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Abstract. TPypy is a tweaked version of the Py stream cipher algo-
rithm submitted to eSTREAM. Py uses a kind of processing referred to
as a ‘rolling array’, the mixing of two types of array and one variable,
to generate the keystream. TPypy is proposed as a highly secure stream
cipher that fixes all of the previously identified weaknesses of Py.

This paper reports a significant bias in the pseudo-random generation
algorithm of TPypy that can be exploited to distinguish the keystream
obtained from multiple arbitrary secret key and initial vector pairs from
a truly random number sequence using about 2199 words.
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1 Introduction

Many stream ciphers have been proposed over the past 20 years. Most of them
are constructed using a linear feedback shift register (LFSR), which is easily
implemented in hardware, but the software implementations are mostly slow. In
1987, Rivest designed the RC4 stream cipher, which is suited to software imple-
mentation [11]. RC4 has been implemented for many applications, including the
Secure Socket Layer (SSL) and Wired Equivalent Privacy (WEP), and is one
stream cipher that is widely used around the world.

In the past few years, several modified RC4 algorithms have been proposed.
One of them is the Py stream cipher proposed by Biham and Seberry for eS-
TREAM in 2005 [1,3]. The secret key is up to 32 bytes long and the initial vec-
tor (IV) is up to 16 bytes long. Both are selectable in multiples of one byte. An
8-byte keystream is generated at each time. However, from a security standpoint,
the designers limited the keystream that can be generated for one secret key and
IV pair to 264 bytes. Py employs processing called a ‘rolling array’ to generate
a keystream while mixing two arrays and one variable.

For the analysis of Py, a number of distinguishing attacks that focus on weak-
nesses in the pseudo-random generation algorithm (PRGA) have been proposed
[6,9,10]. None of those methods, however, threaten the security of Py because of
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the limit on the length of the keystream. Nevertheless, the designers have further
proposed Pypy, a model in which security can be guaranteed without a limit on
the length of the keystream [4]. Pypy includes the modification that a 4-byte
keystream is generated at each time.

Since 2006, however, a number of key recovery attacks that exploit weakness in
the IV schedule have been reported [7,13,14,15]. Those methods pose a security
problem for Py, Py6, and Pypy. Accepting those reports, Biham and Seberry
tweaked the IV schedule and proposed a secure model as TPy, TPy6, and TPypy
[5]. On the basis of various analyses [7,9,14], however, the Py family of stream
ciphers was not selected as a phase 3 candidate by eSTREAM.

Here, we report a significant bias in the output sequence of the newly pro-
posed TPypy PRGA based on a detailed analysis. Exploiting that bias allows
the keystream that can be obtained with mulitple arbitrary secret key and IV
pairs to be distinguished from a truly random number sequence with about 2199

words. Furthermore, our method succeeds with a greatly smaller amount of data
than results that have been reported previously [8,12].

The Py family of stream ciphers is explained in Section 2. Section 3 explains
the distinguishing attack on TPypy and Section 4 is the conclusion.

2 Py Family of Stream Ciphers

In this section, we explain the Py family of stream ciphers. For a more detailed
description refer to the proposal papers [3,4,5].

2.1 Proposals and Analyses of the Py Family of Stream Ciphers

In this section, we summarize the flow of the Py family of stream cipher proposals
as well as analyses of them.

In 2005, Biham and Seberry proposed Py [3] to improve implementability and
security. Py has an 8-bit index array P and a 32-bit array Y for mixing data as
an internal state. It changes these arrays by a process known as ‘rolling array’.
An evaluation of the implementability of Py by Biham et alia showed Py to be
about 2.5 times as fast as RC4 on a 32-bit processor. Py6 was also proposed
at the same time as a model that has fast initialization. For security reasons,
however, Biham et alia limited the keystreams that can be generated by one
secret key and IV pair to 264 bytes in Py and 240 bytes in Py6.

Nevertheless, in 2006 Paul et alia proposed a distinguishing attack against
Py [9]. By their method, Py output can be distinguished from a truly random
number sequence using a keystream of about 289.2 bytes. In the same year,
Crowley increased the efficiency of the method of Paul et alia with respect to
amount of data by applying a hidden Markov model [6]. By Crowley’s method,
Py can be distinguished from a truly random number sequence with a keystream
of about 272 bytes. In the same year, Paul et alia also showed that the same
method could be applied to Py6 [10]. With the method of Paul et alia, Py6
can be distinguished from a truly random number sequence with a keystream of
about 268.61 words (64 bits/word).
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The security standard of Py and Py6 are that attack is not possible with a
keystream of less than 264 bytes for Py and of less than 240 bytes for Py6, so
the method of [6,9,10] does not go as far as to threaten the security Py or Py6.
Nevertheless, Biham et alia proposed at the FSE 2006 rump session a further
modified algorithm as Pypy, to which the method of [6,9,10] cannot be applied,
even with keystreams larger than 264 bytes [4]. Although Pypy is basically the
same algorithm as Py, only 32 bits of data are output as the keystream, which
is half that of Py.

After that, Wu and Preneel proposed a key recovery attack that exploits the
weakness in the IV schedule of Py and Pypy that equivalent keystreams can
be output from different IV [13,14]. By that method, the Py and Pypy with a
16-byte secret key and a 16-byte IV can be broken by using 224 chosen IV and
assuming 72-bit keys. After that, Isobe et alia showed that an improvement in
the efficiency of the Wu et alia method allows 16-byte secret key and 16-byte
IV Py and Pypy to be broken by using 224 chosen IV and a 48 bit key [7]. In
2007, Wu et alia further improved the efficiency of their attack and reported
that 16-byte secret key and 16-byte IV Py and Pypy can be broken by using 223

chosen IV and a 24-bit key [15].
To prevent attacks that exploit the weakness of the IV schedule, Biham et

alia improved the IV schedule and proposed TPy, TPy6, and TPypy [5]. TPy,
TPy6, and TPypy inherit the respective security standards of Py, Py6, and Pypy,
so TPypy can be considered the model that has the highest security of the Py
family of stream ciphers.

Recently, Kogiso and Shimoyama proposed a distinguishing attack against
Pypy [8]. By their method, Pypy can be distinguished from a truly random
number sequence with a keystream of about 2220 words. Because Pypy and
TPypy have the same PRGA structure, this attack can also be applied to TPypy.
Sekar et alia also proposed a distinguishing attack against TPypy and TPy
[12] that can distinguish TPypy from a truly random number sequence with a
keystream of about 2281 words.

2.2 Description of TPypy

TPypy has arrays P and Y , and 32-bit variable s. P is an array of 256 bytes that
contains a permutation of all values from 0 to 255, and Y is an array of 260 32-bit
words indexed from −3 to 256. TPypy uses a process called a ‘rolling array’ to
mix the data of arrays P and Y and variable s to generate the keystream. The
keystream is output 32 bits at a time. The encryption generates a keystream
whose length is the number of bytes of the input plaintext, with the ciphertext
generated by a taking the bit-wise exclusive-OR of the plaintext.

TPypy consists of roughly three phases: the key schedule, which performs
initialization with the secret key; the IV schedule, which performs initialization
with the IV; and the keystream generating PRGA. In the analysis we report here,
we are concerned only with the structure of the PRGA, so we omit explanation
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Input: Y[-3,…,256], P[0,…,255], a 32-bit variable s

Output: 32-bit random output

/* update and rotate P */

1. swap(P[0], P[Y[185] & 0xFF]);

2. rotate(P);

/* Update s */

3. s += Y[P[72]] – Y[P[239]];

4. s = ROTL32(s, ((P[116] + 18) & 31));

/* Update 4 bytes (least significant byte first) */

5. output((s ⊕ Y[-1]) + Y[P[208]]);

/* Update and rotate Y */

6. Y[-3] = (ROTL32(s, 14) ⊕ Y[-3]) + Y[P[153]];

7. rotate(Y);

Fig. 1. PRGA of TPypy

related to the key schedule and the IV schedule. The TPypy PRGA is shown in
Fig. 1. TPypy is a modification of the initialization of Pypy, so it has the same
PRGA structure as Pypy.

In Fig. 1, the ⊕ symbol refers to a bit-wise exclusive-OR operation. The bit-
wise AND operation is denoted as &. Addition and subtraction with modulus
232 are denoted as + and −. ROTL32(X , i) denotes i-bit rotation of word X to
the left. The exchange of entry 0 and entry j of array P is denoted as swap(P [0],
P [j]). The notation rotate(P ) means a cyclic rotation of the elements of array
P by one position.

In this paper, the keystream at time t is defined as Ot. In the same way, the
arrays P and Y , and the internal variable s at time t are denoted as Pt, Yt, st.
After completion of the IV schedule, it becomes P0, Y1, s0, and the output at
time t = 1 is as follows.

O1 = (s1 ⊕ Y1[−1]) + Y1[P1[208]]

Bit n of word X is defined as X(n). Here, n = 0 means the least significant
bit.

3 Distinguishing Attack

In this section, we explain a bias that exists in the TPypy output sequence
and show that the bias can be exploited to distinguish the output from a truly
random number sequence.



400 Y. Tsunoo et al.

3.1 Bias in Output Sequence

In this section, we show that Theorem 1 holds for the TPypy output sequence.

Theorem 1. When the following conditions hold,
O1(0) ⊕ O3(0) ⊕ O6(0) ⊕ O7(0) = 0 necessarily holds.

C1. P6[208] = 254
C2. P7[208] = 255
C3. P2[116] ≡ −18 (mod 32)
C4. P2[72] = P3[239] + 1
C5. P2[239] = P3[72] + 1
C6. P4[116] ≡ −18 (mod 32)
C7. P4[72] = P5[239] + 1
C8. P4[239] = P5[72] + 1
C9. P3[116] ≡ P5[116] ≡ −18 (mod 32) or P3[116] ≡ P5[116] ≡ 0 (mod 32)
C10. P7[116] ≡ −18 (mod 32)
C11. P1[208] = 4
C12. P3[208] = 3
C13. P3[153] = P7[72] + 4
C14. P5[153] = P7[239] + 2

Proof. First, from the TPypy output generation equation, we derive the
following.

O1 = (s1 ⊕ Y1[−1]) + Y1[P1[208]]
O3 = (s3 ⊕ Y3[−1]) + Y3[P3[208]]
O6 = (s6 ⊕ Y6[−1]) + Y6[P6[208]]
O7 = (s7 ⊕ Y7[−1]) + Y7[P7[208]]

Thus, if Z(0) = O1(0) ⊕ O3(0) ⊕ O6(0) ⊕ O7(0), we have

Z(0) = s1(0) ⊕ Y1[−1](0) ⊕ Y1[P1[208]](0)
⊕s3(0) ⊕ Y3[−1](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ Y6[−1](0) ⊕ Y6[P6[208]](0)
⊕s7(0) ⊕ Y7[−1](0) ⊕ Y7[P7[208]](0) (1)

Here, when conditions C1 and C2 hold, the following relations are derived
from the values of A′ and B′ for the state transitions of array Y in Fig. 2.

A′ = Y6[P6[208]] = Y6[254] = (ROTL32(s3, 14)⊕ Y1[−1]) + Y3[P3[153]] (2)
B′ = Y7[P7[208]] = Y7[255] = (ROTL32(s5, 14)⊕ Y3[−1]) + Y5[P5[153]] (3)

From the relation of Eq. (2) and Eq. (3), Eq. (1) is as follows.

Z(0) = s1(0) ⊕ s3(18) ⊕ Y3[P3[153]](0) ⊕ Y1[P1[208]](0)
⊕s3(0) ⊕ s5(18) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ s7(0) ⊕ Y6[−1](0) ⊕ Y7[−1](0) (4)
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Fig. 2. State transitions of array Y

Next, from the update equation for variable s of TPypy, we derive the
following.

s3 = ROTL32(s2 + Y3[P3[72]] − Y3[P3[239]], ((P3[116] + 18) & 31))
s2 = ROTL32(s1 + Y2[P2[72]] − Y2[P2[239]], ((P2[116] + 18) & 31))

Thus, when conditions C3 through C5 hold,

P2[116] + 18 ≡ −18 + 18 ≡ 0 (mod 32)
Y2[P2[72]] = Y2[P3[239] + 1] = Y3[P3[239]]

Y2[P2[239]] = Y2[P3[72] + 1] = Y3[P3[72]]

also hold, so the following relation is obtained.

s3 = ROTL32(s1, ((P3[116] + 18) & 31)) (5)

In the same way, we derive the following from the update equation of variable
s of TPypy.

s5 = ROTL32(s4 + Y5[P5[72]] − Y5[P5[239]], ((P5[116] + 18) & 31))
s4 = ROTL32(s3 + Y4[P4[72]] − Y4[P4[239]], ((P4[116] + 18) & 31))

Thus, when conditions C6 to C8 hold, the following also hold.

P4[116] + 18 ≡ −18 + 18 ≡ 0 (mod 32)
Y4[P4[72]] = Y4[P5[239] + 1] = Y5[P5[239]]

Y4[P4[239]] = Y4[P5[72] + 1] = Y5[P5[72]]
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Thus, the following relation is obtained.

s5 = ROTL32(s3, ((P5[116] + 18) & 31)) (6)

In Eq. (5) and Eq. (6), taking the case when P3[116] ≡ P5[116] ≡ −18 (mod 32)
of the two conditions in C9 holds as condition C9a, the following relation holds.

s5 = s3 = s1 (7)

Therefore, when condition C9a holds, which is to say when Eq. (7) holds, the
following relations are satisfied.

s3(0) = s1(0) (8)
s5(18) = s3(18) (9)

Also, taking the case when P3[116] ≡ P5[116] ≡ 0 (mod 32) of the two condi-
tions in C9 holds as condition C9b, the following relations hold.

s3 = ROTL32(s1, 18) (10)
s5 = ROTL32(s3, 18) (11)

Therefore, when condition C9b holds, that is to say when both Eq. (10) and
Eq. (11) hold, the following relations are satisfied.

s3(18) = s1(0) (12)
s5(18) = s3(0) (13)

In other words, when condition C9 holds, either both Eq. (8) and Eq. (9)
hold, or both Eq. (12) and Eq. (13) hold, so Eq. (4) becomes as follows in either
case.

Z(0) = Y3[P3[153]](0) ⊕ Y1[P1[208]](0) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕s6(0) ⊕ s7(0) ⊕ Y6[−1](0) ⊕ Y7[−1](0) (14)

Also, when condition C10 holds, the following relation is satisfied.

s7 = s6 + Y7[P7[72]] − Y7[P7[239]]

Thus, Eq. (14) becomes as follows.

Z(0) = Y3[P3[153]](0) ⊕ Y1[P1[208]](0) ⊕ Y5[P5[153]](0) ⊕ Y3[P3[208]](0)
⊕Y6[−1](0) ⊕ Y7[−1](0) ⊕ Y7[P7[72]](0) ⊕ Y7[P7[239]](0) (15)

Finally, when conditions C11 through C14 hold, the following hold.

Y1[P1[208]] = Y1[4] = Y6[−1]
Y3[P3[208]] = Y3[3] = Y7[−1]
Y3[P3[153]] = Y3[P7[72] + 4] = Y7[P7[72]]
Y5[P5[153]] = Y3[P7[239] + 2] = Y7[P7[239]]

Thus, from Eq. (15), the following relation necessarily holds.

Z(0) = O1(0) ⊕ O3(0) ⊕ O6(0) ⊕ O7(0) = 0 (16)

This completes the proof. �
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3.2 Probability of Distinguisher Existing and Amount of Data
Required

In this section, we consider the probability that Eq. (16), which is used as the
distinguisher, holds. If the TPypy output sequence is a truly random number
sequence, the probability that the Eq. (16) distinguisher holds is 2−1. The prob-
ability that Eq. (16) holds depends on the structure of the TPypy PRGA and
does not depend on the key schedule or the IV schedule. Therefore, in the follow-
ing estimation, we take it that variable s and arrays P and Y are independent
and follow a uniform distribution after completion of the IV schedule.

First, we consider conditions C3, C6, C9, C10, which concern the number of ro-
tations for updating variable s. When condition C3 holds, the relation P2[116] ≡
−18 (mod 32) holds, which is to say P2[116] ∈ {14, 46, 78, 110, 142, 174, 206, 238}.
Therefore, we take the probability that condition C3 holds to be Pr[C3] and get
the following.

Pr[C3] =
8

256

In the same way, when the relation P3[116] ≡ −18 (mod 32) or P3[116] ≡
0 (mod 32) holds, P3[116] ∈ {14, 46, 78, 110, 142, 174, 206, 238} or P3[116] ∈
{0, 32, 64, 96, 128, 160, 192, 224}. However, it is clear from the TPypy updating
equation for array P that the value of P2[116] can transition only to P3[115]
or P3[255] as a result of the restriction imposed by condition C3. Considering
this restriction condition, the probability that conditions C3, C6, C9, and C10
hold simultaneously can be estimated in the following way according to Bayes’
theorem.

Pr[C3 ∩ C6 ∩ C9 ∩ C10] = Pr[C3 ∩ C6 ∩ C9a ∩ C10]
+Pr[C3 ∩ C6 ∩ C9b ∩ C10]

=
8

256
· 7
255

· 6
254

· 5
253

· 4
252

+
8

256
· 8
255

· 7
254

· 7
253

· 6
252

Next, consider that an entry of array P has a particular value, and that there
is a relationship between the entries of array P . We assumed that these condi-
tions occur independently with probability of approximately 2−8.1 Also, if for
each condition there are multiple patterns for the combinations for which terms
cancel in the Z(0) relationship, the number of combinations is also taken into
account. Taking conditions C11 and C12 for example, in Eq. (15), Y1[P1[208]]
and Y6[−1], and Y3[P3[208]] and Y7[−1] cancel out, but Y3[P3[208]] and Y6[−1],
Y1[P1[208]] and Y7[−1] canceling out is another possibility. However, when con-
sidering the number of combinations for which the various terms can cancel in
the Z(0) relationship equation, the following constraints apply.
1 Actually, the constraint condition of the previous time applies, but it is difficult to

accurately evaluate all of the conditions, so in this work we performed an approxi-
mate evaluation.
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– For the combinations of Y6[−1] and (Y7[−1], Y7[P7[72]], Y7[P7[239]]), the
terms cannot cancel.

– For variable pairs at the same time t, the terms cannot cancel.

Also, because conditions C4 and C5, and conditions C7 and C8 are subject
to the constraint that Eq. (7) must be satisfied in units of the word because Eq.
(9) holds when condition C9a holds, their respective combinations are limited to
one case. Taking these constraint conditions into consideration, the numbers of
combinations that are possible for the various conditions are listed in Table 1.
Specific examples of all of the conditions are given in the appendix A.

Table 1. Numbers of combinations of the conditions

Conditions Combinations

C1 ∩ C2 1

C4 ∩ C5 ∩ C9a 1

C4 ∩ C5 ∩ C9b 2

C7 ∩ C8 ∩ C9a 1

C7 ∩ C8 ∩ C9b 2

C11 ∩ C12 ∩ C13 ∩ C14 24

Therefore, defining event E for which all of the conditions C1 through C14
hold, the probability that event E holds, Pr[E], is as follows.

Pr [E] = Pr

[
14⋂

i=1

Ci

]

= Pr

[
2⋂

i=1

Ci

]
×

⎧⎨
⎩

Pr
[(⋂8

i=3 Ci
)
∩ C9a ∩ C10

]
+Pr

[(⋂8
i=3 Ci

)
∩ C9b ∩ C10

]
⎫⎬
⎭ × Pr

[
14⋂

i=11

Ci

]

= 1 ·
(

1
256

)2

×
{

1 · ( 1
256

)2 × 1 · ( 1
256

)2 × 8
256 · 7

255 · 6
254 · 5

253 · 4
252

+2 · ( 1
256

)2 × 2 · ( 1
256

)2 × 8
256 · 8

255 · 7
254 · 7

253 · 6
252

}

×24 ·
(

1
256

)4

≈ 2−99.04

Here, when any of the conditions C1 through C14 are not satisfied, assuming
that the probability that Eq. (16) holds is ideally 2−1, the probability that Eq.
(16) holds for the TPypy output sequence, Pr[Z(0) = 0], is as follows.

Pr
[
Z(0) = 0

]
= Pr

[
Z(0) = 0 | E

] · Pr [E] + Pr
[
Z(0) = 0 | Ec

] · Pr [Ec]



Distinguishing Attack Against TPypy 405

= 1 · 2−99.04 +
1
2
· (1 − 2−99.04)

=
1
2
· (1 + 2−99.04)

This is large compared to the 2−1 probability for a truly random number
sequence.

Here, we regard N samples as independent binary sequences that follow the bi-
ased distribution DBIAS . In addition, denoting a uniform distribution as DUNI ,
the amount of data N required for constructing the optimal distinguisher can
be obtained from the following Theorem 2 [2].

Theorem 2. Taking the input to an optimal distinguisher to be a binary
random variable zi (0 ≤ i ≤ N − 1) that follows DBIAS, to achieve an
advantage greater than 0.5 requires at least the number of samples from the
optimal distinguisher derived by the following equation.

N = 0.4624× M2 where

PDBIAS [zi = 0] − PDUNI [zi = 0] =
1
M

Thus, from Theorem 2, the amount of data N that is required to distin-
guish the TPypy output sequence from a uniform distribution can theoreti-
cally be estimated as 2198.96. Here, Theorem 1 constructs a distinguisher for
Z(0) = O1(0) ⊕ O3(0) ⊕ O6(0) ⊕ O7(0) = 0, but it is clear that the same relation
holds for any time t (t ≥ 1).

Ot(0) ⊕ Ot+2(0) ⊕ Ot+5(0) ⊕ Ot+6(0) = 0

Therefore, when about 2199 words of the keystream obtained with multiple
arbitrary secret key and IV pairs are collected, it is possible to distinguish the
TPypy output sequence from a truly random number sequence. Therefore, the
countermeasure of discarding the first few words of the keystream is ineffective
against the method described in this paper.

4 Conclusion

We have reported a bias in the output sequence of TPypy, which has the highest
security of the Py family of stream ciphers. That bias can be exploited to dis-
tinguish the keystream obtained with multiple arbitrary secret key and IV pairs
from a truly random number sequence by using about 2199 words. This method
can also be applied to Pypy in exactly the same way. Furthermore, our method
is powerful in that it succeeds with a greatly smaller amount of data that results
that have been reported previously.
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A Specific Examples of Conditions

Specific examples of the combinations that are possible for the conditions listed
in Table 1 are shown in Table 2, Table 3, and Table 4. For conditions C1 and
C2, the single conditions shown by Theorem 1 are omitted.
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Table 2. Specific examples of conditions C4 ∩ C5 ∩ C9

C4 C5 C9

P2[72] = P3[239] + 1 P2[239] = P3[72] + 1 P3[116] ≡ P5[116] ≡ −18 (mod 32)

P2[72] = P3[239] + 1 P2[239] = P3[72] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

P2[72] = P3[72] + 1 P2[239] = P3[239] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

Table 3. Specific examples of conditions C7 ∩ C8 ∩ C9

C7 C8 C9

P4[72] = P5[239] + 1 P4[239] = P5[72] + 1 P3[116] ≡ P5[116] ≡ −18 (mod 32)

P4[72] = P5[239] + 1 P4[239] = P5[72] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

P4[72] = P5[72] + 1 P4[239] = P5[239] + 1 P3[116] ≡ P5[116] ≡ 0 (mod 32)

Table 4. Specific examples of conditions C11 ∩ C12 ∩ C13 ∩ C14

C11 C12 C13 C14

P1[208] = 4 P3[208] = 3 P3[153] = P7[72] + 4 P5[153] = P7[239] + 2

P1[208] = 4 P3[208] = 3 P3[153] = P7[239] + 4 P5[153] = P7[72] + 2

P1[208] = 4 P3[153] = 3 P3[208] = P7[72] + 4 P5[153] = P7[239] + 2

P1[208] = 4 P3[153] = 3 P3[208] = P7[239] + 4 P5[153] = P7[72] + 2

P1[208] = 4 P5[153] = 1 P3[208] = P7[72] + 4 P3[153] = P7[239] + 4

P1[208] = 4 P5[153] = 1 P3[208] = P7[239] + 4 P3[153] = P7[72] + 4

P3[208] = 2 P1[208] = 6 P3[153] = P7[72] + 4 P5[153] = P7[239] + 2

P3[208] = 2 P1[208] = 6 P3[153] = P7[239] + 4 P5[153] = P7[72] + 2

P3[208] = 2 P3[153] = 3 P1[208] = P7[72] + 6 P5[153] = P7[239] + 2

P3[208] = 2 P3[153] = 3 P1[208] = P7[239] + 6 P5[153] = P7[72] + 2

P3[208] = 2 P5[153] = 1 P1[208] = P7[72] + 6 P3[153] = P7[239] + 4

P3[208] = 2 P5[153] = 1 P1[208] = P7[239] + 6 P3[153] = P7[72] + 4

P3[153] = 2 P1[208] = 6 P3[208] = P7[72] + 4 P5[153] = P7[239] + 2

P3[153] = 2 P1[208] = 6 P3[208] = P7[239] + 4 P5[153] = P7[72] + 2

P3[153] = 2 P3[208] = 3 P1[208] = P7[72] + 6 P5[153] = P7[239] + 2

P3[153] = 2 P3[208] = 3 P1[208] = P7[239] + 6 P5[153] = P7[72] + 2

P3[153] = 2 P5[153] = 1 P1[208] = P7[72] + 6 P3[208] = P7[239] + 4

P3[153] = 2 P5[153] = 1 P1[208] = P7[239] + 6 P3[208] = P7[72] + 4

P5[153] = 0 P1[208] = 6 P3[208] = P7[72] + 4 P3[153] = P7[239] + 4

P5[153] = 0 P1[208] = 6 P3[208] = P7[239] + 4 P3[153] = P7[72] + 4

P5[153] = 0 P3[208] = 3 P1[208] = P7[72] + 6 P3[153] = P7[239] + 4

P5[153] = 0 P3[208] = 3 P1[208] = P7[239] + 6 P3[153] = P7[72] + 4

P5[153] = 0 P3[153] = 3 P1[208] = P7[72] + 6 P3[208] = P7[239] + 4

P5[153] = 0 P3[153] = 3 P1[208] = P7[239] + 6 P3[208] = P7[72] + 4
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