R-Capriccio: A Capacity Planning and Anomaly
Detection Tool for Enterprise Services with Live
Workloads

Qi Zhang', Ludmila Cherkasova?, Guy Mathews?, Wayne Greene?,
and Evgenia Smirni'

! College of William and Mary, Williamsburg, VA 23187, USA*
{qizhang, esmirni}@cs.wm.edu
2 Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
{lucy.cherkasova, guy.mathews, wayne.greene}@hp.com

Abstract. As the complexity of IT systems increases, performance management
and capacity planning become the largest and most difficult expenses to control.
New methodologies and modeling techniques that explain large-system behavior
and help predict their future performance are now needed to effectively tackle
the emerging performance issues. With the multi-tier architecture paradigm be-
coming an industry standard for developing scalable client-server applications,
it is important to design effective and accurate performance prediction models
of multi-tier applications under an enterprise production environment and a real
workload mix. To accurately answer performance questions for an existing pro-
duction system with a real workload mix, we design and implement a new ca-
pacity planning and anomaly detection tool, called R-Capriccio, that is based on
the following three components: i) a Workload Profiler that exploits locality in
existing enterprise web workloads and extracts a small set of most popular, core
client transactions responsible for the majority of client requests in the system; ii)
a Regression-based Solver that is used for deriving the CPU demand of each core
transaction on a given hardware; and iii) an Analytical Model that is based on a
network of queues that models a multi-tier system. To validate R-Capriccio, we
conduct a detailed case study using the access logs from two heterogeneous pro-
duction servers that represent customized client accesses to a popular and actively
used HP Open View Service Desk application.

1 Introduction

As IT and application infrastructures become more complex, predicting and controlling
the issues surrounding system performance and capacity planning become a difficult
and overwhelming task. For larger IT projects, it is not uncommon for the cost factors

* This work was largely completed in the summer of 2006 when Qi Zhang did an internship at
HPLabs. E. Smirni are supported in part by the National Science Foundation ( ITR-0428330).
Currently, Qi Zhang is employed by MicroSoft and can be reached at the following address:
gizha@microsoft.com. E. Smirni has been partially supported in part by the National Science
Foundation under grants ITR-0428330 and CNS-0720699, and by a gift from Hewlett-Packard.

R. Cerqueira and R.H. Campbell (Eds.): Middleware 2007, LNCS 4834, pp. 244 2007.
(© IFIP International Federation for Information Processing 2007



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 245

related to performance tuning, performance management, and capacity planning to re-
sult in the largest and least controlled expense. Application performance issues have an
immediate impact on customer satisfaction. A sudden slowdown can affect a large pop-
ulation of customers, can lead to delayed projects, and ultimately can result in company
financial loss. It is not unusual for a piece of new hardware to be added into the infras-
tructure to alleviate performance issues without fully understanding where the problem
really is.

With complexity of systems increasing and customer requirements for QoS growing,
the research challenge is to design an integrated framework of measurement and system
modeling techniques to support performance analysis of complex enterprise systems in
order to explain large-system behavior. Predicting and planing future performance is of
paramount importance for the commercial success of enterprise systems.

Large-scale enterprise development projects are relying more and more on the
Service-Oriented Architecture (SOA) design. This approach provides a collection of
mechanisms and interfaces for a dynamic enterprise IT environment to connect ap-
plications where classic, data-processing legacy systems can be integrated with agile,
web-based front-end applications. Application servers provide a standardized platform
for developing and deploying scalable enterprise systems. As a result of this, appli-
cation servers are a core component of an enterprise system and an integral part of a
new trend towards building service-oriented architectures. Today, the three-tier archi-
tecture paradigm has become an industry standard for building scalable client-server
applications.

In multi-tier systems, frequent calls to application servers and databases place a
heavy load on resources and may cause throughput bottlenecks and high server-side
processing latency. Typically, preliminary system capacity estimates are done by us-
ing synthetic workloads or benchmarks which are created to reflect a “typical applica-
tion behavior” for “typical client requests”. While capacity planning based on synthetic
workloads or benchmarks can be useful at the initial stages of design and development
of a future system, it may not be adequate for answering more specific questions about
an existing production system. Often, a service provider does need to answer the fol-
lowing questions:

— How many additional clients can be supported by the existing system i) while still
providing the same performance guarantees, e.g., response time under 8 sec., and
ii) assuming that new clients perform similar activities as already existing clients in
the system, i.e., the system processes the same type of workload?

— If the client activities and behaviors change over time in a specified way, how is the
performance of the system affected?

In this work, we propose a new capacity planning framework, called R-Capriccio,
for practical capacity evaluation of existing production systems under “live” workloads
that can provide answers to all of the above questions. R-Capriccio can assist in pro-
viding answers for advanced “what-if” scenarios in system capacity analysis where the
evaluated system operates under a diverse workload mix. R-Capriccio is comprised of
the following key components:



246 Q. Zhang et al.

— Workload profiler: The profiler extracts a set of most popular client transactions,
called core transactions, to characterize the overall site workload and the most pop-
ular client sessions at the site.

— Regression-based solver: Using statistical regression, the solver approximates the
resource cost (CPU demand) of each core transaction on a given hardware. Thus
a real workload mix can be directly mapped into the corresponding CPU demand
requirements.

— Analytical model: For capacity planning of multi-tier applications with session-
based workloads, an analytic model based on a network of queues is developed,
where each queue represents a tier of the application.

Another important problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software re-
lease is introduced and unexpected performance problems are observed, it is important
to separate performance issues that are caused by a high load of incoming workload
from the performance issues caused by possible errors or inefficiencies in the upgraded
software. R-Capriccio can be used to distinguish the performance issues that are not
caused by the existing system workload and essentially be used as an alarm to identify
anomalies in the system operation.

For most production multi-tier services the I/O traffic (both network and disk) is not
a system bottleneck. The memory requirements increase linearly with the number of
concurrent users in the system [2]] and can be computed in a straightforward way. In
this work, we concentrate on systems with CPU bottlenecks and evaluate the capacity
requirements for support of a given workload with a specified constraint on the latency
of user response times. This additional latency constraint makes this modeling problem
non-trivial and challenging.

A prerequisite for applying our framework is that a service provider collects the
following information:

— the application server access log that reflects all processed client requests and client
activities at the site, and
— CPU utilization at all tiers of the evaluated system.

Thus the problem is to approximate the CPU costs of different client transactions at
different tiers, and then use these cost functions to evaluate the resource requirement
of scaled or modified transaction workload mix in order to accurately size the future
system. In this work, we continue developing the approach that is based on linear re-
gression for approximating the CPU transaction cost in a system running the TPC-W
benchmark [24]]. However, it is much more challenging to apply and validate this mod-
eling approach with real, live workloads that exhibit much more complex and diverse
behavior than the synthetic TPC-W benchmark.

To validate our approach, we use a 1-month long access logs and CPU utilization data
from two heterogeneous application servers that provide customized client access to a
popular and actively used HP service: Open View Service Desk (OVSD). We demon-
strate that the proposed regression method provides a simple, but powerful solution
to accurately approximate CPU transaction costs for both heterogeneous application



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 247

servers under study. We use the results of the regression method to parameterize an an-
alytic model of queues. We then use the analytic model to complete the last step of the
capacity planning process and derive the maximum number of clients that the studied
application servers can support for a given workload mix under different constraints on
transaction response times.

The rest of the paper is organized as follows. Section[2] provides a detailed workload
analysis and a workload profiler. Section[3lintroduces our regression-based method for
deriving the CPU cost of the site transactions. Section [ presents the analytic model for
predicting multi-tier application performance. Section[3 presents related work. Finally,
a summary and conclusions are given in Section [@l

2  Workload Characterization

In this section, we analyze a 1-month trace collected from the heterogeneous application
servers at the OVSD business portal during July 2006. This trace has a detailed infor-
mation about each processed request, including its arrival and departure time, request
URL, and client session ID.

2.1 Units of Client/Server Activities

Since often service providers are interested in capacity planning rules for their pro-
duction systems under live, real workloads, we need to understand properties of these
workloads, and identify a set of workload characteristics that are essential for a capacity
planning framework.

We first define client activity as follows. Typically, a client communicates with a web
service (deployed as a multi-tier application) via a web interface, where the unit of activ-
ity at the client-side corresponds to a download of a web page. In general, a web page is
composed of an HTML file and embedded objects such as images. Typically, the HTML
page is dynamically generated by the application server, and depending on the applica-
tion and its business logic, the page generation may involve issuing multiple (or none)
database calls. A browser retrieves a web page by issuing a series of HTTP requests for
all objects: first it retrieves the main HTML file and after parsing it, the browser retrieves
all the embedded images. Thus, at the server side, a web page retrieval corresponds to
processing of multiple smaller objects that can be retrieved either in sequence or via
multiple concurrent connections. It is common that a web server and application server
reside on the same hardware, and shared resources are used by the application and web
servers to generate main HTML files as well as to retrieve page embedded object. In
the access logs that we obtained from the OVSD application server, there are both types
of entries: web page requests and subsequent entries for embedded images. The HTTP
protocol does not provide any means to delimit the beginning or the end of a web page:
this is why it is very difficult to accurately measure the aggregate resources consumed
due to web page processing at the server side. In this work, we define a transaction as
a web page accessed by the client (also called web page views).

"It is common for applications in many production systems implemented using the PHP web-
scripting/application development language [13].



248 Q. Zhang et al.

Client access to a web service occurs in the form of a session consisting of multiple
individual transactions (web pages). For example, in an e-commerce site, placing an
order through the web site involves further requests relating to selecting a product,
providing shipping information, arranging payment agreement, and finally receiving a
confirmation. Thus, for a customer trying to place an order, or a retailer trying to make
a sale, the real measure of such a web service performance is its ability to process
the entire sequence of individual transactions needed to complete a higher-level logical
transaction. The number of such concurrent client sessions that a multi-tier system can
support without violating transaction response time is a measure of system capacity.

In this section, we present the analysis of OVSD workload performed by our Work-
load Profiler:

— first, it characterizes a set of client transactions and extracts the distribution of trans-
actions over time;

— second, it characterizes a set of user activities by analyzing and extracting the ses-
sion characteristics over time.

2.2 Transactions

In our analysis, we consider a reduced trace that contains only transactions (web page
views) as discussed above. We omit all embedded images, style sheets, and other
format-related primitives. Moreover, we further distinguish a set of unique transac-
tion types and a set of client accesses to them. For static web pages, the URL uniquely
defines a file accessed by clients. For dynamic pages the requests from different users
to the same web page URL may appear as requests to different URLSs due to the client-
specific extension or a corresponding parameter list. We carefully filter out these client-
specific extensions in the reduced trace.

There are 984,505 transactions in the reduced trace. Fig. [Tl illustrates the number of
transactions in each hour. It reflects a typical enterprise diurnal access pattern, i.e., high
loads during work hours, and low loads during nights and weekends. In addition, the
studied workload exhibits a regular and predictable load pattern.

Overall, in the reduced trace, there are 756 different unique transactions (or transac-
tion types). Fig. [2l shows the cumulative distribution function (CDF) of client accesses
to different transaction types ranked by the transaction popularity. The transaction with
rank I represents the most popular transaction type. Fig. [2l reflects that the studied
workload exhibits a very high degree of reference locality: i.e., a small subset of site
transactions is responsible for a very high percentage of client accesses, e.g.,

— the top 10 transaction types accumulate 79.1% of all the client accesses;
— the top 20 transaction types are responsible for 93.6% of the site accesses;
— the top 100 transaction types account for 99.8% of all site accesses.

This characterization is consistent with earlier works [5l6/7] that have demonstrated
that web server and e-commerce workloads exhibit a high degree of reference locality.
Complementary to the characterization of the most frequently accessed files, we also
see that the percentage of the files that are requested only a few times over an entire
month is very high for this site. These rarely accessed files may play a less important
role in the capacity planning framework, as we demonstrate later.



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 249

3500 100
_ 3000 e 90
3 2500 {1 _ 8
@ 2000 4 £ 70
e 1 & e
3 1500 ]
£ 1000 E 50
< 500 R 40
0 30
0o 5 10 15 20 25 30 35 1 10 100 1000
Time (days) Transactions rank
Fig. 1. Arrival rate of transactions for each hour Fig. 2. CDF of the transaction types
in July, 2006
25 ‘ ‘
rank 1 —— 4
rank 2 ------- -
5 201 ANk 3 g 3 .
< < m
< 5L |
< st (| L ‘ {4 = |
AR ‘“‘v:”)\vﬁ:\ﬁte’%m (‘\&;‘*\\;‘MM ¢
o b 1S g §E R
o 5 10 15 20 25 30 35 o 5 10 T75 . 20) 2% %0 3
Time (days) ime (days)
(a) Top 1-3 transactions (b) Top 4-6 transactions
Fig. 3. Arrival rate of the first 6 most popular transactions across time
D ) [}
=4 B o i
b 8
c m c i
[ Q
o o
E “‘w’ﬁ } ‘;‘..r | { : g’ )
Wl 1
Il
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (days) Time (days)
(a) Top 1-3 transactions (b) Top 4-6 transactions

Fig. 4. Portions of the transactions belonging to the top 6 popular transactions across time

Fig. Bl shows the arrival rates of the transactions for the 6 most popular types over
time, and Fig. @] shows the percentages of these transaction types in the workload mix
over time. Each point in these figures corresponds to one-hour statistics. The figure
shows that the transaction mix is not stationary over time. For example, the most pop-
ular, rank 1 transaction can cotribute to 15% to 40% in the workload depending on the
hour of the day. Similar observations apply to other transactions as well.

Traditional capacity planning methodologies usually examine peak loads and system
utilization to conclude on the number of clients that can be handled by the system. These
methods aim to accommodate variations in load while assuming that the set of workload
transactions is stationary, i.e., that the distribution of different transaction types is fixed.
Many of industry standard benchmarks are built using this principle [3/4]. But real
workloads rarely exhibit this feature as shown by the analysis above. Therefore, instead



250 Q. Zhang et al.

100
| 90
5 80
2 1 7 /
B {1 & o
© i 50
= T 40
) o
£ 7 30
< | 20 o
10
0 Il Il Il Il Il Il 0
0 5 10 15 20 25 30 35 1 10 100 1000 10000
Time (days) Session Duration (sec)
Fig. 5. Arrival rate of sessions for each hour in Fig. 6. CDF of the session durations
July, 2006
100
90
80 /
£ 70
'8
a 60
O
50
40
30
1 10 100 1000 10000

Average Session Length

Fig.7. CDF of the session length

of focusing on loads solely, a robust capacity planning methodology must also consider
the changing workload mix since the system capacity directly depends on the types of
user activities.

2.3 Sessions

Understanding user activities at the session level is essential for capacity planning, as
the number of concurrent sessions in the trace is actually a representation of the num-
ber of concurrent clients handled by the system. Fig. Sl displays the arrival rate of new
sessions over time, which follows the same trends as the transaction arrivals. Addition-
ally, it indicates that the high load of transactions during peak time is mainly due to the
increased number of customers.

Fig.[Blshows the CDF of client session durations. A session duration is defined as the
time between the beginning of the first transaction and the end of the last transaction
with the same session ID. The most typical session duration is around 600 seconds. It
is related to the timeout parameter in the application server: if a session is inactive for
600 seconds it is timed out by the server.

Fig. [7l gives the CDF of the session length, i.e., the number of transactions within
each session. Most sessions have a small number of transactions, i.e., 93.1% of the ses-
sions have less than 10 transactions, and 37.6% of the sessions have only one
transaction.



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 251

Since the traces are collected independently at two application servers supported by
heterogeneous machines with different CPU speeds, we turn to the workload in each
server to further understand the session-based behavior of users.

2.4 Workloads of Different Servers

In this sub-section, we present the workload and utilization analysis of each of the two
application servers, which then is used by our capacity planning framework to show
that the framework can effectively support heterogeneous resources.

The two application servers handle client requests after a load balancing point. Fig. [8]
shows that the load balancing in this system works well. A similar number of transac-
tions are dispatched to each of the two servers, and both exhibit the characteristics of
the entire workload as described above.ﬁ Server 2 has a faster CPU. As a result, its
CPU utilization is lower compared to server 1 (see Fig.[9). Most of the time, CPU uti-
lization in both servers is under 10%. Note that for each weekend, there is a spike of
CPU utilization which is related to administrator back-up tasks.

30 T T

2500

server 2 B
2000

1500

1000

Arrival rate / hour
CPU Utilization (%)

500 |

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (days) Time (days)

Fig.8. Arrival rate of transactions of each Fig.9. Average CPU utilization of each appli-
application server cation server

Fig. [10l shows the average number of concurrent sessions over time processed sep-
arately by server 1 and by server 2. During peak time, there are about 60 concurrent
sessions for each server, but during the weekends, the number of concurrent sessions
decreases to 10.

90 T T T T T ] T
B server 1 ——
80 l server2 -------

Concurrent sessions

0 5 10 15 20 25 30 35
Time (days)

Fig. 10. Average number of concurrent sessions of each application server

% The workload mixes and the transaction popularity ranking at each server are similar to the
entire system. We do not report the figures here due to space limitation.



252 Q. Zhang et al.

When server 2 receives a slightly higher number of requests than server 1 (since
server 2 has a faster CPU, and its typical CPU utilization is lower), this leads to a slightly
higher number of concurrent sessions hosted by the server 2 as shown in Fig.

2.5 Summary of Workload Analysis

To summarize, the following observations have to be taken into account for an accurate
capacity planning and performance evaluation of production systems with live work-
loads:

— The transaction mix varies over time and hence can not be treated as a fixed, sta-
tionary distribution.

— The workloads exhibit a strong locality property, i.e., a small number of transaction
types are responsible for a large fraction of client requests.

— Most of users have a high think time.

The Workload Profiler collects a set of the following metrics over time: i) the average
CPU utilization, ii) the number of different transactions, iii) the number of concurrent
sessions, and iv) the client think times. These metrics are collected for each time win-
dow of 1 hour (this is a tunable tool parameter) and for each application server. These
metrics can then be used to parameterize the analytic model in Section 4

3 CPU Cost of Transactions

In this section, we use a statistical regression-based approach for an efficient approx-
imation of CPU demands of different transaction types. We have introduced this ap-
proach in our earlier paper [24]], where we evaluated it by using a testbed of a multi-tier
e-commerce site that simulates the operation of an on-line bookstore, according to the
classic TPC-W benchmark [4]. The challenge is to apply and validate this technique
with real, live workloads that exhibit much more complex and diverse behavior than
synthetic ones. With the knowledge of CPU demands of transactions one can easily
compose the resource requirement of scaled or modified transaction mixes. Thus, this
methodology can be directly applied to production systems and can be used to explain
large-scale system behavior and predict future system performance. In this section, we
analyze challenges of applying this method to production systems operating under live,
real workloads, and introduce an optimization technique that enables an efficient use of
the proposed approach.

3.1 Regression Methodology

To capture the changes in server workload we observe a number of different transactions
over fixed length time intervals, denoted as monitoring windows. The transaction mix
and system utilization are recorded at the end of each monitoring window.

Assuming that there are totally M transaction types processed by the server, we use
the following notations:



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 253

T is the length of the monitoring window;

N is the number of transactions of the i-th type, where 1 < ¢ < M;

— Ucpu,n is the average CPU utilization at the n-tier during this monitoring window;
D; ,, is the average service time of transactions of the i-th type, at the n-tier of the
systems, where 1 <7 < M.

Dy, is the average CPU overhead related to activities that “keep the system up”.
There are operating system processes or background jobs that consume CPU time
even when there is no transaction in the system.

From the utilization law, one can easily obtain Eq. (1)) for each monitoring window [8]:

Do+ Y Ni+Dip=Ucpun-T. (1)

Because it is practically infeasible to get accurate service times D; , (since it is an
over-constrained problem), we let C; ,, denote the approximated CPU cost of D; ,, for
0 <4 < M. Then an approximated utilization U(, p(; ,, can be calculated as

C n Tt iNi : Oi,n
Ubpun =" ZT : @)

To solve for C; ,,, one can choose a regression method from a variety of known methods
in the literature. Finding the best fitting method is outside of the scope of this paper.
In all experiments, we use the Non-negative Least Squares Regression (Non-negative
LSQ) provided by MATLAB to get Cj ,,. This non-negative LSQ regression minimizes

the error
€= \/Z(UéPU,n - UCPU,n)JQ' )
J

such that C; ,, > 0, where j is the index of the monitoring window over time.

3.2 Applying Regression to a Production System with Live Workload

We use the one-month trace analyzed in Section [2] to evaluate the accuracy of the
regression-based method described above. We had to limit our validation exercise to
the application server tier because we could not get relevant CPU utilization measure-
ments at the database tier.

For each 1-hour time windowll the Workload Profiler provides the average CPU uti-
lization as well as the number of transactions N; for the i-th transaction type, where
1 < i < M. The OVSD trace profile has the format shown in Table[Il

When we first introduced and applied the regression-based technique for evaluating
the transaction cost in [24], there were only 14 different transaction types in TPC-W.
The analysis of OVSD workload revealed that the real workloads often have a much
higher number of transaction types, e.g., OVSD workload operates over 756 different
transaction types. In order to apply the regression technique to OVSD workload we

*In , we showed that a larger monitoring window improves the accuracy of regression re-
sults. For the production system under study a monitoring window of 1 hour produced the best
results.



254 Q. Zhang et al.

Table 1. An example of transaction profile in server 1

Time (hour) N1 N2 N3 Ny - -+ N7se Ucpu(%)

1 21 15 21 16 --- 0  13.3201
2 24 6 8 5 --- 0 84306
3 82 5 4 ... 0 74107
4 222 4 7 -+ 0 64274
5 385 6 7 0  7.5458

would need to collect more than 756 samples of 1-hour measurements. Such a collection
would require to observe this workload for more than 1-month before we would collect
enough “equations” for evaluating the OVSD transaction cost.

The workload analysis presented in Section shows that the studied workload
exhibits a very high degree of reference locality, i.e., a small subset of site transactions
is responsible for a very high percentage of client accesses, e.g., the 100 most popular
transactions already cover 99.8% of all client accesses. From the other side, there is a
high percentage of transactions that are rarely accessed, i.e., so called, “one-timers”.
We divided the original 1-month trace in two halves. The additional workload analysis
revealed that there are 203 transactions that are accessed only once in the first half of
the trace, and which are not accessed in the second half of the trace. Similarly, there are
189 transactions that are accessed only once in the second half of the trace, and which
are not accessed in the first half of the trace. The non-negative LSQ regression used in
this paper returns “0” as a typical value for “rare” variables, since there is not enough
information in the original set of equations to produce a more accurate solution.

So, the question is whether accurate performance results can be obtained by approx-
imating the CPU cost of a much smaller set of popular (core) transactions. In other
words, if we use regression to find the CPU cost of a small number of core transactions,
can this small set be useful for an accurate evaluation of the future CPU demands in the
system?

Following this idea, we only use the columns N; to Nx and Ucpy in Table[to ap-
proximate C; for 1 <4 < K. The approximated U/, p;; of every hour is then computed
by these N7 to N and C; to C'k values.

We also consider the results produced by the non-negative LSQ regression method
when K is equal to 10, 20, 60 and 100 transactions respectively. We use the relative
error of the approximated utilization as the metric to validate the regression accuracy.
For every hour, the relative error of the approximated utilization is defined as

_ Utpy — Ucrul

Errorg = Ucpu (3)

We divide the OVSD trace into two parts. The first half is used as a training set to solve
for the CPU cost C}; using the non-negative LSQ regression method. The second half
is treated as a validation set. Because the administration jobs during weekends might
introduce a significant noise to the CPU utilization, the training set for the regression
consists of data from workdays only.



CDF (%)

R-Capriccio: A Capacity Planning and Anomaly Detection Tool 255

100 100 —T—T—T——T——7
80 8 g
70 7 ~ 70 o
60 & 60
50 w 50
40 Z K=10 —— (=) 40 K=10 ——
30 K=20 ------- : © 30y K=20 -------
20 |- K=60 - - 20 (/4 K=60 - -
10 K=100 - 10 K=100 =
0 L 0 L
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Relative error (%) Relative error (%)
(a) Training (b) Validating

Fig. 11. Server 1. CDF of relative errors under a different number of of core transactions chosen

for

CDF (%)

a regression method: (a) training set, (b) validating set.

2 > 2
80 ;;’“’ 80
70 ~ 70
g/ Lot/
20 [ Ks10 —— 1 & a0 -4 K=10 ——
30 // K=20 ------- O 30 /‘ : K=20 ------- -
20 |f K=60 - y 20 K=60 oo .
10 K=100 — 10 K=100 —
0 1 0 .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Relative error (%) Relative error (%)
(a) Training (b) Validating

Fig. 12. Server 2. CDF of relative errors under a different number of core transactions chosen for
a regression method: (a) training set, (b) validating set.

The regression method produces similar results for the two heterogeneous applica-

tion servers in the system. Figs. [[IH]2] show the CDF of the relative errors for training
and validating sets for servers 1 and 2, respectively.

The regression results can be summarized as follows:

— Opverall, the non-negative LSQ regression achieves good results for all examined

values of K, i.e., when the regression method is applied to approximate the CPU
cost of the top 10, 20, 60, or 100 most popular transactions. For the training set, at
least 60% of the points have relative errors less than 10%, and at least 90% of the
points have relative errors less than 20% (see Figs.[I1l(a) and [[2(a)). The method’s
accuracy for the validating set is only slightly worse (see Fig[TTIb),[12Ib)).

— Larger K achieves a higher accuracy for the training set. However, this improve-

ment is not significant: for ' = 100 there is only a 4% improvement compared to
the results with the top 10 transactions.

— The larger values of K, e.g., K = 100, show a worse prediction accuracy for

the validating set compared to K equal to 10 or 20 core transactions as shown
in Fig. [[1] - These results again can be explained by the workload properties.
While we consider 100 most popular transactions, the last 80 of them only respon-
sible for 6% of the client requests. These transactions have an irregular access pat-
tern. Some of those transactions appear only in the first or second half of the trace



256 Q. Zhang et al.

(while not being a “one-timer”). As a result, computing the individual cost of these
transactions does not help to evaluate the future CPU demands, and introduces a
higher error compared to the regression based on a smaller transaction set.

Regression produces the best results when a representative set of core transactions
is used and rarely accessed transactions are omitted. Since some of the rarely accessed
transactions might only appear in the first half of the trace, while some different rarely
accessed transactions may only appear in the second half of the trace, it is beneficial to
use only core transactions in linear regression as well as in the overall capacity plan-
ning. The additional CPU overhead that is due to the rarely accessed transactions is
“absorbed” by the CPU cost of the core transactions. Consequently, a small additional
CPU usage by the distinct and rarely accessed transactions is accounted via the CPU
cost of the most frequently and consistently accessed core transactions.

We conclude that considering the top 20 core transactions (i.e., X = 20) leads to
the most accurate results. Note that the top 20 transactions are responsible for 93.6% of
the total transactions in the analyzed trace. Therefore, selecting the top K transactions
that account for 90% - 95% of all client accesses for the regression method results in
a good representative subset of the entire workload. The regression solver produces
a solution for 200 equations with 20 variables only in 8 millisecond. In general, the
common least squares algorithms have polynomial time complexity as O(u3v) when
solving v equations with w variables, and hence, can be efficiently used as a part of on-
line resource evaluation method [1]]. Combining the knowledge of workload properties
with statistical regression provides a powerful solution for performance evaluation of
complex production systems with real workloads.

3.3 Anomaly Detection

Shortened product development cycle, frequent software updates, and more complex in-
tegration dramatically increase the risk of introducing poorly performing applications.
Consequently, another problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software re-
lease is introduced and unexpected performance issues are observed, it is important to
make sure that these performance issues are not caused by the current workload, i.e.,
system overload due to a higher rate of client requests. When the system performance
can not be explained by the existing workload mix in the system, it suggests that the ob-
served performance issues might be caused by the latest software modification. Thus, it
is important to evaluate the resource usage caused by the existing transaction mix in the
system, and to generate the alarm events when system utilization significantly deviates
from the predicted utilization value computed from the existing workload.

Using the observed workload mix we compute the expected CPU utilization of the
system Ul p; by Eq. 2l and compare it against the measured CPU utilization Uc py
for the same time period. The service provider can set a threshold T'h that defines the
acceptable deviation of expected system utilization U(, p;; from the observed utilization
Ucpy. If )

UCP(U]/ Ucpu > Th )
CPU



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 257

then our tool generates an alarm event. We only consider the situations when the mea-
sured CPU utilization is significantly higher than the expected one, since in this case,
something else besides the observed workload causes performance problems.

Fig. [13| demonstrates the anomaly detection feature of the tool for the OVSD trace
with T'h = 2. Our method accurately predicts CPU utilization caused by this mix. Over
weekends our method has generated the alarm warnings (marked with circles in Fig.[T3))
indicating that something else, besides the transaction processing, happens in the system.
During these time intervals the predicted and observed utilizations are drastically differ-
ent. Our method correctly identifies a non-typical CPU utilization caused by a set of ad-
ditional administrative tasks, extensively performed over weekends (see remarks about
this in Section2.4), and which had nothing to do with the processed transaction mix.

While in this paper, we defined an anomaly situation as one where observed CPU
utilization significantly exceeds predicted CPU utilization, one can consider a sym-
metrical situation where observed CPU utilization is significantly lower than predicted
CPU utilization as a result of transaction mix, and verify the reasons behind it: for ex-
ample, it might be related to unavailable embedded objects in the serviced web pages
due to some storage subsystem problems. Currently, we are working on optimizing the
regression technique that provides a better support for performance anomaly detection
as well as on designing a technique for tuning the threshold parameters that minimize
false positive alarms.

Observed Predicted

Utilization (%)

Time (day)

Fig. 13. Anomaly detection with R-Capriccio

4 Capacity Planning

Modern Internet servers typically employ a multi-tier structure consisting of web
servers, application servers and databases as given in Fig. [[4l Each tier gets the re-
quests from its preceding tier, and may generate certain requests to its successor. For
scalability, a tier may consist of several replicated servers. These servers may be hetero-
geneous, and a dispatcher may employ a special load balancing strategy for distributing
the incoming requests across the replicated servers.

Due to the session-based client behavior, a multi-tier system is usually modeled as
a closed system with a network of queues (see Fig. [[3). The number of clients in the
system is fixed. When a client receives the response from the server, it issues another



258 Q. Zhang et al.

=

Load = Load = | Load %
Balancer % Balancer |=|"\Balancer

Ce=="] === ==="]

Web Application
Server erver

Database
Server

Fig. 14. A multi-tier structure of a server

< Ql Q3

Ql-

A=

Fig. 15. Queuing network modeling of a multi-tier closed system

00

request after certain think time. This think time is modeled as an infinite server () in
Fig. Once the service time in each queue is obtained, this closed system can be
solved efficiently using Mean-Value Analysis (MVA) [8]].

Workload characterization of real traces in Section 2] shows that the workload mix
changes over time, and hence the service time could not be modeled as a fixed distribu-
tion for the entire lifetime of the system but one can treat the workload as fixed during
shorter time intervals (e.g., 1 hour). R-Capriccio performs the capacity planning proce-
dure for each monitoring time window of 1 hour and then combines the results across
these time points to get the overall solution A

41 MVA

MVA is based on the key assumption that when a new request enters a queue, this
request sees the same average system statistics in the system as without this new request.
Fig.[T6 presents a description of the detailed MVA algorithm [22].

The visit ratio V; (definition in Fig. [[6) is controlled by the load balancing policy.
For example, if the load balancing policy used is equally partitioning the transactions
across all servers, then the number of visits V; to server s in tier [ is equal to 1/m;,
where m; is the number of servers in tier [.

* For the TPC-W benchmark and most production multi-tier services CPU is a typical sys-
tem bottleneck. However, in practice, when one needs to make a projection of the maximum
achievable system throughput, additional “back of the envelope” computations for estimat-
ing memory and network requirements under the maximum number of concurrent clients are
required to justify this maximum throughput projection.



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 259

Inputs:

N = number of clients

Z = think time

L = number of servers

S; = service time per visit to the i-th queue
Vi = number of visits to the ¢-th queue

Outputs:

X = system throughput

Q:; = average number of jobs at the i-th queue
R; = average response time of the i-th queue

R = system response time (excluding think time)
U; = utilization of the i-th queue

1. Initialization: fori = 1to L do Q; < 0
2. Iterations:

forn =1to N do

a. for7=1to L do

R; = Si(1+ @)
L

b. R=> RV,
=1

. X =
¢ Z+R
d. fori =1to Ldo@Q; = XV;R;

3. forn=1to L do
a. X; =XV,
b. U; = XS;V;

Fig. 16. The MVA algorithm

Note that the original MVA (as in Fig. [[8) takes the number of clients N as input,
and computes the average performance metrics for a system with IV clients. In capac-
ity planning, the number of clients is unknown. In the contrary, the model needs to
be solved for exactly this unknown variable. Here, we assume that the Service Level
Agreement (SLA) specifies a threshold I'r (i.e., upper bound) of the average transac-
tion response time. Then the condition in step 2 of MVA is changed to the following
condition: “while R < I'p do”.

4.2 Case Study

In this section, we demonstrate how R-Capriccio helps to answer the following capacity
planning question:

— How many clients can be supported by the existing system:
e providing the desirable performance guarantees, e.g., response time under [ ',
and
e assuming that the system processes a given (varying, non-stationary) type of
workload?



260 Q. Zhang et al.

The detailed sequence of steps performed by R-Capriccio is summarized in Fig.[[7

1. Workload profiler:

For each monitoring window w, and each server s:

a. collect the number of transactions NN; s ., of each type ¢;

b. collect the average utilization Us .

For each monitoring window w:

a. select the top K most popular transaction types;

b. collect the transaction mix in the system,
i.e., the percentage p; of the transactions for type ¢
foralll <1 < K;

c. collect the average think time Z,,.

2. Regression-based solver:
For each server s:
Compute the cost function C; s for each transaction
type i as described in Sectionl where 1 < i < K.

3. Analytical model:
For each monitoring window w:
a. approximate the service time S for each server s as
Se=3K pi-Cis
b. compute the maximum number of clients M AX,, can
be handled with average response time less than I'r
using MVA algorithm.
Build the profile with entry as (w, M AX,,).
Find the minimal M AX,, value X.
X is the number of concurrent customers the system can support
with the average transaction response time less than I'r

Fig.17. The R-Capriccio Framework

The first two steps of R-Capriccio that use the Workload Profiler and the Regression-
based Solver have been presented in the previous two sections. We use the same work-
load as input to the third step of the analytic model. In the case study, we had to limit
our capacity planning exercise to the application server tier (which is a bottleneck tier
in the OVSD service) because we could not get relevant CPU utilization measurements
at the database tier (this particular database was shared across a few different services,
and we had only access to the OVSD part of the application servers).

Since the traces are collected from the two servers independently, we treat each het-
erogeneous server as an independent system. Later, we show how to combine the ca-
pacity planning results from those heterogeneous servers together.

All the experiments are conducted for the top 20 most popular transaction types, i.e.,
K is set to 20. Following step 3.a. in Fig.[I7] we approximate the average service time
for each 1-hour time interval for both servers as shown in Fig. 18l Because server 2 has
a faster CPU, it is expected that it has a smaller service time than server 1. For each time
interval there is a vector of parameters representing the average think time, the average



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 261

0.18
0.16
0.14
0.12
0.1
0.08 [ |,
0.06 |-f ‘
0.04

Service time (sec)

Time (days)

Fig. 18. Approximated service time using the CPU cost of the top 20 transaction types

(b) Utilization

30 T T
T measured
analytic |------- -

(a) Throughput
2500 T T

T
measured
2000 analy i

1500

1000

Throughput / hour
Utilization (%)
o

500

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (day) Time (day)

Fig. 19. Server 1. Measurements versus analytic model: a) Throughput of transactions; b) CPU
utilization.

service time, and the number of concurrent clients. We apply the MVA model at each
time interval for each server.

Fig.[[9(a) shows the validation results by comparing the throughput of the analytic
model and the measured transaction throughput of server 1. The analytic model captures
the real system behavior well, i.e., 90% of the relative errors are below 18.7%. Cop-
marisons of the throughput of the analytic model and the measured session throughput
of server 2 are of similar accuracy.

Fig. [[9(b) compares the average measured utilization over time with the utilization
results provided by the analytic model. We observe a nearly perfect match between the
measured and analytic results. Except for the utilization spikes observed in the real sys-
tem measurements over weekends that are due to special administration-related tasks as
discussed in Sections 2.4 and B3] Our method predicts a much lower CPU utilization
using the observed transaction mix for these time periods. This presents an additional
functionality of R-Capriccio that can help in generating “alarm” conditions when pre-
dicted utilization for processing the existing workload significantly deviates from the
system measurements. The analytic results for server 2 show a similar performance
trends and are not presented here for brevity.

Fig. 20 and Fig. PTlillustrate the CDF of the maximum number of clients that can be
supported by server 1 and server 2 under the changing OVSD transaction mix over time,
where the transaction response time is limited by I'r equal to 1, 3, 6 and 10 seconds
respectively. These results are computed using the same think time and service time as
in the above experiments.



262

100
90
80
70

Q. Zhang et al.

100

90

80

70

g 60 & 60

L 50 L 50

8 40 8 40
30 FRf; 7777777 . 30 .
20 1"2;6 ,,,,,,,, s 20 .
10 I'g=10 . 10 Tr=10 ]

1500 2000 2500 3000
Maximum number of clients

0 . 0
0 500 1000 1500 2000 1000 3500 4000

Maximum number of clients

2500 3000

Fig.21. Server 2: CDF of the maximum
number of clients under different threshold
I'r of the average response time

Fig.20. Server 1: CDF of the maximum
number of clients under different threshold
I'r of the average response time

The summary of results are shown in Table 2l As expected, server 2 has a much
higher capacity than server 1. Higher values in threshold I'r allow for a larger number
of clients to be supported by the system.

Table 2. Maximum number of clients under different I'r

I'r(sec) Server 1 Server 2 Total

1 472 1349 1821
3 528 1478 2006
6 565 1534 2099
10 608 1580 2188

The capacity of the entire application server composed of these two heterogeneous
servers is determined by the load balancing policy as well. For example, if the SLA de-
fines that the average transaction response time is not higher than 1 second, the studied
application server can handle 1821 concurrent clients but only if the load balancer is
aware of the heterogeneous capacity of these two servers and can split the load propor-
tionally to server capacity. If the load balancer partitions transactions equally, capacity
reduces to 944, just half of the previous one. Such a big difference indicates the sig-
nificant impact of a load balancing policy on system capacity as heterogeneous CPU
speeds must be taken into account.

5 Related Work

Performance evaluation and capacity planning of software and hardware systems is a
critical part of the system design process [8]. There is a number of capacity planning
techniques proposed for different popular applications.

Among these techniques, queuing theory is a widely used methodology for modeling
a system behavior and answering capacity questions [16/17I18]]. Modeling of a single-
tier system, such as a simple HTTP server, has been studied extensively. Even for a
multi-tier structure which is employed ubiquitously for most servers, the system is usu-
ally abstracted as the most bottle-necked tier only: in [16], only the application tier for



R-Capriccio: A Capacity Planning and Anomaly Detection Tool 263

the e-commerce systems are modeled by a M/GI/1/PS queue; similarly in [19] the appli-
cation tier with IV node cluster is modeled by a G/G/N queue. Recently B. Urgaonkar et
al. proposed analytic models for both open and closed multi-tier systems [17U18]. These
models are validated by synthetic workloads running in real systems. However the ex-
pense of accurately estimating model parameters, i.e., service times and visit ratios,
from each server log makes this model difficult to apply in production environments.
Direct measurements in [I8]] do not characterize transactions as we do in this paper.
Moreover, existing capacity planning methods are based on evaluating the system ca-
pacity for a fixed set of typical user behaviors. Once the service time is estimated, it
is consistent throughout the planning procedure. This approach does not consider the
fact that a changing workload for the same system has different service times and may
result in different system capacity. Our experiments show that such techniques as those
in [18] may fail to model a real system because of its dynamic nature.

In this paper, we use a similar closed multi-tier model as in [[18], but in contrast
to or other examples in the existing literature of capacity planning, we propose a
methodology that does not need a controlled environment for analytic model param-
eterization. Instead of characterizing the overall service time of every server, we use
a statistical regression method to approximate the service cost of individual transac-
tions. This CPU cost function together with the transaction mix help to approximate the
system service time that varies with the changing transaction mix.

The use of statistical methods in capacity planning has been proposed in the early
80’s [9l8]], but the focus was on a single machine/cluster that is much simpler than
current large-scaled multi-tiered systems. Recently statistical methods are getting more
attention in computer performance analysis and system performance prediction. In [20]]
the authors use multiple linear regression techniques for estimating the mean service
times of applications in a single-threaded software server. These service times are cor-
related with the Application Response Measurement package (ARM) data to predict
system future performance. In [21]],[23]] the authors focus on transaction mix perfor-
mance models. Based on the assumption that transaction response times mostly consist
of service times rather than queueing times they use the transaction response time to
approximate the transaction service demand. The authors use linear regression to iden-
tify performance anomalies in past workloads and to scrutinize their causes. We do not
use measured transaction response times to derive CPU transaction demands (this ap-
proach is not applicable to the transactions that themselves might represent a collection
of smaller objects). One of their basic assumptions is that the transaction mix consists
of a small number of transaction types.

We have introduced a statistical regression-based approach for the CPU demand ap-
proximation of different transaction in our earlier paper [24], where we evaluated this
approach by using a testbed of a multi-tier e-commerce site that simulates the opera-
tion of an on-line bookstore, according to the classic TPC-W benchmark [4]]. Using the
TPC-W benchmark, we demonstrated that the use of linear regression provides promis-
ing results. However, TPC-W operates using only 14 transaction types. In this work, we
continue applying the linear regression technique for approximating the CPU transac-
tion cost as was introduced in [24]] but in a much more challenging environment. Here,
we applied and validated this technique with real, live workloads that exhibit much more



264 Q. Zhang et al.

complex and diverse behavior than the synthetic TPC-W benchmark. Among the contri-
bution of the current paper is a novel approach that illustrates how the regression-based
technique can be applied to the production sites with large set of transaction types. By
applying the regression to a set of popular, so-called “core” transactions (that are re-
sponsible for 90% - 96% of the site traffic) we are able to obtain the accurate estimates
of transaction CPU cost that can be used for a variety of performance anomaly detection
cases and capacity planning tasks in the production sites with real, live workloads.

6 Conclusion

In this paper, we present R-Capriccio, a new capacity planning framework which pro-
vides a practical, flexible and accurate toolbox for answering capacity planning and
anomaly detection questions for multi-tier production systems with real workloads.
More importantly, it can be used for explaining large-scale system behavior and pre-
dicting future system performance.

We used the access logs from the OVSD application servers to demonstrate and val-
idate the three key components of R-Capriccio: the workload profiler, the regression-
based solver, and the analytic model. In our capacity planning framework, we identify
the set of most popular core transactions and sessions for building a site profile, compute
transaction cost, and size the future system under the real workload. In order to derive
the resource cost of each core transaction (i.e., CPU time required for corresponding
transaction processing), we observe a number of different core transactions over fixed
length time intervals and correlate these observations with measured server utilization
for the same time interval. Using a non-negative least-squares regression method we
approximate the resource cost of each core transaction. The statistical regression works
very well for estimating the CPU demands of transactions that themselves might repre-
sent a collection of smaller objects and where the direct measurement methods are not
feasible.

While this paper concentrates on evaluating the CPU capacity required for support
of a given workload, we believe that regression methods can be efficiently applied for
evaluating other shared system resources. We plan to exploit this avenue in our future
work.

References

1. Ari, B., Giivenir, H.A.: Clustered Linear Regression. Knowledge-Based Systems 15(3)
(2002)

2. Capacity Planning for WebLogic Portal, http://edocs.bea.com/wlp/docs81/
capacityplanning/capacityplanning.html

3. The Workload for the SPECweb96 Benchmark, http://www. specbench.org/osg/
web96/workload.html

4. TPC-W Benchmark, http://www. tpc.org

5. Arlitt, M., Williamson, C.: Web Server Workload Characterization: The Search for Invariants.
In: Proc. of the ACM SIGMETRICS 1996 Conference, Philadelphia, PA (May 1996)

6. Almeida, V., Bestavros, A., Crovella, M., de Oliveira, A.: Characterizing Reference Locality
in the WWW. Technical Report, Boston University, TR-96-11 (1996)


http://edocs.bea.com/wlp/docs81/capacityplanning/capacityplanning.html
http://edocs.bea.com/wlp/docs81/capacityplanning/capacityplanning.html
http://www.specbench.org/osg/web96/workload.html
http://www.specbench.org/osg/web96/workload.html
http://www.tpc.org

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

R-Capriccio: A Capacity Planning and Anomaly Detection Tool 265

. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the Scalability of a Large Web-based

Shopping System. J. ACM Transactions on Internet Technology 1(1) (August 2001)

. Menasce, D., Almeida, V., Dowdy, L.: Capacity Planning and Performance Modeling: from

mainframes to client-server systems. Prentice Hall, Englewood Cliffs (1994)

. Kachigan, T.M.: A Multi-Dimensional Approach to Capacity Planning. In: Proc. of CMG

Conference 1980, Boston, MA (1980)

Cherkasova, L., Tang, W.: Sizing the Streaming Media Cluster Solution for a Given Work-
load. In: CCGrid 2004. Proc. of the 4th IEEE/ACM, Chicago, USA (2004)

Rolia, J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A Capacity Management Service for
Resource Pools. In: Proc. of the Fifth Int. Workshop on Software and Performance (2005)
Chase, J.S., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing Energy and Server
Resources in Hosting Centers. In: SOSP. Proc. of the 18th ACM Symposium on Operating
System Principles (2001)

Sarris, D., Hofer, J.: Capacity Planning for e-Commerce Systems With Benchmark Factory,
www.dlt.com/quest/

Klerk, L., Bender, J.: Capacity Planning. Microsoft TechNet (2000), http://
www.microsoft.com/technet/archive/itsolutions/ecommerce

PHP HyperText preprocessor, www . php . net

Villela, D., Pradhan, P., Rubenstein, D.: Provisioning Servers in the Application Tier for
E-Commerce Systems. In: Proc. of IWQoS 2004, Montreal, Canada (2004)

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisioning of Multi-tier In-
ternet Applications. In: ICAC 2005. In Proc. of the 2nd IEEE International Conference on
Autonomic Computing, Seattle (June 2005)

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An Analytical Model for
Multi-tier Internet Services and its Applications. In: Proc. of the ACM SIGMETRICS 2005,
Banff, Canada (June 2005)

Ranjan, S., Rolia, J., Fu, H., Knightly, E.: QoS-Driven Server Migration for Internet Data
Centers. In: Proc. of IWQoS 2002, Miami, FL. (May 2002)

Rolia, J., Vetland, V.: Correlating Resource Demand Information with ARM Data for Appli-
cation Services. In: Proc. of the ACM Workshop on Software and Performance (1998)
Kelly, T.: Detecting Performance Anomalies in Global Applications. In: WORLDS 2005.
Second Workshop on Real, Large Distributed Systems (2005)

Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for experimental
Design, Measurement, Simulation, and Modeling. Wiley-Interscience, NY (1991)

Stewart, C., Kelly, T., Zhang, A.: Exploiting Nonstationarity for Performance Prediction. In:
Proc. of EuroSys 2007, Lisbon, Portugal (March 2007)

Zhang, Q., Cherkasova, L., Smirni, E.: A Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications. In: ICAC 2007. Proc. of the Fourth Inter-
national Conference on Autonomic Computing, Jacksonville, FL, p. 27 (2007)


www.dlt.com/quest/
http://www.microsoft.com/technet/archive/itsolutions/ecommerce
http://www.microsoft.com/technet/archive/itsolutions/ecommerce
www.php.net

	R-Capriccio: A Capacity Planning and Anomaly Detection Tool for Enterprise Services with Live Workloads
	Introduction
	Workload Characterization
	Units of Client/Server Activities
	Transactions
	Sessions
	Workloads of Different Servers
	Summary of Workload Analysis

	CPU Cost of Transactions
	Regression Methodology
	Applying Regression to a Production System with Live Workload
	Anomaly Detection

	Capacity Planning
	MVA
	Case Study

	Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




