
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 546–557, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Run-Time Adaptation of Non-functional Properties of
Composite Web Services Using Aspect-Oriented

Programming

N.C. Narendra1, Karthikeyan Ponnalagu1, Jayatheerthan Krishnamurthy2,
and R. Ramkumar2

1 IBM India Research Lab, Bangalore, India
{narendra, karthik.ponnalagu}@in.ibm.com

2
 IBM India Software Lab, Bangalore, India

{jayatheerthan, ramkumar_rj}@in.ibm.com

Abstract. Existing web service composition and adaptation mechanisms are lim-
ited only to the scope of web service choreography in terms of web service selec-
tion/invocation vis-à-vis pre-specified Service Level Agreement constraints. Such a
scope hardly leaves ground for a participating service in a choreographed flow to
re-adjust itself in terms of changed non functional expectations and most often
these services are discarded and new services discovered to get inducted into the
flow. In this paper, we extend this idea by focusing on run-time adaptation of non-
functional features of a composite Web service by modifying the non-functional
features of its component Web services. We use aspect-oriented programming
(AOP) technology for specifying and relating non-functional properties of the Web
services as aspects at both levels of component and composite. This is done via a
specification language for representing non-functional properties, and a formally
specifiable relation function between the aspects of the component Web services
and those of the composite Web service. From the end users’ viewpoint, such up-
front aspect-oriented modeling of non-functional properties enables on-demand
composite Web service adaptation with minimal disruption in quality of service.
We demonstrate the applicability and merits of our approach via an implementation
of a simple yet real-life example.

1 Introduction and Motivation

Web services have emerged as a major technology for deploying automated interac-
tions between heterogeneous systems. They possess certain key properties [8, 12],
viz., independent from specific platforms and computing paradigms, developed pri-
marily for inter-organizational situations, and composable into composite Web ser-
vices. Web service composition primarily concerns requests of users that cannot be
satisfied by any atomically available Web service, but satisfied by a composite service
obtained by combining a set of available Web services [13]. The dynamic nature of
the business world highlights the continuous pressure to reduce expenses, to increase
revenues, to generate profits, and to remain competitive. This requires Web services
to be highly reactive and adaptive to business centric changes. In particular, compos-
ite Web services should be equipped with mechanisms to ensure that their constituent
component Web services are able to adapt to meet changing requirements.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 547

In this paper1, we consider the important research issue of engineering adaptations
on component Web services based on changed non-functional requirements imposed
on the composite Web service, such as improved security, better scalability, etc. In
particular, we focus on how non-functional requirements changes in the composite
Web service can be met via appropriate pre declared modifications to the component
Web services code, without affecting their core functionality. Our approach uses dis-
tributed aspect-oriented programming (AOP) technology [1, 4, 5] to dictate these
modifications in component Web services in a non-intrusive manner. In addition,
from the viewpoint of the users of the composite Web service, such an approach en-
ables on-demand adaptation with minimal disruption. To the best of our knowledge,
this is the first non-intrusive distributed AOP mechanism, especially applied to Web
services. Hence our main contributions are the following: a distributed system archi-
tecture for non-functional adaptation of Web services via AOP (implemented on top
of PROSE [2,3], a well-known AOP implementation environment2), a specification
language for specifying non-functional properties of Web services, a formally specifi-
able relation function between the non-functional properties of the component and
composite Web services, and a non-intrusive concern extraction and manipulation
implementation for component Web services based on the relation function.

Our paper is organized as follows. We review related work in section 2. Section 3
introduces our approach and conceptual architecture. We then describe our running
example in Section 4, and then use it to explain our approach in detail. In Section 5,
we describe our specification language for describing non-functional properties of
component and composite Web services. In Section 6, we discuss how multiple as-
pects can be weaved together, via a discussion of their inter-relationships. The
detailed implementation of our running example is presented in Section 7. Finally,
Section 8 concludes the paper with suggestions for future work.

2 Related Work

Aspect-oriented programming (AOP) [1,4,5] is an extension of other software devel-
opment paradigms; it allows capturing and modularizing concerns called aspects that
crosscut a software system. AOP makes very powerful program transformations pos-
sible, through a composition process where aspect advices are woven into the core
program at locations called pointcuts. Members and methods can also be inserted in
classes through an aspect construct called introduction. Aspects have the ability to
introduce functionality in a core program in a non-invasive way, making it possible to
alter the behavior of a system a posteriori. This aspect weaving can be done at any
time – compile time, load time or run time.

Regarding Web services, existing web service composition and adaptation mecha-
nisms are limited only to the process of web service choreography in terms of web
service selection/invocation vis-à-vis pre-specified (Service Level Agreement) SLA
constraints. Such a technique has many deficiencies, such as inability to manage ad-

1 This is an expanded version of a paper that will appear in WS-Testing Workshop (co-located

with SCC 2007).
2 We have used version 1.3.0 of PROSE.

548 N.C. Narendra et al.

aptation, code duplication, inability to invoke an alternate Web service in case of
failure, etc. To that end, several researchers are investigating AOP for improving the
manageability of Web service compositions. For example, Cibrán and Verheecke
propose a method for modularizing Web services management with AOP [11].

Charfi et. al. have approached this problem from a different direction [10]. They
have proposed an extension to the BPEL language, which they called aspect-oriented
BPEL (AO4BPEL). Their language brings in modular and dynamic adaptability to
BPEL, since mid-flight adaptations can be implemented via advices in AO4BPEL.
Ortiz et al. develop an aspect-oriented solution for Web services composition (of type
orchestration) and for interaction patterns [6]. Orchestration is, here, defined as the
process by which the Web services interactions are monitored and managed. The
authors’ work is motivated by the lack of standards associated with composition.
More particularly, Ortiz et al. raised multiple questions related to the possibility of
reusing interaction patterns previously implemented, and the efforts to put in for
modularizing these patterns rather than scattering the code.

One recent approach towards service adaptation via AOP methods is described in
[15]. In that paper, however, the authors have primarily focused on a template-based
approach that enables the selection of the appropriate advice to be weaved into the
Web service code based on mismatches with other participating Web services in the
composite Web service. The focus in our paper, on the other hand, is on joint model-
ing and sharing of non-functional properties expressed as cross-cutting concerns via
aspects. Hence we view the ideas in [15] as being complementary to our work. Simi-
lar to [15], our earlier work [14] proposes a method for decoupling security concerns
in Web services via aspects, by expressing these concerns as contextual information
separate from the core Web services functionality. This too, is complementary to the
work reported in this paper.

One of the most well-known AOP implementations available today, is PROSE
[2,3]. PROSE works by implementing methods – known as “hooks” – that intercept
method calls in the Java Virtual Machine (JVM) at the point where the aspects are to
be executed. Hence PROSE uses a modified version of the Java just-in-time compiler
to insert code that checks for the presence of aspect advice at every possible join
point, so as to implement system behavior modification at runtime. However, PROSE
is not a distributed implementation, and works only to alter the behavior of a single
component. Our system, therefore, seeks to extend PROSE for the distributed envi-
ronment of web service composition and execution. Our system is also different from
other distributed AOP systems [9], since it does not directly manipulate the source
code of the individual component Web services; instead, it works by specifying ad-
vices to the individual component Web services so that they can change their func-
tionality themselves.

Our solution approach uses WS-Policy and WSLA for implementing the negotia-
tion of service requirements and capabilities between the service provider and the
consumer, rather than using an enterprise service bus (ESB)-based approach. An ESB
solution by itself does not provide native support for implementing negotiation of
service requirements, but instead works in conjunction with WS-Policy and WSLA to
implement the negotiation between the participating web services.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 549

3 Solution Architecture and Approach

The composite web service model is extended to contain the list of its cross-cutting
concerns that have a bi-directional mapping to those of the participating individual
component web services. Each of these concerns, in turn, will have a mapping to the
SLA constraints representing the different non-functional requirements. Hence there
are two mappings to be established and maintained (These mappings need to be estab-
lished between the composite and component Web services by prior agreement during
the build time phase of the composite web service):

• The mapping between the non-functional requirements and the different cross
cutting aspects of the composite web service

• The mapping (also known as relation function) between each aspect of the com-
posite web service and the individual aspects of the component web services

The overall solution architecture is depicted in Figure 1.

JVM
Web Service

JVM
Web Service

PROSE

Aspects

JVM
Web Service

PROSE

Aspects

PROSE

Aspects

1

2

3

4

6

7

Concern integration via relation function

5

Crosscutting concerns

Composite Web service

Component Web services

Fig. 1. Solution Architecture & Approach

Briefly, our system works as follows: at run time, in response to a change in a non-
functional requirement imposed on the composite Web service by its user (1), the
composite web service determines the appropriate aspect changes needed (2) to meet
the change. The composite Web service makes this determination using the relation
function (depicted via the “concern integration” rectangle in Figure 1) which it main-
tains. The composite Web service will therefore invoke the relation function (3, 4) to
determine those aspects of the individual web services that need to be modified. It
will then send messages (5) to the component web services, asking them to “re-
weave” their functionalities in order to meet the changed requirements (6, 7). In case
a component web service is not able to do so, it will send a reply to the message, upon
which the composite web service will need to implement the appropriate exception
handling mechanisms, for responding back to the initial user request.

550 N.C. Narendra et al.

We model the composite web service comprising aspects A1 through An. Each
component Web service Wi also possesses aspects ai1 through ain. Each aspect Ai in
the composite web service is related to the aspects aij, via the relation function:

Ai = fi(aij, 1 <= i <= m, 1 <= j <= n)

Of course, not all aspects aij will be affected by Ai, hence the relation function for
each Ai would be different. Indeed, at its most elementary level, the relation function
fi is merely a mapping between Ai and the individual aij aspects, where each mapping
could be suitably annotated with machine-readable information encoded in an XML
formatted file.

It is to be stressed that our solution approach is not dependent on the choice of
PROSE as an implementation mechanism. Different component Web services can
have their own aspect-oriented implementation mechanisms (of which several exist in
the literature3), as long as they can interoperate on sending/receiving advices for non-
functional adaptation.

4 Illustrative Example

Figure 2 shows a simple example of a learning service. The application consists of a
Learning Network Manager modeled as a composite web service, with the typical
methods for clients to read/create the books that the Learning Network Manager of-
fers from various publishers (each modeled as a component web service) offering
books for various subjects according to the grade of the user. The Learning Network
Manager allows the user to carry out various operations like reading books online,
pick-and-choose topics from various publishers, maintain user history etc.

Fig. 2. Learning Network Manager and Associated Component Web Services

In this distributed environment, the Publishers and Learning Network Manager are
required to customize their code to accommodate various kinds of customers with
dynamic requirements. We have identified some of the important cross-cutting con-
cerns. For example, the Publisher and Learning Network Manager need to accommo-
date the timing property in order to calculate the time taken by the customer to access
the Web services. This function is important for tracking the performance of the sys-
tem, especially under heavy load conditions. The second important concern is

3 http://en.wikipedia.org/wiki/Aspect-oriented_programming#Implementations

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 551

scalability - in order for the Learning Network Manager to support a larger user base,
it may expect the publishers also to support the same. Also, maintaining the history of
each user, for future reference, is another important cross-cutting concern, which
needs to be maintained by each publisher. Finally, security is needed for ensuring
access to only authorized users.

The above cross-cutting concerns can also be used to identify their respective
pointcuts, viz., Timing, System Tuning (for scalability), User History and Security.

5 Specification Language for Non-functional Properties

In order for a composite web service to locate a component web service at runtime,
based on its ‘capabilities’ to adapt to a changing non-functional requirement, the
component web service must declare its capabilities in a program readable format,
which could be interpreted by the composite web service to make a decision at run-
time whether or not to invoke a particular component web service. Hence in this sec-
tion, we discuss a specification language for representing non-functional properties
that is built on existing standards such as WS-Policy4 and WSLA5. While we use the
WS-Policy framework to represent the capabilities and requirements of a Web ser-
vice, WSLA is used to publish the QoS and related parameters that a web service can
offer to its clients.

5.1 WS-Policy Based Specification of Non-functional Properties

WS-Policy provides a general purpose XML model to define capabilities and re-
quirements of a Web Service. A policy is a collection of policy alternatives, which are
in turn a collection of policy assertions. A policy assertion represents an individual
requirement, capability or other property of behaviour. In our model, we extend the
WS-Policy grammar by adding the policy-assertion and NonFunctional-
Property tag elements as illustrated below.

<wsp:Policy
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:nfp=”http://www.ibm.com/schemas/nfp”>
 <wsp:All> <!-- policy alternative -->
 <nfp:policy-assertion name=”…” type=”…” category=”…”>
 <nfp:NonFunctionalProperty name=”…”>
 <nfp:Attribute name=”…” value=”…”/>
 <nfp:Parameter name=”” value=”” mandatory=”(true | false)”/>
 <nfp:custom-tags/>
 </nfp:NonFunctionalProperty>
 </nfp:policy-assertion>
 </wsp:All>
</ws:Policy>

Each policy-assertion has the following attributes:

4 http://www.w3.org/Submission/WS-Policy/
5 http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf/

552 N.C. Narendra et al.

• name: A qualified name for the policy assertion that could be referred to by another
element in the policy document.

• type: Type specifies whether this policy assertion represents the ‘requirement’ or the
‘capability’ of the web services defining the policy.

• category: Domain specific category name of the assertion. Example: Security,
Performance etc.

While the <Attribute> tag would be used to provide more description about the
<NonFunctionalProperty>, the <Parameter> tag accepts input parameters
to be passed to the target application (component service or an aspect implementa-
tion). For example, the non-functional property ‘ResponseTime’ may have an
attribute called ‘units’ that may specify the unit of time that would be used to
track the response time (like seconds, milliseconds etc), while at the same time, may
accept a parameter called ‘round-off-digits=nnn’ with which a composite
service may inform to the component service as to how many digits should the Re-
sponse time output be rounded off to. The <custom-tags/> in the policy speci-
fication above provides flexibility for the participating web service to specify any
domain specific custom tags that would be required to define the non-functional prop-
erties in a more detailed manner. However, please note that the XML schema defini-
tion and the interpretation of the <custom-tags/> is to be exchanged between
the participating web services a priori.

Given below is an example of how the above mentioned model would be instanti-
ated. The example below depicts a component web service that declares its capability
of supporting ‘Authentication’ as a non-functional property. Please note that the
policy-assertion type is ‘capability’ since the component web service exposes
its ability to support ‘authentication’ as one of its non-functional properties.

<wsp:Policy
 xmlns:wsp=”http://schemas.xmlsoap.org/ws/2004/09/policy”
 xmlns:nfp=”http://www.ibm.com/schemas/nfp”>
 <wsp:All> <!-- policy alternative -->
 <nfp:policy-assertion name=”SecurityAuthSpec”
 type=”capability” category=”Security”>
 <nfp:NonFunctionalProperty name=”authentication”>
 <nfp:Parameter name=”username” mandatory=”true”/>
 <nfp:Parameter name=”password” mandatory=”true”/>
 </nfp:NonFunctionalProperty>
 </nfp:policy-assertion>
 </wsp:All>
</ws:Policy>

Please note that our specification language differs from WS-CoL [18] in that WS-

CoL extends WS-Policy to define 'constraints' to be imposed during the execution of
web services as well as to retrieve external data required to evaluate a constraint ex-
pression whereas our extension of WS-Policy provides a facility to specify the 'capa-
bilities' and 'requirements' of a service. Our specification is domain independent due
to the support of a generic <NonFunctionalProperty> tag as well as the
<custom-tags/> place holder to support domain specific extensions and represen-
tations of non-functional properties.

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 553

5.2 Service Level Agreement

A service level is used to define the expected performance behavior of a deployed Web
service, where the performance metrics are, for example, average response time, supported
throughput, service availability, etc. During deployment of a Web service, the resources of
an underlying Web service container can be reconfigured to provide a certain service
level. Even the same Web service can be offered at different service levels to different
clients by dynamically allocating resources for execution of individual Web service re-
quests. Hence, to receive assurances on the service level, a client creates a priori a service
level agreement (SLA) associated with this Web service with the service provider.

In our running example, a Publisher’s web service would have an SLA defined for
‘ResponseTime’ using WSLA, representing the Timing pointcut introduced in Section
4. Given below is a sample SLA document defining an SLAParameter called ‘Re-
sponseTime’ and the metric used to measure it.

<OperationGroup name="ReadOperations">

 <Operation name="WSDLSOAPGetChapter">
 <SLAParameter name="ResponseTime" type="float"
 unit="seconds">

 <Metric>AverageResponseTime</Metric>
 </SLAParameter>
 </Operation>

</OperationGroup>

An SLAObligation for the above mentioned example may be defined as below:

<ServiceLevelObjective name=”SLO_for_ResponseTime”>
 <Obliged>McGrawHillPublisher</Obliged>
 <Expression>
 <Predicate xsi:type="Less">
 <SLAParameter>ResponseTime</SLAParameter>

 <Value>2</Value> <!-- 2 seconds -->
 </Predicate>
 </Expression>
</ServiceLevelObjective>

6 Aspects and Their Relationships

We relate each of the above identified point-cuts to an aspect. An aspect of a compo-
nent web service is affected by zero or more aspects of the composite web service.
Aspect interactions can be complex, subtle and very difficult to identify. Please note
that finding such interactions is outside the scope of our research. In our work we
assume a fixed ontology of aspects, with all interactions explicitly identified ahead of
time. We provide an XML file representation for specifying the aspect interaction and
conflicts. Our model is extensible and hence we can contain any level of complex
relationships here. Our model of aspect interactions is leveraged from [7]), and fea-
tures the following: Orthogonal – if the combined contribution of both aspects is
equal to the sum of their individual contributions (e.g., user-history aspect of compo-
nent & composite Web services); Complementary – if their combined contribution is
greater than the sum of their individual contributions (e.g., authentication and timing
aspect), Depends – if they can only be deployed along with each other (e.g., timing

554 N.C. Narendra et al.

aspect of composite Web service and timing aspects of component Web service);
Conflict – if their combination has a negative effect on the behavior of the composite
Web service (e.g., timing and user-history aspect may conflict, especially if the policy
of charging the customer is based on the content accessed); Prevents – if the applica-
tion of one aspect prevents the application of the other (e.g., if one aspect measures
the response time with respect to a threshold, which would deactivate other aspects
such as caching, security and logging); Equivalent – if their individual effects are the
same (e.g., different logging types such as CBELogging, JTraceLogging, etc.)

7 Implementation Details

Our learning network manager is modeled as a composite web service, with operations
such as authenticateUser, showBooks, showSubjects, showTopics, showContents and
createBook exposed for clients to read/create the books that the Learning Network Manager
offers from various publishers (see Figure 3). Each publisher is modeled as a component
web service offering books for various subjects through their exposed operations. (We have
not displayed the details of the WSDL-based interfaces of the Web services in this Section,
since we have chosen to focus on the non-functional property modeling aspects.)

Fig. 3. Service Operations

The timing aspect relationship between the Learning Network Manager and any of
the publishers is depicted in Figure 4.

Fig. 4. Timing aspect relationship between component and composite services

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 555

Given below is the Timing Aspect implementation for McGrawPublisher service in
PROSE.

Figure 5 depicts a snapshot of WS-Policy declared by LearningNetworkMan-
ager Web Service stating that it ‘expects’ the component services (Mc-GrawHill and
Pearson publishers) to support the tracking of ‘Response Time’ of ShowBooks()
service. The component service would also weave an aspect code dynamically into its
AOP runtime system to handle the change in non-functional requirement.

Fig. 5. WS-Policy defining composite service’s Non Functional Property requirement

In response to the above mentioned requirement, the component service (eg., Mc-
GrawHill publisher), would generate an SLA and publish it to the requesting service.
Section 5.2 above shows a snapshot of the SLA published by the component service.

Given in Figure 6 below is a self-explanatory sequence of screen shots that explain
the flow of the implementation. The Figure shows the ShowBooks() service of the
McGrawHill and Pearson publisher services, before and after the invocation of the
Timing aspect.

556 N.C. Narendra et al.

(a) Invocation of ShowBooks() opera-
tion

(b) ShowBooks() returns no as-
pect message

(c) Enabling of Timing Aspect

(d) Invoking ShowBooks() after enabling
aspect

(e) Due to dynamic weaving of aspects, component service responds back to composite
service with Response time details

Fig. 6. Screenshots of Implementation

8 Future Work

Future work will involve integrating our work with self-healing Web services envi-
ronments as modeled in [16]. Additionally, we will also evaluate the recent work of a
joinpoint inference technique based on behavioral specifications of state machine
specifications [17], and investigate how it can be used to provide a formal specifica-
tion of aspect interactions between the composite and component Web services.

Acknowledgement. The authors wish to thank Sumanth Vepa, Zakaria Maamar,
Dipayan Gangopadhyay and the anonymous ICSOC reviewers for their feedback.

References

[1] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

[2] Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect Oriented Program-
ming. In: Proceedings of 1st International Conference on Aspect-Oriented Software De-
velopment, Enschede, The Netherlands (2002)

 Run-Time Adaptation of Non-functional Properties of Composite Web Services 557

[3] Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. Department of Computer Science,
Swiss Federal Institute of Technology Zurich (ETH Zurich), CH-8092 Zurich, Switzer-
land, accessible from http://prose.ethz.ch/

[4] Popovici, A., Alonso, G., Gross, T.: Just in Time Aspects: Efficient Dynamic Weaving
for Java. In: Proceedings of 2nd International Conference on Aspect-Oriented Software
Development, Boston, USA (2003)

[5] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Over-
view of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 18–22.
Springer, Heidelberg (2001)

[6] Ortiz, G., Hernandez, J., Clemente, P.J.: Decoupling Non-Functional Properties in Web-
Services: As Aspect-Oriented Approach. In: ICSOC’2004. Proceedings of The 2nd Inter-
national Conference on Service Oriented Computing, New-York, USA (2004)

[7] Wohladter, E., Tai, S., Thomas, A., Rouvellou, I., Devanbu, P.: GlueQoS: Middleware to
Sweeten Quality-of-Service Policy Interactions. In: ICSE. Proceedings of International
Conference on Software Engineering, Edinburgh, UK (2004)

[8] Ma, K.J.: Web Services: What’s Real and What’s Not. IEEE IT Professional 7(2) (2005)
[9] Nishizawa, M., Chiba, S., Tatsubori, M.: Remote Pointcut – A Language Construct for

Distributed AOP. In: AOSD’04. Proceedings of International Conference on Aspect-
Oriented Software Development, Lancaster, UK, March 22-26, pp. 7–15. ACM Press,
New York (2004)

[10] Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M.: Reliable, Secure and Transacted
Web Service Compositions with AO4BPEL. In: ICSOC’2004. Proceedings of The 2nd
International Conference on Service Oriented Computing, New-York, USA (2004)

[11] Cibrán, M.A., Verheecke, B.: Modularizing Web Services Management with AOP. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003)

[12] Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., Dumas, M.: Declarative Composition and Peer-
to-Peer Provisioning of Dynamic Web Services. In: ICDE. Proceedings of International
Conference on Data Engineering (2002), also available from http://csdl.computer.org/
comp/proceedings/icde/2002/1531/00/15310297abs.htm

[13] Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: A Foundational
Vision for E-Services. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681,
Springer, Heidelberg (2003)

[14] Kouadri Mostefaoui, G., Maamar, Z., Narendra, N.C., Sattanathan, S.: Decoupliing Secu-
rity Concerns in Web Services Using Aspects. In: ITNG 2006. Proceedings of Informa-
tion Technology – New Generations, IEEE Computer Society Press, Los Alamitos (2006)

[15] Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An Aspect-Oriented Frame-
work for Service Adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, Springer, Heidelberg (2006)

[16] Kouadri Mostefaoui, G., Maamar, Z., Narendra, N.C., Thiran, Ph.: On Modeling and De-
veloping Self-Healing Web Services Using Aspects. In: COMSWARE 2007. Proceedings
of 2nd International Conference on Communication Software and Middleware, IEEE
Communications Society, Los Alamitos (2007)

[17] Cottenier, T., van den Berg, A., Elrad, T.: Joinpoint Inference from Behavioral Specifica-
tion to Implementation. In: ECOOP. Proceedings of European Conference on Object-
Oriented Programming (2007) (to appear)

[18] Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: Proceedings of
TES 2005 (September 2005)

	Run-Time Adaptation of Non-functional Properties of Composite Web Services Using Aspect-Oriented Programming
	Introduction and Motivation
	Related Work
	Solution Architecture and Approach
	Illustrative Example
	Specification Language for Non-functional Properties
	WS-Policy Based Specification of Non-functional Properties
	Service Level Agreement

	Aspects and Their Relationships
	Implementation Details
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

