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2 Instituto de Ciências e Matemáticas e de Computação, Universidade de São Paulo
edsontm@icmc.usp.br

Abstract. Given a binary classification task, a ranker sorts a set of instances from
highest to lowest expectation that the instance is positive. We propose a lexico-
graphic ranker, LexRank , whose rankings are derived not from scores, but from
a simple ranking of attribute values obtained from the training data. When using
the odds ratio to rank the attribute values we obtain a restricted version of the
naive Bayes ranker. We systematically develop the relationships and differences
between classification, ranking, and probability estimation, which leads to a novel
connection between the Brier score and ROC curves. Combining LexRank with
isotonic regression, which derives probability estimates from the ROC convex
hull, results in the lexicographic probability estimator LexProb. Both LexRank
and LexProb are empirically evaluated on a range of data sets, and shown to be
highly effective.

1 Introduction

ROC analysis is increasingly being employed in machine learning. It has brought with
it a welcome shift in attention from classification to ranking. There are a number of
reasons why it is desirable to have a good ranker, rather than a good classifier or a good
probability estimator. One of the main reasons is that accuracy requires a fixed score
threshold, whereas it may be necessary to change the threshold in response to changing
class or cost distributions. Furthermore, good performance in both classification and
probability estimation is easily and trivially obtained if one class is much more prevalent
than the other, but this wouldn’t be reflected in ranking performance.

In this paper we show that, even if one is primarily interested in probability estima-
tion, it is both advantageous and feasible to first construct a ranker. We demonstrate this
by proposing a very simple non-scoring ranker, which is based on a linear preference
ordering on attributes, which is then used lexicographically. We can obtain calibrated
probability estimates from its ROC convex hull, which is in fact equivalent to isotonic
regression [1], as noted independently by [2]. In extensive experiments we demonstrate
that both our lexicographic ranker and our lexicographic probability estimator perform
comparably with models employing a much weaker bias.

The outline of the paper is as follows. In Section 2 we compare and contrast the
notions of classification, ranking, and probability estimation, and discuss how to assess
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performance in each of these cases. In Section 3 we uncover the fundamental relation-
ship between ROC curves and the Brier score or mean squared error of the probability
estimates. Section 4 defines lexicographic ranking and the LexRank algorithm, which
can easily be turned into the lexicographic probability estimator LexProb by means of
constructing its ROC convex hull. In Section 5 we report on an extensive set of experi-
ments, and Section 6 concludes.

2 Classification, Ranking, and Probability Estimation

Let X = A1 × . . .×An be the instance space over the set of discrete attributes A1, . . . ,An.
A classifier is a mapping ĉ : X → C, where C is a set of labels. For a binary classifier,
C = {+,−}. A ranker orders the instance space X , expressing an expectation that some
instances are more likely to be positive than others. The ranking is a total order, possibly
with ties. The latter are represented by an equivalence relation over X , so the total order
is on those equivalence classes; we call them segments in this paper. For notational
convenience we represent a ranker as a function r̂ : X × X → {>,=,<}, deciding for
any pair of instances whether the first is more likely (>), equally likely (=), or less
likely (<) to be positive than the second. (By a slight abuse of notation, we also use >
and < for the total order on the segments of X). If X1,X2 ⊆ X are segments such that
X1 > X2, and there is no segment X3 such that X1 > X3 > X2, we say that X1 and X2 are
adjacent. We can turn a ranker into a binary classifier by splitting the ranking between
two adjacent segments. Furthermore, given a ranker r̂, we can construct another ranker
r̂′ by joining two adjacent segments X1 and X2, and removing X1 > X2 from the total
order. We say that r̂′ is coarser than r̂, or equivalently, that the latter is finer than the
former.

A scoring classifier is a mapping ŝ : X → R, assigning a numerical score ŝ(x) to each
instance x. We will use the convention that higher scores express more preference for the
positive class. A probability estimator is a scoring classifier that assigns probabilities,
i.e., a mapping p̂ : X → [0,1]. p̂(x) is taken to be an estimate of the posterior p(+|x),
i.e., the true probability that a random instance with attribute-value vector x belongs
to the positive class. Clearly, given a scoring classifier ŝ (or a probability estimator)
we can construct a ranker r̂ that orders instances on decreasing scores. Furthermore,
we can turn a scoring classifier into a classifier by turning the associated ranker into a
classifier as described above, or equivalently, by setting a threshold t ∈ R and assigning
all instances x such that ŝ(x) ≥ t to the positive class and the remaining instances to the
negative class.

We illustrate the above on decision trees. [3] and [4] showed that decision trees can be
used as probability estimators and hence as rankers. We obtain a probability estimator
from a decision tree by considering the numbers of positive (n+

i ) and negative (n−
i )

training examples belonging to the i-th leaf. The estimated posterior odds in lea fi is

then P(+|lea fi)
P(−|lea fi)

= n+
i

n−
i

(or
n+

i +1

n−
i +1

if we apply Laplace correction, as recommended by [4]).

The corresponding ranker is obtained by ordering the leaves on decreasing posterior
odds. A classifier is obtained by labelling the first k+ leaves in the ordering positive and
the remaining k− leaves negative. Figure 1 shows a small example.
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Fig. 1. A data set, and an induced decision tree. Instead of leaf labellings, the class distributions
of training instances are indicated for each leaf, which can be used to obtain the ranking leaf 2 –
leaf 3 – leaf 1 – leaf 4.

The performance of a binary classifier can be assessed by tabulating its predictions
on a test set with known labels in a contingency table, from which true and false positive
rates can be calculated. An ROC plot plots true positive rate on the Y-axis against false
positive rate on the X-axis; a single contingency table corresponds to a single point in an
ROC plot. The performance of a ranker can be assessed by drawing a piecewise linear
ROC curve. Each segment of the curve corresponds to one of the segments induced
by the ranker; the order of the ROC segments corresponds to the total ordering on the
ranking segments. If the i-th segment contains n+

i out of a total of n+ positives and
n−

i out of n− negatives, the segment’s vertical length is n+
i /n+, its horizontal width is

n−
i /n− and its slope is li = n+

i
n−

i
c−1, where c = n+/n− is the prior odds. We will denote

the proportion of positives in a segment as pi = n+
i

n+
i +n−

i
= li

li+1/c . We will call these

empirical probabilities; they allow us to turn a ranker into a probability estimator , as
we will show later. The area under the ROC curve or AUC estimates the probability
that a randomly selected positive is ranked before a randomly selected negative, and is
a widely used measure of ranking performance. An ROC curve is convex if the slopes li
are monotonically non-increasing when moving along the curve from (0,0) to (1,1). A
concavity in an ROC curve, i.e., two or more adjacent segments with increasing slopes,
indicates a locally worse than random ranking. In this case, we would get better ranking
performance by joining the segments involved in the concavity, thus creating a coarser
classifier.

The performance of a scoring classifier can be assessed in the same way as a ranker.
Alternatively, if we know the true scores s(x) we can calculate a loss function such as
mean squared error 1

|T | ∑x∈T (ŝ(x)− s(x))2, where T is the test set. In particular, for a

probabilistic classifier we may take s(x) = 1 for a positive instance and s(x) = 0 for a
negative; in that case, mean squared error is also known as the Brier score [5]. Note that
the Brier score takes probability estimates into account but ignores the rankings (it does
not require sorting the estimates). Conversely, ROC curves take rankings into account
but ignore the probability estimates. Brier score and AUC thus measure different things
and are not directly comparable.
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3 ROC Curves, the Brier Score, and Calibration

In this section we demonstrate a fundamental and novel relationship between Brier
score and ROC curves. We do this by means of a decomposition of the Brier score in
terms of calibration loss and refinement loss. A very similar decomposition is well-
known in forecasting theory (see, e.g., [6]), but requires a discretisation of the prob-
ability estimates and is therefore approximate. Our decomposition uses the segments
induced by the ranking and is therefore exact.

Theorem 1. Given an ROC curve produced by a ranker on a test set T , let p̂i be the
predicted probability in the i-th segment of the ROC curve. The Brier score is equal to
BS = 1

|T | ∑i ni(p̂i − pi)2 + 1
|T | ∑i ni pi(1 − pi).

Proof. BS= 1
|T | ∑x∈X (p̂(x)− p(x))2= 1

|T | ∑i[n
+
i (p̂i −1)2+n−

i p̂2
i ]=

1
|T | ∑i[ni p̂2

i −2n+
i p̂i +

n+
i ] = 1

|T | ∑i[ni(p̂i −
n+

i
ni

)2 + n+
i (1 − n+

i
ni

)] = 1
|T | ∑i ni(p̂i − pi)2 + 1

|T | ∑i ni pi(1 − pi).

Both terms in this decomposition are computed by taking a weighted average over all
segments of the ROC curve. The first term, the calibration loss, averages the squared
prediction error in each segment. It is important to note that the error is taken relative to
pi, which is the proportion of positives in the segment and thus not necessarily 0 or 1. In
other words, the calibration loss as defined above relates the predicted probabilities to
the empirical probabilities obtained from the slopes of the segments of the ROC curve.
The second term in the Brier score decomposition is called refinement loss. This term
is 0 if and only if all ROC segments are either horizontal or vertical, which is the case
if all segments are singletons. Consequently, refinement loss is related to the coarse-
ness of the ranker, hence its name. For instance, refinement loss is maximal (0.25) for
the ranker which ties all test instances. Notice that refinement loss only takes empirical
probabilities into account, not predicted probabilities. It is therefore a quantity that can
be evaluated for any ranker, not just for probability estimators. Notice also that, while
the Brier score itself does not require ranking the probability estimates, its decomposi-
tion into calibration loss and refinement loss does. As an illustration, the decision tree
from Figure 1 has 0 calibration loss on the training set (if Laplace correction is not used)
and refinement loss (5 ·4/5 ·1/5+4 ·3/4 ·1/4+5 ·2/5 ·3/5+6 ·1/6 ·5/6)/20= 0.18.

Theorem 2. The calibration loss is 0 only if the ROC curve is convex.

Proof. Suppose the ROC curve is not convex, then there are two adjacent segments
such that p̂i > p̂ j but li < l j. From the latter it follows that pi < p j, and thus at least one
of the error terms (p̂i − pi)2 and (p̂ j − p j)2 is non-zero.

Theorem 3. Let p̂ be a probability estimator with a convex ROC curve but a non-
zero calibration loss. Let p̂′ be derived from p̂ by predicting pi rather than p̂i in each
segment. Then p̂′ has the same AUC as p̂ but a lower Brier score.

Proof. p̂′ may be coarser than p̂ because it may merge adjacent segments with p̂i > p̂ j
but pi = p j. But this will not affect the shape of the ROC curve, nor the AUC. We thus
have that the slopes of all segments remain the same, hence the pi; but since p̂′ has zero
calibration loss the Brier score is decreased.
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Many models do not guarantee convex training set ROC curves. For such models, the
above suggests a straightforward procedure to obtain calibrated probabilities, by con-
structing the convex hull of the ROC curve [7]. This can be understood as creating a
coarser ranking, by joining adjacent segments that are in the wrong order. Clearly, join-
ing segments results in additional refinement loss, but this is compensated by setting the
probability estimates equal to the empirical probabilities, hence obtaining zero calibra-
tion loss (although in practice we don’t achieve zero calibration loss because we apply
the Laplace correction in order to avoid overfitting). This procedure can be shown to be
equivalent to isotonic regression [1]; a proof can be found in [2].

4 Lexicographic Ranking

While a ranker is commonly obtained by sorting the scores of a scoring classifier as
indicated in Section 2, it is possible to define a ranker without scores. Probably the
simplest way to do so is to assume a preference order on attribute values, and to use
that ordering to rank instances lexicographically. In the rest of this paper, we will show
that such a simple ranker, and the probability estimates derived from it, can perform
competitively with less biased models such as decision trees and naive Bayes.

For notational convenience we will assume that all attributes are binary; since a nom-
inal attribute with k values can be converted into k binary attributes, this doesn’t repre-
sent a loss of generality.

Definition 1 (Lexicographic ranking). Let A1, . . . ,An be a set of boolean attributes,
such that the index represents a preference order. Let vi+ denote the preferred value
of attribute Ai. The lexicographic ranker corresponding to the preference order on at-
tributes and attribute values is defined as follows:

r̂lex(x1,x2) =
{

> if A j(x1) = v j+
< if A j(x1) �= v j+

where j denotes the lowest attribute index for which x1 and x2 have different values (if
no such index exists, the two instances are tied).

A lexicographic ranker can be represented as an unlabelled binary decision tree with
the following properties: (1) the only attribute occurring at depth i is Ai – i.e., along
each path from root to leaf the attributes occur in the preference order; (2) in each split,
vi+ is the left branch. Consequently, the ranking order is represented by the left-to-right
order of the leaves. We call such a tree a lexicographic ranking tree. The decision tree
shown in Figure 1 is also a lexicographic ranking tree, representing that A2 is preferred
to A1, 1 is the preferred value of A1, and 0 the preferred value of A2. However, as
a lexicographic ranking tree, its leaves are ranked left-to-right, which results in a non-
convex ROC curve. Clearly, decision trees are much more expressive than lexicographic
ranking trees.

We can also draw a connection between lexicographic ranking and the naive Bayes
classifier, as we will now show. The naive Bayes ranker obtained from the data from
Fig. 1 is as follows. Using LR(·) to denoted the likelihood ratio estimated from the
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data, we have LR(A1 = 0) = p(A1=0|+)
p(A1=0|−) = 5/6, LR(A1 = 1) = p(A1=1|+)

p(A1=1|−) = 5/4, LR(A2 =

0) = p(A2=0|+)
p(A2=0|−) = 6/4, and LR(A2 = 1) = p(A2=1|+)

p(A2=1|−) = 4/6. The prior odds doesn’t affect
the ranking, and so we can just use the products of these marginal likelihood ratios to
determine the ranking: LR(A1 = 1)LR(A2 = 0) = 30/16 > LR(A1 = 0)LR(A2 = 0) =
30/24 > LR(A1 = 1)LR(A2 = 1) = 20/24 > LR(A1 = 0)LR(A2 = 1) = 20/36. This is
a lexicographic ranking, which is equivalent to the lexicographic ranking tree in Fig. 1.

Definition 2. LexRank is the lexicographic ranker which uses the following preference
criteria. The preferred value vi+ for attribute Ai is defined as the one which has LR(Ai =
vi+) > 1 (if there is no such value then the attribute doesn’t express preference and
can be discarded). The preference order on attributes is defined by sorting them on
decreasing odds ratio OR(Ai) = LR(Ai=vi+)

LR(Ai=vi−) , where vi− denotes the non-preferred value.

Theorem 4. For every LexRank ranker over a given set of binary attributes, there
exists a data set such that LexRank and naive Bayes, trained on that data set, result in
equivalent rankers.

Proof. Assuming without loss of generality that A1, . . . ,An are already sorted on de-
creasing odds ratio and that 0 is the preferred value of each attribute, then the leaves
of the lexicographic ranking tree can be interpreted as integers in binary representation
that are ordered from 0 to 2n. The naive Bayes ranker will respect this ordering, un-
less there is an i such that OR(Ai) < ∏ j>i OR(A j), as this would reverse any ranking
decision for instances differing not just in Ai but also in attributes ranked lower than Ai.

For instance, if OR(A1) = 5, OR(A2) = 3 and OR(A3) = 2, then LexRank will rank
011 before 100, whereas naive Bayes will reverse the ranking, since A2 = 0 ∧ A3 = 0
outweighs A1 = 0.

We conclude that LexRank exhibits a much stronger bias than naive Bayes, but as
we show in the next section this added bias does not result in a loss of ranking per-
formance. We can turn LexRank into a calibrated probability estimator by deriving
probability estimates from its convex hull. The resulting lexicographic probability esti-
mator is called LexProb.

5 Experimental Evaluation

Our experiments were conducted on 27 data sets from the UCI repository [8] using
the Weka toolbox. Continuous attributes were discretised using unsupervised ten-bin
discretisation; non-binary k-valued attributes were replaced with k binary-valued at-
tributes. We compared the following algorithms: LexRank and LexProb, the algo-
rithms proposed in this paper; NB and J48, naive Bayes and decision tree learners as
implemented in Weka; and CaliNB, which uses the same wrapper to calibrate proba-
bility estimates as LexRank , but applied to NB. We ran J48 without pruning and with
Laplace correction, to get good ranking performance. We evaluated both ranking per-
formance by means of AUC, and probability estimation performance by means of the
Brier score. We used 10-fold cross-validation for all data sets except the ones with less
than 270 instances where we used 5-fold cross-validation to ensure the folds contained
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enough instances for the tests to be meaningful. Table 1 shows the results of all pairwise
counts of wins/ties/losses (row vs. column) using AUC (lower triangle) and BS (upper
triangle). Most of these counts are not significant according to a sign test (critical value
at 0.05 confidence level is 20.7). For illustrative purposes we included LexRank in the
Brier score results, by calculating scores based on the binary representation of the rank-
ing; these scores are clearly not meaningful as probabilities, resulting in four out of five
of the significant counts.

Table 1. Counts of wins/ties/losses using AUC (lower triangle) and BS (upper triangle). Counts
in bold face are significant according to a sign test at 0.05 confidence level.

set LexRank LexProb NB CaliNB J48
LexRank - 1 0 26 4 0 23 2 0 25 4 0 23
LexProb 12 2 13 - 17 0 10 10 0 17 17 0 10
NB 18 3 6 17 2 8 - 3 0 24 11 0 16
CaliNB 16 1 10 16 1 10 9 2 16 - 17 0 10
J48 12 1 14 14 2 11 11 2 14 9 2 16 -

The Friedman test uses average ranks of each algorithm over all data sets. From the
AUC results, the average ranks are 2.407 for NB, 2.926 for CaliNB, and 3.222 for J48,
LexRank , and LexProb, resulting in an F-statistic of 1.38. The critical value of the
F-statistics with 4 and 104 degrees of freedom and at 95 percentile is 2.46. According
to the Friedman test, the null-hypothesis that all algorithms have similar ranking per-
formance should not be rejected. The average ranks on the basis of the Brier scores, on
the other hand, result in an F-statistic of 17.20, and we proceed to a post-hoc analysis.

CD

CaliNB

LexProb
J48

NB

LexRank

1 2 3 4

Fig. 2. Critical Difference diagram

According to the Bonferroni-Dunn statistic, the Critical Difference (CD) for compar-
ing the mean-ranking of an algorithm to a control at 95 percentile is 1.07. Mean-ranking
differences above this value are significant. Following [9], we can now plot the average
ranks in a CD diagram (Figure 2). In this diagram, we connect algorithms that are not
significantly different. We also show the CD above the main axis. The analysis reveals
that CaliNB performs significantly better than NB. This demonstrates that isotonic re-
gression can significantly improve the probability estimates of naive Bayes. LexProb
is connected with – i.e., has comparable performance with – CaliNB, J48 and NB.

Finally, we report some runtime results. A single train and test run over all 27 data
sets without cross-validation takes 46.72 seconds for LexRank against 49.50 seconds
for NB, and 94.14 seconds for LexProb against 100.99 seconds for CaliNB.
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6 Conclusions

In this paper we have made a number of contributions. First of all, we have clearly
defined the relationship and differences between classification, ranking and probability
estimation. Secondly, we have defined the notion of lexicographic ranking, which sim-
ply employs a linear preference order on attributes. To the best of our knowledge, this
is the first ranker that doesn’t base its ranking on numerical scores. Thirdly, we have
shown that using the odds ratio for ranking attributes results in a lexicographic ranker,
called LexRank , which is a restricted version of naive Bayes. Fourthly, we have demon-
strated a close and fundamental connection between ROC curves and the Brier score,
linking in particular the calibration of probability estimates to the convexity of the ROC
curve. Experimental results show that lexicographic ranking, and the probability esti-
mates derived from it using isotonic regression, perform comparably to decision trees
and naive Bayes.

Acknowledgments. We thank the anonymous reviewers for their constructive com-
ments and the Brazilian Research Council CAPES (Proc.N. 2662060).
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