Introducing new lines to a
station, (c) Routing lines along a backbone edge

In the first pass, we consider the tracks of the right side of ui from top to
bottom and we check whether the line l that occupies the j-th track is destined
for the leg node ut

i+1. In this case, we route l to the topmost available track of
the right side of ui+1 and then to the leftmost available track in the leg edge
which connects ui+1 with ut

i+1 (see the dotted lines of Figure 6c). In the second
pass, we consider the remaining tracks of the right side of ui from bottom to top
and we check whether the line l that occupies the j-th track is destined for the
leg node ub

i+1. In this case, we route l to the bottommost available track of the
right side of ui+1 and then to the leftmost available track in the leg edge which
connects ui+1 with ub

i+1 (see the dash dotted lines of Figure 6c).
The remaining tracks of the right side of ui are obviously occupied by the lines

that are not destined for either ut
i+1 or for ub

i+1. We consider these tracks from
top to bottom and we route the line l that occupies the j-th track to the topmost
available track of the right side of ui+1 (see the dashed lines of Figure 6c). The
construction of our algorithm guarantees the following two properties:

Property of common destinations: Lines that are destined for the
same top (bottom) leg node ut

i (ub
i) do not cross each other along the

backbone edge which connects ui−1 with ui.
Property of parallel routing: Two lines that both traverse a backbone
node ui (i.e. none of them are destined either for ut

i or for ub
i) do not

cross each other along the backbone edge which connects ui−1 with ui.

By combining the property of common destinations and the property of par-
allel routing, we easily obtain the following lemma.

Lemma 2. In a solution produced by our algorithm the followings hold:

(i) Two lines l and l′ cross each other at most once.
(ii) Two lines l and l′ with the same origin do not cross each other.
(iii) Two lines l and l′ with the same destination do not cross each other.
(iv) Let l and l′ be two lines that cross each other and let l (l′) be destined

for leg node v (v′), where v is to the left of v′ in the embedding of G.
Then, l and l′ will cross along the backbone edge which connects uk−1
and uk, where uk = bn(v).

Line Crossing Minimization on Metro Maps 239

By using Lemma 2, we can show that our algorithm produces an optimal solution,
in terms of line crossings. Theorem 2 summarizes our result.

Theorem 2. An instance (G, L) of the MLCM-FixedSE problem on an n-node
path P can be solved in O(n +

∑|L|
i=1 |li|) time.

4 The Metro-line Crossing Minimization Problem on a
Tree

In this Section, we consider the MLCM problem on a tree T = (V, E), where
V = {u1, . . . , un} and E = {e1, . . . , en−1}. In the embedding of T , we assume
that the neighbors of each node u of T are located either to the left or to the
right of u. In particular, we consider a “left-to-right tree structured network” to
represent the underlying network. In such a network, we do not allow lines which
make “right-to-right” or “left-to-left” turns, which implies that all lines should
be x-monotone. This assumption is motivated by the fact that a train can not
make an 180◦ turn within a station. We seek to route all lines along the edges
of T , so that the total number of crossings along the lines is minimum.

We adopt the 2-side model, where each line uses the left side of a node to
“enter” it and the right one to “leave” it. We refer to the edges that are adjacent
to the left (right) side of node u in the embedding of T as incoming (outgoing)
edges of u. Since we assume that the lines are x-monotone, the notions of the
origin and the destination of a line, as defined in Section 3.1, also apply in the
case of line crossing minimization on “left-to-right tree structured network”.

We consider the case where all terminals are located only at nodes of degree 1
and the lines can terminate at any track of their terminal stations2.

Assuming that the edges of T are directed from left to right in the embedding
of T , we first perform a topological sorting over the nodes of T . We will use
this sorting later on when we route all lines along the edges of T . We proceed
by numbering all nodes of T with outdegree zero3 according to the order of
appearance when moving clockwise along the external face of T starting from
the first node obtained from the topological sort. Note that such a numbering
is unique and we refer to it as the Euler tour numbering of the destination
nodes.

Since the number of lines that “enter” an internal node is equal to the number
of lines that “leave” it, we simply have to specify either the order of the lines
that enter the node or the corresponding order when they leave it. Recall that
we do not permit crossings inside the nodes. As in the preceding section, we
route the lines along the edges of T incrementally. We consider the nodes of T in
their topological order. This ensures that whenever we consider the next node u
all of its incoming lines have already been routed up to its left neighbor nodes.
We distinguish the following cases:
2 Recall that, in the case of a path network, this problem was quite easy due to the

structure of the path.
3 Such nodes are possible line destinations.

240 M.A. Bekos et al.

Fig. 7. A sample routing obtained from our algorithm

Case 1: indegree(u) = 0
If node u is of indegree zero (i.e. u is a leaf containing the origins of some
lines), we simply sort the lines that originate from u based on the Euler tour
numbering of their destinations in ascending order.

Case 2: indegree(u) = 1
We simply pass the lines from the left neighbor node of u to u without
introducing any crossing (i.e. by keeping the order of the lines unchanged).

Case 3: indegree(u) > 1
In the case where node u is of indegree greater than one, we have to “merge”
its incoming lines and thus, we may introduce crossings. We “stably merge”
the incoming lines based on the Euler tour numbering of their destinations
so that:
– Lines coming along the same edge do not change order.
– If two lines with the same destination come along different edges, the

one coming from the topmost edge is considered to be smaller.

Figure 7 illustrates a sample routing produced by our algorithm. We use
different types of lines to denote lines that originate at a common leaf node. The
construction of our algorithm supports the following Lemma:

Lemma 3. In a solution produced by our algorithm the following hold:

(i) Two lines l and l′ cross each other at most once.
(ii) Two lines l and l′ with the same origin do not cross each other.
(iii) Two lines l and l′ with the same destination do not cross each other.
(iv) Let l and l′ be two lines that cross each other. Then, l and l′ will cross

along their leftmost common edge.
(v) Let l and l′ be two lines that cross each other. Then, l and l′ will cross

just before entering their leftmost common node.

By using Lemma 3, we can show that our algorithm produces an optimal solution,
in terms of line crossings. Theorem 3 summarizes our result.

Line Crossing Minimization on Metro Maps 241

Theorem 3. Assuming that each line terminates at leaf nodes, an instance
(T, L) of the MLCM problem on a “left-to-right” n-node tree T can be solved
in O(n +

∑|L|
i=1 |li|) time.

4.1 The MLCM-SE and MLCM-FixedSE Problems on a Tree

Since a path can be viewed as a degenerated case of a tree, Theorem 1 im-
plies that MLCM-SE problem on a tree is NP -Hard . However, for the MLCM-
FixedSE problem we can obtain a polynomial time algorithm adopting a similar
approach as the one of Section 3.1. For each node u of T we introduce at most
four new nodes ut

L, ub
L, ut

R and ub
R adjacent to u. Node ut

L (ub
L) is placed on

top (bellow) and to the left of u in the embedding of T and contains all lines
that originate at u’s top (bottom) station end. Similarly, node ut

R (ub
R) is placed

on top (bellow) and to the right of u in the embedding of T and contains all
lines that are destined for u’s top (bottom) station end. In the case where any
of the ut

L, ub
L, ut

R or ub
R does not contain any lines we ignore its existence. So,

instead of restricting each line to terminate at a top or at a bottom station end
in its terminal stations, we equivalently consider that it terminates to some of
the newly introduced nodes. Note that the underlying network remains a tree
after the introduction of the new nodes, so our algorithm can be applied in this
case, too. The following Theorem summarizes our result.

Theorem 4. An instance (T, L) of the MLCM-FixedSE problem on a “left-to-
right” n-node tree T can be solved in O(n +

∑|L|
i=1 |li|) time.

5 Conclusions

Clearly, our work is a first step towards solving the MLCM problem and its vari-
ants in arbitrary graphs. Extending the work of Benkert et al. [4] we studied path
and tree networks. However, we did not consider the case where the underlying
network is an arbitrary graph. Additionally, for the case where the underlying net-
work is a tree we only considered the case, where the terminals are located at nodes
of degree 1. No results are known regarding the case where we permit terminals
at internal nodes of the tree. Another line of research would be to develop approx-
imation algorithms for the MLCM-SE problem on paths and trees. The problem
of determining a solution of the general metro-line routing problem, in which the
graph drawing and line routing are solved simultaneously is also of particular in-
terest as a second step in the process of automated metro map drawing.

References

1. Asquith, M., Gudmundsson, J., Merrick, D.: An ILP for the line ordering problem.
Technical Report PA006288, National ICT Australia (2007)

2. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

242 M.A. Bekos et al.

3. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization
on metro maps. Technical Report WSI-2007-03, University of Tübingen (2007)

4. Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in
wiring diagrams and public transport maps. In: Kaufmann, M., Wagner, D. (eds.)
GD 2006. LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)

5. Hong, S.-H., Merrick, D., Nascimento, H.A.D.d.: The metro map layout problem.
In: Churcher, N., Churcher, C. (eds.) invis.au 2004. Australasian Symposium on
Information Visualisation, CRPIT, ACS, vol. 35, pp. 91–100 (2004)

6. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001)

7. Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization
in linear embeddings of graphs. IEEE Trans. Comput. 39(1), 124–127 (1990)

8. Nöllenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro
maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333.
Springer, Heidelberg (2006)

9. Stott, J.M., Rodgers, P.: Metro map layout using multicriteria optimization. In:
Proc. 8th International Conference on Information Visualisation, pp. 355–362. IEEE
Computer Society, Los Alamitos (2004)

	Line Crossing Minimization on Metro Maps
	Motivation
	Problem Definition
	Related Literature

	The Metro-line Crossing Minimization Problem on a Path
	The Metro-line Crossing Minimization Problem with Fixed Positioned Terminals

	The Metro-line Crossing Minimization Problem on a Tree
	The MLCM-SE and MLCM-FixedSE Problems on a Tree

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

