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Abstract. This paper presents a new atlas-based segmentation framework for the
delineation of major regions in magnetic resonance brain images employing an
atlas of the global topological structure as well as a statistical atlas of the regions
of interest. A segmentation technique using fast marching methods and tissue
classification is proposed that guarantees strict topological equivalence between
the segmented image and the atlas. Experimental validation on simulated and real
brain images shows that the method is accurate and robust.

1 Introduction

The segmentation of medical images into separate structures and organs often requires
the incorporation of a priori information. The use of statistical atlases is one approach
for encoding spatial and intensity information for each structure, and may include rela-
tional information as well [1,2]. In a typical scenario, the atlas is transformed to match
the image of interest, and a statistical classification method combines the atlas and
image information to segment the structures. An alternative is to perform a non-rigid
registration of a single atlas to the image with the appropriate structures segmented by
mapping the segmentation labels [3,4,5]. Hybrid methods incorporating statistical atlas
and non-rigid registration have also been proposed [6,7].

In all cases, the atlas introduces a bias toward images most similar to the atlas images.
In addition, many of the global and regional topological properties of the structures are
ignored in these representations. For example, segmented structures may become dis-
jointed or connect freely with neighboring structures, irrespective of the underlying
anatomy. Several methods have been proposed to preserve topology in the case of a sin-
gle object [14,15] or multiple, separate objects [16,8]. However, none of these methods
is able to preserve the topology of groups of objects. Even if the topology of two ob-
jects is invariant, the topology of the union of these objects is not constrained and can be
arbitrary (see Fig. 1). This is an important issue when segmenting multiple structures,
since the true anatomy typically follows strict topological relationships.

In this paper, we show that topological constraints on both the structures and their
groups can be used to encode continuity and relationships without biasing shape. We
present a strictly homeomorphic atlas-based segmentation algorithm and apply it to the
segmentation of the major structures of the brain in magnetic resonance (MR) images.
Our method employs only a coarse statistical atlas of the shape, deriving the segmen-
tation predominantly from the image and topological constraints. In the case of homo-
geneous structures, intensity prior distributions can be ignored, making the framework
largely independent of the imaging modality.
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Fig. 1. Importance of the topology of groups: the individual structures in above images have the
same topology, but the relationships between them are different, which corresponds to changes
in the topology of groups (unions) of structures

The proposed algorithm significantly extends a topology-preserving tissue segmen-
tation technique from our earlier work [8] by introducing several improvements. First, a
statistical atlas and intensity relations are used to model objects with similar intensities.
Second, a new topology preservation criterion is employed that maintains not only the
topology of individual objects but also the topology of all groups of objects. With these
improvements, the new approach is capable of segmenting more detailed structures,
such as subcortical regions. Experiments on simulated and real images demonstrate the
accuracy and robustness of the algorithm.

2 Methods

We seek to recover a set of K anatomical structures from a MR image. Given a pri-
ori information about the structures shape and topology, we build an atlas to guide the
segmentation. The atlas is first aligned with the image to segment, then a segmenta-
tion technique based on tissue classification and topology-preserving front propagation
adapts the segmentation from the atlas to fit the image data.

2.1 Statistical Atlas

The first component of our algorithm is a statistical atlas, which will help distinguish
structures with similar intensities. The atlas is built from a set of N manual delineations
of the structures of interest. For each image in the atlas, the delineation is rigidly aligned
with the current atlas image, and a smooth approximation of the probabilities is accu-
mulated. The smoothing replaces the step edge at the boundary of each structure in their
binary delineation by a linear ramp over a band of size ε. The accumulated prior pjk

represents the probability of being inside each structure as a function of the distance to
its boundary and its variability over the atlas images, similarly to sigmoid-based repre-
sentations [9,10]. By taking all these factors into account, we expect to reduce the bias
toward the mean shape of the atlas and allow the statistical atlas to only influence ar-
eas most likely to be inside each structure. Fig. 2 shows the statistical priors computed
from 18 subjects. Later in Section 3, it will be seen that the results of our method do not
greatly depend on the size of N .

During the segmentation, the statistical atlas must be registered to the image. We use
a joint segmentation and registration technique [11] that alternates between estimating
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the segmentation given the current atlas position, and then maximizes the following
correlation energy with respect to T given the current segmentation:

ER(T ) =
∑

jk

pq
T (j)kuq

jk. (1)

where T is a rigid or affine transformation, ujk the membership function for structure
k at point j defined in Section 2.3 and q a fuzziness factor used in the underlying fuzzy
segmentation method (see Sec. 2.3). We use q = 2 in this work. The transformation is
computed using a gradient ascent technique. The initial alignment is computed using a
Gaussian pyramid, while a single scale is sufficient to refine the alignment during the
segmentation.

2.2 Topological Atlas

The second component of our algorithm is an atlas of the structures’ topology, encoded
in a parcellation of the brain. Anatomical structures can have a very complex geometry,
yet they all tend to have a very simple topology, such as that of a sphere or torus. Groups
of tissues and organs in contact provide additional topological properties. For instance,
it is often assumed that the cerebral cortex has a spherical topology, but this requires to
group together cerebral gray and white matter, sub-cortical structures and ventricles.

Creation of an appropriate topology atlas is non-trivial: manual segmentations have
arbitrary topology, and inferring topological properties from anatomical atlases is not
straightforward. As we are interested in the major structures of the brain, we created
an atlas for the following structures, based on statistical atlases and anatomy text-
books: cerebral gray matter (CRG), cerebral white matter (CRW), cerebellar gray mat-
ter (CBG), cerebellar white matter (CBW), brainstem (BS), ventricles (VEN), caudate
(CAU), putamen (PUT), thalamus (THA) and sulcal cerebro-spinal fluid (CSF). Both
the statistical and topology atlases are in the same coordinate space and are based on
manual segmentations from the IBSR V2.0 dataset [12] with additional editing [8], as
shown in Fig. 2.

2.3 Tissue Segmentation

To perform the segmentation, we extend the FANTASM (Fuzzy And Noise Tolerant
Adaptive Segmentation Method) [13] approach. Given the original image I , FANTASM
minimizes an energy function with respect to the membership functions ujk, the gain
field gj , and the class centroids ck. The gain field is a smoothly varying function that
we model as a low degree polynomial (see [11]).

As with any tissue classification technique, difficulties arise if adjacent structures
have the same or very close centroid values; the boundary between them becomes more
sensitive to noise, and the boundaries with other structures may be shifted away because
of their lower membership values. The additional information provided by a statistical
atlas will help remedy this issue but will also lower the influence of the signal intensity
and blur the segmentation in areas of large variability between individuals. Because we
model the topology of the structures to segment, we can also make use of the relation-
ship between them to lower the influence of competing intensity clusters in regions that
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Topology CRW (-2) CRG (2) CSF (2) CAU (4) PUT (4)

Topology BS (0) CBW (4) CBG (2) VEN (2) THA (2)

Fig. 2. The statistical and topological atlas: two slices from the topology atlas (left) and one from
each structure prior (right). The Euler characteristic for each structure is given in parenthesis.

are spatially disconnected. We define global relationship sets RG(k) to be the structures
in contact with k according to the topology atlas, and local relationship sets RL(j) to be
structures in contact at the boundary closest to the point j in the current segmentation.
The map RL(j) is obtained by searching for the structures in contact at all boundary
points, and then propagating this information inside the volume (see example in Fig. 3,
where each gray level represents a unique RL).

We incorporate the atlas and relationship information into FANTASM, resulting in
the following energy function:

ES =
∑

jk

uq
jk

rjk
‖gjIj − ck‖2 +

β

2

∑

l∈Nj ,m �=k

uq
jk

rjk
uq

lm, +
γ

2

∑

m �=k

wkm

rjk
uq

jkpq
jm (2)

The first term in (2) is the data driven term, the second term enforces smoothness on
the memberships, and the third term controls the influence of the statistical atlas. The
relationship function rjk is defined to be

rjk =

⎧
⎨

⎩

1 k ∈ RL(j),
1
2 k ∈ RG(l), l ∈ RL(j)
0 otherwise.

(3)

The atlas weights wkm is defined as

wkm =
sw maxln |cl − cn|2

sw maxln |cl − cn|2 + |ck − cm|2 (4)

and is close to one when ck � cm but goes to zero when ck �= cm. The relationship
function penalizes against class configurations that are inconsistent with the topology
atlas. For pixel classes that do not touch any classes near pixel j, rjk is set to zero,
and the configuration possesses infinite energy. The atlas weights allow the priors to
influence the segmentation only where the intensity contrast between structures is low.
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2.4 Topology-Preserving Fast Marching Segmentation

The energy function of (2) is used to compute membership functions for each structure
in a fashion similar to FANTASM [13]. In addition, we compute a “hard” segmentation
that is derived from the memberships but is constrained to be homeomorphic to the
topology template.

We recently introduced the digital homeomorphism criterion that extends the binary
case to multiple objects and guarantees that the atlas and segmented image are related by
a homeomorphism in both the continuous and digital domain [17]. This improvement
is essential as it allows a more truthful representation of the anatomy than previous
methods.

The segmentation itself is performed using two successive iterations of a fast march-
ing front propagation technique, first thinning the structures into a skeleton-like object
and then growing the structures back to find the optimal boundary, using a minimal path
strategy [18,8]. The speed function of the fast marching is a function of the member-
ships:

f− = (1 − α)ujk + ακjk

f+ = (1 − α)(1 − ujk) + α(1 − κjk) (5)

where κjk is a measure of the curvature of the boundary for structure k at j normal-
ized in [0, 1] and α a weighting parameter. f− is used in the thinning algorithm, f+

in the growing algorithm. The thinning is stopped when the volume remaining inside
each structure is below a given fraction of the original volume (in this work, 1/3 of the
volume). The digital homeomorphism criterion is checked at all steps, ensuring that the
topology of all structures and groups are preserved at all times.

The complete algorithm is as follows:

1. Align atlases to image and set initial segmentation to the topological atlas.
2. Build the local relationship map RL from the current segmentation.
3. Compute the memberships ujk, centroids ck and the inhomogeneity field gj .
4. Thin structures using the fast marching algorithm with f−.
5. Grow back the structures using f+ and update the segmentation.
6. Refine the alignment of the atlases.
7. Loop to step 2 until convergence.

The convergence criterion is the relative amount of change in the energy E per iteration,
which typically becomes lower than 10−3 in 10 to 20 iterations in the following exper-
iments (approximatively 45 to 60 minutes). The overall complexity of the algorithm is
O(N log N) + O(KN), with N the size of the image and K the number of structures.
Parameters were determined empirically and fixed for all experiments.

3 Experiments and Validation

3.1 Simulated Images

A first set of experiments was conducted with the Brainweb phantom [19]: several lev-
els of noise and field inhomogeneity were simulated for T1 and T2-weighted modali-
ties and the corresponding images segmented. Because the original Brainweb ground
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truth is only concerned with the three major tissue classes (gray matter, white mat-
ter, cerebro-spinal fluid), we performed a manual segmentation to separate cerebel-
lum/brainstem, cerebrum, and grouped sub-cortical structures. The results from the
segmentation were grouped accordingly (CAU, PUT and THA as sub-cortical struc-
tures SUB, BS and CBW as CBS), and the difference measured with the Dice overlap
measure ( D(A, B) = 2A∩B

A+B ), see Table 1. Euler characteristic were found identical
for all segmentations, as expected.

Table 1. Dice coefficients for the Brainweb dataset, for varying noise (N) and inhomogeneity (I)

Tissues Structures
Modality N / I WM GM CSF CRW CRG CBS CBG SUB VEN
T1 N 0%, I 0% 0.953 0.935 0.884 0.963 0.941 0.767 0.895 0.850 0.897

N 1%, I 0% 0.951 0.934 0.884 0.961 0.940 0.766 0.896 0.849 0.897
N 3%, I 0% 0.947 0.928 0.882 0.957 0.934 0.762 0.892 0.845 0.896
N 3%, I 20% 0.947 0.927 0.880 0.957 0.933 0.761 0.896 0.846 0.896
N 3%, I 40% 0.947 0.918 0.880 0.956 0.931 0.765 0.898 0.842 0.898
N 5%, I 0% 0.938 0.919 0.876 0.948 0.923 0.755 0.888 0.836 0.896
N 5%, I 20% 0.938 0.919 0.877 0.948 0.923 0.754 0.891 0.839 0.896
N 5%, I 40% 0.939 0.919 0.876 0.949 0.922 0.754 0.893 0.838 0.896
N 7%, I 0% 0.927 0.906 0.869 0.937 0.909 0.745 0.884 0.828 0.894
N 9%, I 0% 0.916 0.895 0.862 0.926 0.897 0.737 0.877 0.820 0.893

T1 Mean 0.940 0.921 0.877 0.950 0.925 0.756 0.891 0.839 0.896
St.Dev. 0.007 0.013 0.012 0.011 0.014 0.010 0.006 0.010 0.001

T2 Mean 0.902 0.887 0.879 0.912 0.891 0.724 0.871 0.797 0.856
St.Dev. 0.019 0.020 0.007 0.020 0.023 0.013 0.009 0.020 0.014

Euler characteristic -2 6 2 -2 2 0 2 6 2

The Brainweb ’ground truth’ has arbitrary topology and our segmentation will al-
ways deviate from it because of the topological constraints it follows (the Euler char-
acteristics for the Brainweb WM,GM and CSF tissue classes are 6, -1750 and -174
respectively). Despite this, the segmentation is very close to the Brainweb ground truth
almost everywhere. The larger difference in CBS is due to the mean intensity of the
brainstem, which is between the WM and GM intensities considered in Brainweb, and
thus is not segmented as a homogeneous region in the ground truth. The topology en-
forces continuity for each structure, resulting in a segmentation very robust to high
noise levels. The segmentation results for T1 and T2 images are similar, despite the
signal differences between the modalities.

3.2 Real Images

We tested the algorithm on the IBSR dataset, where we could compare each label indi-
vidually (see Fig. 3). Because we used the same dataset to create the atlas, we performed
four different evaluations. In the first, all 18 images from the dataset were used to create
the atlas, whereas the second, third and fourth atlases respectively used the first 8, 3 and
1 images of the dataset. We also compared the results with the segmentation obtained
by performing a non-rigid registration with HAMMER [4] and transferring the object
labels. The overlap with the original segmentation is computed as before (see Table 2).

The sulcal CSF is grouped with CRG and CBG in the IBSR segmentation, thus the
overlap with the original ground truth are lowered for CRG and CBG and irrelevant for
CSF. The algorithm recovers all structures with an accuracy significantly higher than
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Table 2. Dice coefficients for the IBSR dataset

Structures
CRW CRG BS CBW CBG CAU PUT THA VEN

Atlas Mean 0.887 0.816 0.847 0.846 0.840 0.797 0.761 0.775 0.832
01-18 St.Dev. 0.012 0.049 0.016 0.026 0.030 0.037 0.030 0.054 0.048
Atlas Mean 0.886 0.816 0.848 0.843 0.845 0.798 0.755 0.765 0.832
01-08 St.Dev. 0.012 0.048 0.019 0.027 0.028 0.039 0.034 0.056 0.049
Atlas Mean 0.883 0.826 0.843 0.846 0.848 0.799 0.743 0.763 0.831
01-03 St.Dev. 0.015 0.041 0.022 0.026 0.028 0.040 0.043 0.052 0.051
Atlas Mean 0.879 0.832 0.853 0.839 0.859 0.794 0.744 0.760 0.833
01 St.Dev. 0.018 0.038 0.016 0.038 0.024 0.043 0.044 0.051 0.051
HAMMER Mean 0.788 0.782 0.744 0.763 0.848 0.740 0.599 0.773 0.662

St.Dev. 0.032 0.038 0.059 0.042 0.032 0.039 0.071 0.046 0.078

Fig. 3. Example of segmentation from the IBSR dataset. From left to right, top to bottom: original
image, computed segmentation, manual segmentation, membership functions for CRW, CRG,
CSF, PUT, THA, VEN, CAU, BS, CBW, CBG, relation map RL, 3D rendering.

the non-rigid registration approach and similar to the reported inter-rater scores of [2].
The overlap is somewhat lower for the sub-cortical structures, due to their smaller size,
non-constant intensities, and inaccurate boundaries. The results are mostly independent
of the number of images used to generate the atlas, indicating that precise prior infor-
mation about shape and location is not required by the algorithm.

4 Conclusion

In this paper, we presented a new framework for the segmentation of multiple struc-
tures in MR images. By combining topology constraints with smooth atlas priors, we
are able to recover the main structures of the brain, both cortical and sub-cortical. The
proposed algorithm is modality-independent, robust to high levels of noise and inho-
mogeneity, and the influence of spatial priors is limited, reducing the bias inherent to
atlas-based methods. More importantly, the framework guarantees a strict homeomor-
phism between all groups of structures in the atlas and the segmented images, allowing



Statistical and Topological Atlas Based Brain Image Segmentation 101

an accurate representation of the anatomy that may be readily used for cortical unfold-
ing and diffeomorphic shape analysis applications.
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