
J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 91–102, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

An Algorithm to Find Overlapping 
Community Structure in Networks 

Steve Gregory 

Department of Computer Science 
University of Bristol, BS8 1UB, England 

steve@cs.bris.ac.uk 

Abstract. Recent years have seen the development of many graph clustering 
algorithms, which can identify community structure in networks. The vast ma-
jority of these only find disjoint communities, but in many real-world networks 
communities overlap to some extent. We present a new algorithm for discover-
ing overlapping communities in networks, by extending Girvan and Newman’s 
well-known algorithm based on the betweenness centrality measure. Like the 
original algorithm, ours performs hierarchical clustering — partitioning a net-
work into any desired number of clusters — but allows them to overlap. Ex-
periments confirm good performance on randomly generated networks based on 
a known overlapping community structure, and interesting results have also 
been obtained on a range of real-world networks. 

1   Introduction and Motivation 

Many complex systems in the real world can be represented abstractly as networks (or 
graphs). Recently, with increasing availability of data about large networks and the 
need to understand them, the study of networks has become an important topic. A 
property that has been extensively studied is the existence of community structure in 
networks. A cluster (or community or module) is a subgraph such that the density of 
edges within it (intracluster edges) is greater than the density of edges between its 
vertices and those outside it (intercluster edges). A wide range of algorithms have 
been developed to discover communities in a network, including [4, 6, 11, 12, 13, 14]. 

Probably the best-known algorithm for finding community structure is Girvan and 
Newman’s algorithm [6, 14], based on the betweenness centrality measure [5]. The 
betweenness (strictly, the shortest-path betweenness) of edge e, cB(e), is defined as the 
number of shortest paths, between all pairs of vertices, that pass along e. A high be-
tweenness means that the edge acts as a bottleneck between a large number of vertex 
pairs and suggests that it is an intercluster edge. Although the algorithm is quite slow 
and is no longer the most effective clustering algorithm, it does give relatively good 
results. The algorithm works as follows: 

1. Calculate edge betweenness of all edges in network. 
2. Find edge with highest edge betweenness and remove it. 
3. Recalculate edge betweenness for all remaining edges. 
4. Repeat from step 2 until no edges remain. 



92 S. Gregory 

This is a hierarchical, divisive, clustering algorithm. Initially, the n-vertex network 
(if connected) forms a single cluster. After one or more iterations, removing an edge 
(step 2) causes the network to split into two components (clusters). As further edges 
are removed, each component again splits, until n singleton clusters remain. The re-
sult is a dendrogram: a binary tree in which the distance of nodes from the root shows 
the order in which clusters were split. A cross-section of the dendrogram at any level 
represents a division of the network into any desired number of clusters. 

In step 3, edge betweenness need not be recalculated for the whole network, but 
only for the component containing the edge removed in step 2, or for both compo-
nents if removing the edge caused the component to split. (The edge betweenness of 
an edge depends only on the vertices and edges in the same component as it.) 

Most algorithms assume that communities are disjoint, placing each vertex in only 
one cluster. However, in the real world, communities often overlap. For example, in 
collaboration networks an author might work with researchers in many groups, in bio-
logical networks a protein might interact with many groups of proteins, and so on. 

In this paper we present a new algorithm to find overlapping community structure 
in networks. It is a hierarchical, divisive algorithm, based on Girvan and Newman’s 
but extended with a novel method of splitting vertices. We describe the design of the 
algorithm in Section 2. In Section 3 we present some results on both artificial (com-
puter-generated) and real-world networks. Section 4 compares our algorithm with a 
few others that can detect overlapping communities. Conclusions appear in Section 5. 

2   Finding Overlapping Clusters 

In any divisive hierarchical clustering algorithm, clusters are repeatedly divided into 
smaller (normally disjoint) clusters that together contain the same items. To allow 
overlapping clusters, there needs to be some way of splitting (copying) an item so that 
it can be included in more than one cluster when the cluster divides. 

In the context of network clustering, assuming it is based entirely on the network 
structure, it seems reasonable to assume that each vertex should be in the same cluster 
as at least one of its neighbours, unless it is in a singleton cluster or no cluster at all. 
Therefore, a vertex v should be split into at most d(v) copies, where d(v) is the degree 
of v. We need to decide how many times a vertex should be split, and when a vertex 
should be split (e.g., at the beginning or when dividing a cluster). 

Our algorithm extends Girvan and Newman’s algorithm (the “GN algorithm”) with 
a specific method of deciding when and how to split vertices. As in the original work, 
we only consider unipartite networks with undirected, unweighted edges. We name 
our new algorithm “CONGA” (Cluster-Overlap Newman Girvan Algorithm). 
 

Splitting Vertices. In the GN algorithm, the basic operation is removing an edge. We 
introduce a second operation: splitting a vertex. If split, a vertex v always splits into 
two vertices v1 and v2: edges with v as an endvertex are redirected to v1 or v2 such that 
v1 and v2 each has at least one edge. By splitting repeatedly, a vertex v can eventually 
split into at most d(v) vertices. Vertices are split incrementally during the clustering 
process. This binary splitting fits well into the GN algorithm because, like removing 
an edge, splitting a vertex may cause its cluster to split into two. 



 An Algorithm to Find Overlapping Community Structure in Networks 93 

Split Betweenness. The key point of the CONGA algorithm is the notion of “split 
betweenness”. This provides a way to decide (1) when to split a vertex, instead of 
removing an edge, (2) which vertex to split, and (3) how to split it. Clearly, v should 
only be split into v1 and v2 if these two vertices belong to different clusters. We could 
verify this by counting the number of shortest paths that would pass between v1 and v2 
if they were joined by an edge. Then, if there were more shortest paths on {v1,v2} than 
on any real edge, the vertex should be split; otherwise, an edge should be removed as 
usual. This is the basis of our method of splitting a vertex, which is as follows. 

For any split of vertex v into v1 and v2, we add a new “imaginary” edge between v1 
and v2. If u is a neighbour of v1 and w is a neighbour of v2, all shortest paths that 
passed through v along edges {u,v}, {v,w} now pass along {u,v1}, {v1,v2}, {v2,w}. The 
imaginary edge has zero cost: the lengths of paths traversing it are unchanged, and no 
new shortest paths are created: paths beginning from v do not traverse this edge. We 
then calculate the betweenness cB({v1,v2}) of the imaginary edge. In general, there are 
2d(v)-1-1 ways to split v into two. We call the split that maximizes cB({v1,v2}) the best 
split of v, and the maximum value of cB({v1,v2}) the split betweenness of v. 

We modify the GN algorithm so that, at each step, it considers the split between-
ness of every vertex as well as the edge betweenness of every edge. If the maximum 
split betweenness is greater than the maximum edge betweenness, the corresponding 
vertex is split, using its best split. (Note that imaginary edges are never actually added 
to the network, but are used only during the calculation of the split betweenness.) 

Fig. 1(a) shows a network comprising two overlapping clusters: {a,b,c} and 
{a,d,e}. Labels on the edges show edge betweennesses (with shortest paths counted in 
both directions). Fig. 1(b) shows a’s best split into abc and ade, with the imaginary 
edge (betweenness 8) shown as a dashed line. Fig. 1(c-d) shows the other two possi-
ble splits of a. In these, the imaginary edge has a lower betweenness, 4, proving that 
the split of Fig. 1(b) is the best split and the split betweenness of a is 8. Because this 
is greater than any edge betweenness, a should indeed be split. 

 

Fig. 1. (a) Network. (b) Best split of vertex a. (c), (d) Other splits of vertex a. 

Fig. 2 shows a network which does not exhibit clustering. Here, any (2+2) split of 
a is a best split. The split betweenness of a is 8, which is the same as the betweenness 
of each edge. Therefore, by default, we remove any edge instead of splitting a. 

b 

a

d 

c e 

6 6 

6 6 

2 2 

b 

ade 

d 

c e 

6 6 

6 6 

2 2 8abc

(b)

(a) 

b

acd 

d 

c e 

6 6 

6 6 

2 2 4abe

(d)
b d

c e

6 6

6 6

2 2

abd

ace

4

(c)



94 S. Gregory 

 
 

Fig. 2. Best split of vertex a: split betweenness of a is 8 

Our method will never split a vertex into v1 and v2 such that v1 has only one 
neighbour, u. This is because the betweenness of {v1,v2} would be the same as that of 
{u,v1}, as shown in Fig. 3, so removing edge {u,v} would be preferred over splitting 
v. As a consequence of this, vertices with degree less than 4 are never split. In gen-
eral, there are now only 2d(v)-1-d(v)-1 ways to split a vertex into two. 

 

Fig. 3. Vertex will not split into vertices with degree 1 

Vertex Betweenness and Split Betweenness. The split betweenness of a vertex v is 
the number of shortest paths passing between any member of n1 and any member of 
n2 via v, where n1 and n2 are disjoint sets containing all neighbours of v. By definition, 
this is no greater than the total number of shortest paths passing through v: the vertex 
betweenness of v [5]. It is simple to calculate vertex betweenness cB(v) from edge 
betweenness cB(e) [7]: 

)1()(
2

1
)(

)(

−−= ∑
Γ∈

necvc
ve

BB
 (1) 

where Γ(v) is the set of edges with v as an endvertex and n is the number of vertices in 
the component containing v. Therefore, as an optimization, we can use vertex be-
tweenness as an upper bound on split betweenness: if the vertex betweenness of v is 
no greater than the maximum edge betweenness, there is no need to calculate v’s split 
betweenness. 
 

Calculating Split Betweenness. To calculate the split betweenness, and best split, of 
a vertex v, we first compute the pair betweennesses of v. The pair betweenness of v 
for {u,w}, where u and w are neighbours of v and u ≠ w, is the number of shortest 
paths that traverse both edges {u,v} and {v,w}. The vertex betweenness of v is the 
sum of all of its pair betweennesses. 

We can represent the pair betweennesses of v, degree k, by a k-clique in which 
each vertex is labelled by one of v’s neighbours and each edge {u,w} is labelled by 
the pair betweenness “score” of v for {u,w}. Then, to find the best split of v: 

b

a 

d

c e

8 8 

8 8 

b

ade

d

c e

8 8

8 8

8abc

u v 

w1

wi

b 
u v2

w1

wi

b
v1

b



 An Algorithm to Find Overlapping Community Structure in Networks 95 

1. Choose edge {u,w} with minimum score. 
2. Coalesce u and w to a single vertex, uw. 
3. For each vertex x in the clique, replace edges {u,x}, score b1, and {w,x}, score b2, 

by a new edge {uw,x} with score b1+b2. 
4. Repeat from step 1 k-2 times (in total). 

The labels on the remaining two vertices show the split, and the score on the remain-
ing edge is the split betweenness. 

This algorithm is not guaranteed to find the best split. To do that, we would need to 
try all edges in step 1 of each iteration, which would require exponential time. Our 
“greedy” method is much more efficient and, in practice, usually finds the best split or a 
close approximation to it. Fig. 4 shows how it finds the best split of vertex a of Fig. 1. 
There are k-2 = 2 phases; the edge chosen in step 1 of each phase is highlighted. 

 

Fig. 4. Finding the best split of vertex a of Fig. 1 

Calculating Pair Betweennesses. Pair betweennesses are computed while calculating 
edge betweenness, by a straightforward modification of the GN algorithm. The GN 
algorithm increments the betweenness of edge {i,j} for all shortest paths beginning at 
each vertex s. CONGA does this and increments the pair betweennesses of i for all 
pairs {j,k} such that k is a neighbour of i on a path between s and i. 

There is some overhead, in both time and space, in computing pair betweennesses 
during the betweenness calculation. In most cases this information is not used because 
we can often determine, from the vertex betweenness, that a vertex should not be 
split. Therefore, our betweenness calculation is split into two phases, as shown below. 

The CONGA Algorithm. Our complete algorithm is as follows: 

1. Calculate edge betweenness of all edges in network. 
2. Calculate vertex betweenness of vertices, from edge betweennesses, using Eq. (1). 
3. Find candidate set of vertices: those whose vertex betweenness is greater than the 

maximum edge betweenness. 
4. If candidate set is non-empty, calculate pair betweennesses of candidate vertices, 

and then calculate split betweenness of candidate vertices, using Eq. (1). 
5. Remove edge with maximum edge betweenness or split vertex with maximum split 

betweenness (if greater). 
6. Recalculate edge betweenness for all remaining edges in same component(s) as 

removed edge or split vertex. 
7. Repeat from step 2 until no edges remain. 

bc de 8b 

c 

d 

e 

2 

2

2 

2

0 0 

bc d

e

4

4 0



96 S. Gregory 

Complexity and Efficiency. The GN algorithm has a worst-case time complexity of 
Ο(m2n), where m is the number of edges and n is the number of vertices. In CONGA, 
each vertex splits into an average of up to 2m/n vertices, so the number of vertices 
after splitting is Ο(m); the number of iterations is still Ο(m) and the number of edges 
is unchanged. This makes the time complexity Ο(m3) in the worst case. 

In practice, the speed depends on the number of vertices that are split. If more are 
split, more iterations are needed, the network becomes larger, and step 4 needs to be 
performed more frequently. Conversely, vertex splitting can cause the network to de-
compose into separate components more readily, which reduces the execution time. 

3   Results 

In this section we compare CONGA with the GN algorithm, to assess the effect of our 
extensions. We have tested both algorithms on computer-generated networks based on 
a known, possibly overlapping, community structure. Each network contains n verti-
ces divided into c equally-sized communities, each containing nr/c vertices. Vertices 
are randomly and evenly distributed between communities such that each vertex is a 
member of r (≥1) communities on average. Edges are randomly placed between pairs 
of vertices with probability pin if the vertices belong to the same community and pout 
otherwise. In the special case where both r and pout are 0, the network will be discon-
nected.  Apart from this, all of our experiments use connected networks, constructed 
with a sufficiently high value of r or pout, or both. 

We measure how well each algorithm can recover the community structure from a 
network by using it to compute c clusters and comparing the result with the c known 
communities. Admittedly, c is not generally known for real-world networks, but this 
is still a useful and common way to assess clustering algorithms; e.g., [6, 14]. 

We calculate two values (all averaged over 10 graphs): 

• recall: the fraction of vertex pairs belonging to the same community that are also in 
the same cluster. 

• precision: the fraction of vertex pairs in the same cluster that also belong to the 
same community. 

First (Fig. 5), we generated networks of 256 vertices divided into 32 communities, 
set pout = 0 (i.e., no intercommunity edges) and pin = 0.5, and increased the amount of 
overlap from r = 1 (i.e., no overlap) to r = 3. The number of edges (and hence the av-
erage degree) increases roughly quadratically with r, because the average community 
size is proportional to r and each vertex is a member of r communities. So the average 
degree is 4 for r = 1 but increases to approximately 15 for r = 2 and 32 for r = 3. 

For the GN algorithm, as r increases, recall declines steadily because the (non-
overlapping) clusters are smaller than the communities; precision is quite high, 
though certainly not perfect, in this range. Suddenly, at around r = 2, recall increases 
and precision decreases, as most vertices are placed in a single cluster. In contrast, 
CONGA behaves very well up to about r = 2 and then deteriorates gradually. 

 



 An Algorithm to Find Overlapping Community Structure in Networks 97 

 0

0.2

0.4

0.6

0.8

 1

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3
Average number of communities per vertex (r)

GN
CONGA

 0

0.2

0.4

0.6

0.8

 1

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3
Average number of communities per vertex (r)  

Fig. 5. recall (left), precision (right): n=256, c=32, pin=0.5, pout=0, various r 

We have repeated this experiment for various values of c and pin. The curves al-
ways show a similar shape, though the value of r at which precision drops varies. 

To evaluate the algorithm on real-world networks, there is no correct solution with 
which to compare, so the quality of a clustering must be assessed in a different way. 
This is usually done by measuring the relative number of intracluster and intercluster 
edges, for example, by the modularity measure [13, 14]. However, there is no widely 
accepted alternative measure for use with overlapping clusters, but a promising can-
didate is the average degree measure [3]. We define the vertex average degree (vad) 
of a set of clusters S, where each cluster is a set of vertices, as: 

∑
∑

∈

∈=

SC

SC

C

CE
Svad

)(2
)(  (2) 

Another useful measure is the overlap of a set of clusters S: the sum of the cluster 
sizes divided by the size of the union of all clusters. (We do not claim that vad and 
overlap are mutually independent measures; that is outside the scope of this paper.) 

We have run the CONGA and GN algorithms on several real-world examples, 
listed in Table 1. Execution times are shown for a 2.4GHz Pentium 4 processor. 

Table 1. Algorithm’s results on real-world networks 

Name Ref. Vertices Edges Runtime (s) 
Karate club [19] 34 78 0.2 
Dolphins [9] 62 159 0.5 
College football [6] 115 613 7.8 
Network science [12] 379 914 12.5 
Blogs [18] 3982 6803 30411 
Words [10] 1000 3471 6767 

 “Karate club” [19], discussed in [6], represents a social network based on two dis-
joint communities. The communities are not reflected clearly in the network structure: 
there are eight intercommunity edges. GN finds an almost perfect (relative to the real-
world situation) two-cluster solution, misclassifying one vertex. CONGA finds a  



98 S. Gregory 

different solution with a small overlap, 1.03. The vad is 4.45 for CONGA and 4.0 for 
GN, suggesting that the overlapping clustering is a good one (albeit incorrect). 

“Dolphins” [9], discussed in [14], is a social network of dolphins, also based on 
two disjoint communities. Here there are only six intercommunity edges. GN finds 
the two communities correctly and CONGA finds the same division but with two ver-
tices from the larger community included in both clusters: the overlap is 1.03. The 
vad is 4.91 for CONGA and 4.94 for GN. 

 “College football” [6] is a network based on games between teams that belong to 
15 disjoint real-world communities. This network has many intercommunity edges. 
Neither algorithm finds a perfect 15-cluster solution; the one found by CONGA has a 
lower vad (5.87 vs. 7.18) and a large overlap: 1.75. 

“Network science” [12] is a collaboration network of coauthorships. For such net-
works it is impossible to determine the number of real-world communities, and it 
seems reasonable to assume they might overlap. CONGA’s solution has a higher vad 
than GN’s for 14 or more clusters, and overlap increases with the number of clusters. 
CONGA’s solution for 33 clusters is illustrated in Fig. 6: each cluster is identified by 
a letter or digit and each vertex is labelled with the cluster(s) to which it belongs. 

LGE0

1

2

3

4

5
6

7

F0

8

9

A

B

2C
CR0

D

A

9

1

E

9
F

7

5

G

1

1F6

8

C

G

H

F9

D3
I

J

K

2

LE

M

H
3

D2

2

N

D17

B

O

G

B5

P

L

7

M

5

D

B

7

D

6

0

Q

2
2

C

8

R

M

G

M

B B

W2

S

I
2

C

9I

E

H

O

I

D3

C

T

L

0
4

T

0

3

R

M

Q

F

6

U
3

3

1U

S

D

9B5

4

K

6

WJ

B

0

2

6

I

K

8

U
2

1
U9

D

L

E0

6

N

P

R

C

2T

F

5
P

U

G

F

J

C

L

C

Q

L

HC

L

7

I

3

L

M

C

S

8

SO

U
R0

3
H

6

4

J

R

G

A

9

7

L

F

8V

U

WAC

Q

P

5

D

A

O

P

9

A

I

V

8

ACM

O

EN

A

I

S
C

J

U

E

G

U

9

5

E

C

U

K

5

FU

C

T

3

I
N

C

O

F

7

S

GE

C

GK

B

5

3

8

C

0

N

D

K

0
4

N

R

C

6

6

R

O

8

I

G
V

7

A

F

A

V

K

D

I
4

G

WR

U9S1

C

J

Q

B P

K

W 3

A

2N

6

D7

1
F

0

3P

L
I

8

N

V

W

K

I

8
K

0

7

R

L

3

0

5

L

F

A

U

5

US
1

0 0

4

9

R

4

4

M

T
7

E

2

P

8

Q

A

U

V

I

H

6

E

V

P

R

H

U

P

B

G

A

1

T

US1

8

9

6

K

J

S
J

WR
W

I

J

W

C

2

T

8

C

H

179

J

8 8

O

F

2T 0

C

K

H

N

O

L

3

9

V

9

W

D

D

O

9

9

1

1

S

M

U

E

3

V

H

U

H

5

 

Fig. 6. Network science collaboration network divided into 33 overlapping clusters 

“Blogs” [18] is a network of blogs on the MSN (now known as Windows Live™ 
Spaces) platform. An edge links people who have left two or more comments on each 
other’s blog, and so are deemed to be acquainted. CONGA’s solution has a consis-
tently higher vad than GN’s, especially for more than 90 clusters. The overlap in-
creases with the number of clusters but levels off, reaching a maximum of 1.39. 



 An Algorithm to Find Overlapping Community Structure in Networks 99 

“Words” is a non-social network: a contiguous 1000-vertex subgraph of a word as-
sociation network from [15], converted from an original directed, weighted version 
[10]. CONGA successfully groups related words. For example, dividing it into 400 
clusters, the word “form” appears in four: {contract, document, form, order, paper, 
signature, write}, {blank, entry, fill, form, up}, {compose, create, form, make}, 
{form, mold, shape}. (Related words in this network are not necessarily synonyms, as 
they are in this example.) Again, the vad for CONGA’s solution is consistently higher 
than GN’s; the overlap increases and tails off, reaching a maximum of 2.23. 

4   Related Work 

Pinney and Westhead [16, 17] have also proposed extending the GN algorithm with 
the ability to split vertices between clusters. The decision of whether to split a vertex 
or remove an edge is based entirely on edge betweenness and vertex betweenness. 
The highest-betweenness edge is removed only if its two endvertices have similar be-
tweenness; i.e., if their ratio is between α and 1/α, where α is a parameter with sug-
gested value 0.8 [16]. Otherwise the vertex with highest betweenness is temporarily 
removed. When a component splits into two or more subcomponents, each removed 
vertex is split and copied into each subcomponent, and all edges between the vertex 
copy and the subcomponent are restored, including any removed in previous steps. 
We have implemented this algorithm and compared it with CONGA; see below. 

The clique percolation algorithm of Palla et al. [15], implemented in CFinder [1], 
finds overlapping clusters in a different way. Instead of dividing a network into its 
most loosely connected parts, it identifies the most densely connected parts. The pa-
rameter is not the number of clusters to be found but their density, k. A cluster is de-
fined as the set of k-cliques that can all be reached from each other via a sequence of 
adjacent k-cliques; two k-cliques are adjacent if they share k-1 vertices. Each vertex 
may be in many clusters, or even none: e.g., degree-1 vertices are always ignored. We 
have run CFinder (v1.21) to compare its results with CONGA’s; see below. 

Baumes et al. [2, 3] present a collection of algorithms to find overlapping clusters. 
One algorithm iteratively improves a candidate cluster by adding vertices to and re-
moving vertices from it while its density improves. Another removes vertices from a 
network until it breaks into disjoint components, forming initial clusters, and then re-
places each removed vertex into one or more of the clusters, which might overlap. 

Li et al. [8] form overlapping clusters using both the structure of the network and 
the content of vertices and edges. The first phase of their algorithm finds densely  
connected “community cores”, similarly to the method of [15]. In the second phase, 
clusters are formed from cores by adding further triangles and edges whose content 
(assessed using keywords) is similar to that of the core. 
 

Experiments. We have run the Pinney and Westhead (“P&W”) and CFinder algo-
rithms on computer-generated networks, to compare with CONGA. The number of 
communities c was input to both CONGA and P&W, but CFinder cannot make use of 
this information, so CFinder is clearly disadvantaged. To compensate for this, we 
show the CFinder results for all values of k (CFinder’s only parameter). For each ex-
periment we plot the F-measure: the harmonic mean of recall and precision. 



100 S. Gregory 

Fig. 7(a) shows results on the networks of Section 3: pin and pout are fixed while r is 
varied. CONGA gives the best results of all algorithms tested, but performance de-
clines for all algorithms for high r. CFinder gives its best performance for r=2, so in 
fairness to CFinder we use this value in subsequent experiments. In Fig. 7(b) we fix r 
and pout and vary pin. CONGA gives the best results, and they improve as pin increases. 
In contrast, CFinder, for each k, reaches a peak at a different value of pin; for smaller 
values its recall is reduced while for larger values its precision drops.  

In Fig. 7(c) we fix r and pin and vary pout. This time, CONGA’s performance suf-
fers as pout increases, because of reduced precision, while CFinder’s performance is 
more stable. Finally, in Fig. 7(d), we test the hypothesis that CFinder should be more 
effective in cases where the number of communities is not known. We do this by gen-
erating networks in which a (varying) number, u, of the 256 individuals are placed in 
singleton communities and the remainder are divided between the 32 main communi-
ties; because pout>0 these networks are still connected. In this experiment, CFinder 
with k=4 performs slightly better than CONGA. For both algorithms, recall decreases 
as u increases but CFinder’s precision improves while CONGA’s declines. 

 
 0

0.2

0.4

0.6

0.8

 1

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2
Average number of communities per vertex (r)

CONGA
P&W

CFinder, k=3
k=4
k=5
k=6

 
 0

0.2

0.4

0.6

0.8

 1

 0.2  0.4  0.6  0.8  1
Probability of intracommunity edges (p_in)

CONGA
P&W

CFinder, k=3
k=4
k=5
k=6

 

 0

0.2

0.4

0.6

0.8

 1

 0  0.005  0.01  0.015  0.02
Probability of intercommunity edges (p_out)

CONGA
P&W

CFinder, k=3
k=4
k=5
k=6

 
 0

0.2

0.4

0.6

0.8

 1

 0  10  20  30  40  50  60
Number of vertices not in any community (u)

CONGA
P&W

CFinder, k=3
k=4
k=5
k=6

 

Fig. 7. F-measure for random networks with n=256, c=32. (a: upper left) pin=0.5, pout=0, vari-
ous r; (b: upper right) r=2, pout=0, various pin; (c: lower left) r=2, pin=0.5, various pout; (d: lower 
right) r=2, pin=0.5, pout=0.008, various u. 

Fig. 8 shows the execution times of all algorithms for the experiments of Fig. 7(a). 
For CONGA and P&W these times include the generation of the complete dendro-
gram, from which the solution for any number of clusters can be quickly extracted. 
The process is not stopped after the network is divided into 32 clusters. For CFinder, 
 



 An Algorithm to Find Overlapping Community Structure in Networks 101 

 0.1

 1

 10

 100

1000

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3  3.2
Average number of communities per vertex (r)

CONGA
P&W

CFinder

 

Fig. 8. Execution time (seconds) for n=256, c=32, pin=0.5, pout=0, various r 

the times include the generation of solutions for all values of k. CONGA and P&W 
were implemented by the author in Java. Each experiment was run on a machine with 
dual AMD Opteron 250 CPUs (2.4GHz). 

In summary, CONGA and CFinder seem to have complementary strengths and 
weaknesses: each may be better for a different application. CFinder is substantially 
faster than CONGA. P&W behaves in a similar way to CONGA but with worse re-
sults (for these networks); however, we have only tested it with one value of its pa-
rameter (α). The execution time of P&W is also the worst, but this may be because of 
the poor implementation rather than the algorithm itself. 

5   Conclusions 

We have presented an algorithm that seems to be effective in discovering overlapping 
communities in networks. Good results have been obtained for a range of random net-
works with overlap of more than 2, which is large relative to the number of communi-
ties: if a network has only 32 communities, an overlap of 3 means that each vertex is 
in the same community as ¼ of the whole network. As the number of communities is 
increased, the algorithm can cope with a larger overlap. The algorithm is not fast, but 
its speed is comparable with that of the GN algorithm from which it is derived. 

Future work includes trying to improve the algorithm further and applying similar 
ideas to faster clustering algorithms than the GN algorithm. It is also worth investigat-
ing alternative ways of measuring the quality of an overlapping clustering; e.g., the 
vad measure. Finally, it would be interesting to study the overlapping nature of real-
world networks, a subject that has received little attention (but see [15]). For example, 
it may be that the collaboration network of Fig. 6 naturally divides into a small num-
ber of disjoint clusters, possibly corresponding to research groups, but to decompose 
it further requires clusters to overlap. 

Further information related to this paper, including the networks analysed and 
more results, can be found at http://www.cs.bris.ac.uk/~steve/networks/ . 

 
Acknowledgements. I am very grateful to Peter Flach for his expert advice on several 
drafts of this paper. Thanks are also due to John Pinney for explaining his algorithm, 
and the four anonymous referees for their detailed comments. 



102 S. Gregory 

References 

1. Adamcsek, B., Palla, G., Farkas, I., Derényi, I., Vicsek, T.: CFinder: locating cliques and 
overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006) 

2. Baumes, J., Goldberg, M., Krishnamoorty, M., Magdon-Ismail, M., Preston, N.: Finding 
communities by clustering a graph into overlapping subgraphs. In: Proc. IADIS Applied 
Computing 2005, pp. 97–104 (2005) 

3. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping 
communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., 
Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg (2005) 

4. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algorithms. In: Di 
Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidel-
berg (2003) 

5. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–
41 (1977) 

6. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. 
Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002) 

7. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, 
O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, 
vol. 3418, Springer, Heidelberg (2005) 

8. Li, X., Liu, B., Yu, P.S.: Discovering overlapping communities of named entities. In: 
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, 
pp. 593–600. Springer, Heidelberg (2006) 

9. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bot-
tlenose dolphin community of Doubtful Sound features a large proportion of long-lasting 
associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003) 

10. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida word asso-
ciation, rhyme and word fragment norms (1998), http://w3.usf.edu/FreeAssociation/ 

11. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. 
Rev. E 69, 066133 (2004) 

12. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of ma-
trices. Phys. Rev. E 74, 036104 (2006) 

13. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 
USA 103, 8577–8582 (2006) 

14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. 
Phys. Rev. E 69, 026113 (2004) 

15. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community struc-
ture of complex networks in nature and society. Nature 435, 814–818 (2005) 

16. Pinney, J.W.: Personal communication 
17. Pinney, J.W., Westhead, D.R.: Betweenness-based decomposition methods for social and 

biological networks. In: Barber, S., Baxter, P.D., Mardia, K.V., Walls, R.E. (eds.) Interdis-
ciplinary Statistics and Bioinformatics, pp. 87–90. Leeds University Press (2006) 

18. Xie, N.: Social network analysis of blogs. MSc dissertation. University of Bristol (2006) 
19. Zachary, W.W.: An information flow model for conflict and fission in small groups. Jour-

nal of Anthropological Research 33, 452–473 (1977) 


	An Algorithm to Find Overlapping Community Structure in Networks
	Introduction and Motivation
	Finding Overlapping Clusters
	Results
	Related Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




