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Abstract. Most traffic management and optimization tasks, such as
accident detection or optimal vehicle routing, require an ability to ade-
quately model, reason about and predict irregular and stochastic behav-
ior. Our goal is to create a probabilistic model of traffic flows on highway
networks that is realistic from the point of applications and at the same
time supports efficient learning and inference. We study several multi-
variate probabilistic models and analyze their respective strengths. To
balance accuracy and efficiency, we propose a novel learning model, mix-
ture of Gaussian trees, and show its advantages in learning and inference.
All models are evaluated on real-world traffic flow data from highways
of the Pittsburgh area.

1 Introduction

The importance of road transportation systems to our daily lives can hardly
be overstated. To facilitate monitoring and management of their complexities,
sensors collecting traffic information (such as traffic volumes and speeds) are
installed on many roads. Today, coverage is good for major highways in many
metropolitan areas and traffic sensor deployment is rapidly increasing worldwide.

Road networks exhibit strong interaction patterns among traffic variables and
traffic is subject to stochastic fluctuations. The ability to adequately model,
reason about and predict stochastic behavior is crucial to computational support
of many traffic management tasks, such as traffic routing, congestion analysis
and accident detection. The objective of our work is to develop models of large
multivariate continuous probability distributions describing vehicular traffic. We
require that the models be compactly parameterized and admit efficient inference
and learning algorithms.

The quantities of primary interest in this paper are traffic flows. Traffic flow
is defined as the number of vehicles passing a point on a highway in a unit of
time. Traffic flows in the highway network are typically modeled with Gaussian
densities [1]. An assumption very often made in stochastic analysis of a net-
work system is that the components of the system behave independently. The
multivariate probabilistic model of the network then factorizes to a product of
univariate distributions that are easy to learn and reason with. Unfortunately,
the assumption of full independence is unrealistic and ignores strong interaction
patterns between traffic variables observable in real data. On the other hand,
the full-covariance model is too complex to learn reliably from limited data.
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Consequently, we seek models between the two extremes that provide the right
balance between model complexity and accuracy. The ideal model captures the
important dependencies and at the same time remains tractable.

Intuitively, vehicles on distant roadways do not interact and the dependency
patterns must be “local” and closely tied to the topology of the physical road
network. In this work we study two models that attempt to capture only the
key local interactions: the conditional autoregressive (CAR) model [2], and our
novel approach with mixture of Gaussian trees.

We analyze and compare all models on real-world traffic data collected at
75 sensor locations on major highways in the Pittsburgh metropolitan region.
We demonstrate that the new model represents the sought middle ground for
Pittsburgh traffic network data.

2 Gaussian Models

The Gaussian probability distribution appears to be particularly suitable for
modeling traffic volumes [1]. The number of cars passing during a given interval
can be thought of as a result of a stochastic process in which drivers choose to
take the particular segment with a probability, resulting in a binomial distribu-
tion of the number of observed cars. The binomial distribution, for large N , is
well approximated by the computationally favorable Gaussian. The multivari-
ate Gaussian model is characterized by its mean μ and covariance matrix Σ.
The parameters are usually learned from observed traffic data using maximum-
likelihood estimates. The estimate quality depends on the number N of data-
points available. The number of free parameters in the covariance matrix grows
quadratically with the number of sensors, adversely impacting the variance of
the parameter estimates.

The model-complexity problem of the full multivariate Gaussian model is
often avoided by assuming that all variables are independent, i.e. the covariance
matrix is restricted to be diagonal. As a result, the learning problem decomposes
to D univariate learning problems, where D is the dimensionality of the data. The
advantage of the approach is that the number of free parameters is linear in the
number of sensors. The drawback is that ignoring all interactions is unrealistic for
traffic networks that exhibit strong correlation between readings of neighboring
sensors.

3 The Conditional Autoregressive Model

Traffic flows at places not directly adjacent will not influence each other except
via the situation on a road segment(s) connecting them. In other words, the
Markov property [3] holds. The popular conditional autoregressive (CAR) model
[2] embodies this intuition about locality. The model assumes that the volume
y observed at location s obeys:

y(s) = εs +
∑

r∈N(s)

θs
ry(r), (1)
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where N(s) denotes the neighborhood of s and εs ∼ N (0, σ2
s) is additive noise.

We fit the model parameters θ using a ridge-regression procedure [4].
The limitation of the CAR model is that the conditional probabilities need

not define a proper probabilistic model [5]. Even if it exists, the joint distribution
may be intractable and the most natural way to obtain proper probabilities from
the CAR model is Gibbs sampling [6].

4 Mixture of Gaussian Trees

Bayesian networks [7] are an elegant formalism for capturing probabilistic de-
pendencies. A Bayesian network consists of a directed acyclic graph and a prob-
ability specification. In the directed graph, each node corresponds to a random
variable, while edges define the decomposition of the represented joint probabil-
ity distribution:

p(X) =
D∏

i=1

p(xi|pa(xi)),

where pa(Xi) are the parents of Xi in the graph. The probability specification is
the set of conditional distributions p(Xi|pa(Xi)), i = 1, . . . , D. Intuitively (but
not exactly), an edge in a Bayesian network represents a causal influence of the
parent on the child. However, traffic congestions are subject to cyclic interaction
patterns (e.g., gridlocking) that cannot be directly modeled with a Bayesian
network.

One way to address the problem of cyclic interactions is to approximate the
underlying distribution with a simpler dependence structure that permits both
efficient learning and inference. Having the maximum number of edges without
introducing cycles, tree structures are a natural choice. By committing to a single
tree, we capture the maximum number of dependencies without introducing
a cycle; but inevitably, some dependencies will be ignored. In the mixture of
trees model [8], the missed dependencies may be accounted for by the remaining
mixture components.

Meilă developed the model in a discrete variable setting. In this work we
propose the mixture of Gaussian trees (MGT) model where Gaussian instead of
discrete variables are used. The mixture of Gaussian trees consists of:

– a collection of m trees with identical vertex sets T1 = (X, E1), . . . , Tm =
(X, Em), where each node v ∈ Vk with parent xu has a conditional probabil-
ity function such that xv ∼ N (μ + cvxu, σv). Note that it is always possible
to orient a tree so that each node has at most one parent.

– mixture weights λ = (λ1, . . . , λm) such that
m∑

k=1
λi = 1.

Let Tk(x) denote the probability of x under the distribution implied by the
tree Bayesian network Tk. The joint probability for the mixture model is then:

p(x) =
m∑

k=1

λkTk(x). (2)
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4.1 Inference in the MGT Model

Any probabilistic query in the form p(y|e) can be answered from the joint dis-
tribution (Equation 2) by taking:

p(y|e) =
p(y, e)
p(e)

=
∑

i λiTi(y, e)∑
i λiTi(e)

(3)

Both the numerator and denominator represent m instances of inference in tree
Gaussian networks, which is a linear-complexity problem [9].

4.2 Learning in the MGT Model

The maximum likelihood parameters for the MGT model can be obtained by
the EM algorithm. Three quantities must be estimated in each M-step: (1) the
structure of trees that constitute the mixture components, (2) their parameteri-
zation and (3) the mixture proportions. Let γk(n) denote the posterior mixture
proportion:

γk(n) =
λkTk(xn)∑
i λiTi(xn)

.

The γk(n)s can be interpreted as “responsibility” of tree k for the n-th datapoint.
Computing γk(n)s constitutes the E-step. The quantity Γk =

∑N
n=1 γk(n) takes

on the meaning of the expected count of datapoints that Tk is responsible for
generating. Let us also define the distribution Pk associated with Tk over the set
of datapoints by Pk(xn) = γk(n)

Γk
.

In the M-step, we need to update three quantities: the tree structures, their
parameters and the mixture proportions.

The tree structures are selected using a variant of the Chow-Liu procedure
[10]. The Chow-Liu procedure selects a tree model T such that the KL-divergence
(or equivalently, the cross-entropy) between the responsibilities computed in the
E-step and the tree distribution is minimized:

T new
k = argmax

Tk

N∑

i=1

Pk(xi) log Tk(xi). (4)

This is accomplished by finding a Maximum Weight Spanning Tree (MWST),
where the edges are weighted by the mutual information between variables they
connect. The structure update for the tree Tk requires that we compute the
mutual information between all variables xu, xv ∈ X . In the continuous case,
this is computationally infeasible without making a distributional assumption.
We therefore treat Pk(xi) as a sample from a Gaussian and compute the mutual
information in closed form:

Ik(xu, xv) = −1
2

log(|Σ̂k|/(σ2
uσ2

v)), (5)

where Σ̂k is the maximum likelihood estimate of the 2 × 2 covariance matrix
and σ2

u and σ2
v are its diagonal elements. After we have determined the optimal
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structure, we orient the tree by picking a vertex at random and directing all the
edges away from it. In this manner we achieve that every vertex has at most one
parent. Mutual information is symmetrical, which means that any orientation of
edges yields an optimal spanning tree.

Parameter learning. It is unsurprising to derive that the M-step update for
λ is to match the expected empirical marginal: λk = Γk

N .
Consider an arc u → v and recall that xv ∼ N(μv + cvxu, σv). We have

data in the form Duv = {(x(i)
u , x

(i)
v , w(i))}N

i=1, where the weight w(i) corresponds
to Pk(xi) computed in the E-step. We can update the parameters of v, denoted
θv = {μv, cv, σv}, by maximizing the likelihood of the data P (Duv|θv). We obtain
that the update of μv and cv is the solution of the following linear system:

⎛

⎜⎜⎝

N∑
n=1

w
(i)
v

N∑
i=1

x
(i)
u w

(i)
v

N∑
i=1

x
(i)
v w

(i)
v

N∑
i=1

x
(i)
u w

(i)
v

N∑
i=1

x
(i)
u x

(i)
u w

(i)
v

N∑
i=1

x
(i)
v x

(i)
u w

(i)
v

⎞

⎟⎟⎠ . (6)

Knowing μv and cv we can estimate σ2:

σ2
v =

(
N∑

n=1

w(i)
v

)−1 N∑

i=1

(x(i)
v − μv − cvx

(i)
u )2w(i)

v (7)

E- and M- step are alternated until the expected complete log-likelihood stabi-
lizes.

Model selection. The parameter that remains to be chosen is the number
of mixture components (trees). We propose that the search be performed by
learning the model with increasing number of components until the Bayesian
Information Criterion (BIC) no longer decreases. The BIC is defined as an ap-
proximation to the integrated likelihood [11]:

BIC(k) = −2 ln p(D|k, θ̂k) + ψk ln N (8)

where θ̂k is the ML estimate of parameters and ψk is the number of free param-
eters in model with k components.

5 Experimental Evaluation

The data was collected by 75 sensors monitoring Pittsburgh highways. Each dat-
apoint is thus a vector consisting of the numbers of vehicles passing the respective
sensors during a five-minute interval. The dataset contains all measurements at a
fixed time of all workdays throughout one year. The correlations between sensors
are high and we expect that this will be a challenging dataset for the structure
search algorithms, causing them to capture spurious correlations.
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5.1 Evaluation Metrics

In order to assess the quality of distribution modeling, we use three metrics: a
log-likelihood score, relative error and coefficient of determination. The com-
plexity of the model is accounted for by also reporting the BIC score obtained
in training of the model. The data is divided into the training and testing set.
After the model is trained on the training set, some variables in each datapoint
of the testing set are chosen to be hidden; they will be denoted by h(n), while
the remaining – observed variables will be denoted by e(n). Denote the set of
hidden variables by H .

We compute the log-likelihood score

LLS(H |θM ) =
N∑

n=1

log p(h(n)|e(n), θM ) (9)

This score reflects how well the model predicts the set of chosen values, given the
remaining observations. As this measure is computed on a subset of the unseen
test set and the sample space of observables in all models is the same, it is not
skewed by the different complexity of the models.

The coefficient of determination is a classical measure of predictor quality
and can be interpreted as the proportion of the data variance explained by the
model. It is obtained as 1 − RSS/TSS. Denoting the actually observed value of
the hidden variable h by x(h) and the model’s prediction by y(h), the residual
sum of squares is RSS =

∑
h∈H(x(h) − y(h))2. The prediction given by model

M is defined to be the mean of p(h(n)|e(n), M, θM ). The total sum of squares is
defined as TSS =

∑
h∈H

(y(h) − E(y(h)))2.

The relative error is defined naturally as erel = |x(h) − y(h)|/x(h).
We argue that multivariate metrics such as the LLS, which considers all hidden

values in a particular datapoint jointly, reflect the model prediction quality better
and should be given more weight than the univariate scores such as the coefficient
of determination, which look at each missing value in isolation.

5.2 Experiment Setup and Parameters

The product of univariate Gaussians is learned using the ML estimate of mean
and variance for each dimension separately. Conditioning is trivial for the model:
p(h(n)|e(n), μ, σ) = p(h(n)|μ, σ).

The full covariance Gaussians are parameterized from the data by the maxi-
mum likelihood estimates. Conditionals are obtained as p(h(n)|e(n) = f, μ, Σ) =
N (μ, Σ), where μ = μh − ΣheΣ

−1
ee (μe − f), Σ = Σhh − ΣheΣ

−1
ee Σeh and Σ··

are the respective block submatrices of Σ.
Since the CAR model may not define a proper distribution, we obtain a large

number (106) of samples with the Gibbs sampler and fit a multivariate Gaussian
to compute the likelihood.
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Table 1. The likelihood scores (larger is better), and BIC scores (smaller is better),
relative errors (smaller is better) and coefficients of determination (larger is better).
The parenthesized numbers are the standard deviations across test splits.

Method # prms LLS BIC Relat err Coef of det
N(μ, Σ) 2,925 −8, 448(664.2) 186,910 (6,751) 0.039(0.0022) 0.889(0.012)
N(μ, diag(σ)) 150 −13, 314(1, 036.3) 197,910 (7,361) 0.073(0.0050) 0.638(0.019)
CAR 1,277 −8, 162(598.3) 203,126 (5,970) 0.037(0.0023) 0.868(0.016)
SingleTree 224 −8, 282(616.6) 13,667 (784.1) 0.057(0.0056) 0.765(0.050)
MixTrees(2) 449 −8, 176(638.6) 17,159 (4,299) 0.053(0.0050) 0.766(0.052)
MixTrees(3) 674 −8, 158(632.0) 24,562 (12,995) 0.055(0.0141) 0.704(0.176)
MixTrees(5) 1,124 −8, 226(624.2) 67,787 (32,787) 0.197(0.4567) 0.305(0.341)

We learn the Mixture of Gaussian Trees (MGT) model using the EM algorithm
described in Section 4, using 1,2,3 and 5 mixture components. The LL score is
computed by conditional inference as described in Section 4.1.

In the reported experiment, 20% of the values are omitted at random from
the testing set; the values omitted are fixed across the methods so that each
method encounters the same set of missing data. This ensures comparability of
the quality metrics across the methods. The statistics from 20 train/test splits
are shown in Table 1.

5.3 Results

Evaluation results show that the mixture-of-trees model performed the best.
The 3-component MGT yielded the best score, closely followed by the condi-
tional autoregressive model. However, the MT model achieves this performance
with much fewer parameters. The difference is reflected in the BIC complexity
penalty. The BIC suggests that even a single-tree model might be appropriate,
although the likelihood is lower for mixtures of 2 and 3 trees. Further in favor
of the mixture model, the MGT model also has an embedded structure-learning
component, while the CAR model operates with informed pre-defined neighbor-
hoods. Therefore MGT achieves this performance with less prior information.
MGT is very good at modeling the training data, yielding low BIC scores. This
can lead to some amount of overfitting: the 5-component MGT shows signs of
testing performance deterioration.

The relative error results confirm our original intuition that the MGT stands
between the full and independent Gaussian in performance and complexity.

We note the disproportionately high BIC scores of the full-Gaussian, inde-
pendent Gaussian and CAR models. In the independent Gaussian case, this is
caused by poor modeling of the dependencies in data. On the other hand, the
full Gaussian and CAR models suffer a high complexity penalty.

This cautions us that normally we do not have the data to fit a full covariance
Gaussian. A variety of factors is observable in traffic networks, of which the most
obvious is the variability with the time of day. The correct way to deal with
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observable factors is to condition on them, which cuts down the training data
severely. The full covariance Gaussian will likely meet scaling-up problems in
such context.

6 Conclusions

We developed and presented a new mixture of Gaussian trees model that provides
a middle ground in between the data-hungry full covariance and the unrealistic
all-independent Gaussian models. We have explored several other methods for
modeling traffic density and used a predictive likelihood measure to compare
their performance. If data are plentiful, the full-covariance Gaussian can be es-
timated with a high accuracy. However, in the more realistic case when data is
scarce, our mixture-of-trees model, with a number of parameters that increases
linearly with the dimension of the dataset, offers itself as the method of choice.

Many interesting research issues remain open. For example, when learning
from small sample-size datasets, it would be advantageous to generalize the
Bayesian version of the MT learning algorithm [12] to handle the distributions
in the exponential family (including Gaussians that we used here). Automatic
model complexity selection and greater resistance to overfit are among the ex-
pected benefits of applying the Bayesian framework.
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