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Abstract. We present the Why /Krakatoa/Caduceus set of tools for de-
ductive verification of Java and C source code.

1 Introduction

Why /Krakatoa/Caduceus is a set of tools for deductive verification of Java and
C source code. In both cases, the requirements are specified as annotations in
the source, in a special style of comments. For Java (and Java Card), these
specifications are given in the Java Modeling Language [I] and are interpreted
by the Krakatoa tool. For C, we designed our own specification language, largely
inspired from JML. Those are interpreted by the Caduceus tool. The tools are
available as open source software at http://why.lri.fr/.

The overall architecture is presented on Figure[[l The general approach is to
generate Verification Conditions (VCs for short): logical formulas whose validity
implies the soundness of the code with respect to the given specification. This
includes automatically generated VCs to guarantee the absence of run-time er-
rors: null pointer dereferencing, out-of-bounds array access, etc. Then the VCs
can be discharged using one or several theorem provers. The main originality of
this platform is that a large part is common to C and Java. In particular there
is a unique, stand-alone, VCs generator called Why, which is able to output VCs
in the native syntax of many provers, either automatic or interactive ones.

Figure [ shows a short example of annotated C code. Clauses requires in-
troduces a precondition, ensures a postcondition, and assigns specifies the
set of modified memory locations. \valid is a built-in predicate which specifies
that the given pointer can be safely dereferenced, and \old denotes the value
of the given expression at the function entry. Other kind of annotations include
loop invariants and variants. VCs are generated modularly: when calling credit
from test, only the specification of credit is used. To make this possible, the
assigns clause is essential.
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Fig. 1. Platform Architecture

typedef struct purse { /%@ requires \valid(pl) && \valid(p2)

int balance; @ && pl !'= p2 && pl->balance ==
} purse; @ ensures pl->balance == 100

ox/

/*@ requires \valid(p) &% s >= 0  void test(purse *pl, purse *p2) {

@ assigns p->balance credit(p1,100);

@ ensures p->balance == p2->balance = 0;

@ \old(p->balance) + s return pl->balance;

o*/ }

void credit(purse *p,int s) {
p—>balance += s;

}

Fig. 2. Example of annotated C source code

2 The Why Verification Condition Generator

The input syntax of Why is a specific language dedicated to program verification.
As a programming language, it is a ‘WHILE’ language which (1) has limited side-
effects (only mutable variables that cannot be aliased), (2) provides no built-in
data type, (3) proposes basic control statements (assignment, if, while) but
also exceptions (throwing and catching). A Why program is a set of functions,
annotated with pre- and postconditions. Those are written in a general purpose
specification language: polymorphic multi-sorted first-order logic with built-in
equality and arithmetic. This logic can be used to introduce abstract data types,
by declaring new sorts, function symbols, predicates and axioms.

The VCs generation is based on a Weakest Precondition calculus, incorpo-
rating exceptional postconditions and computation of effects over mutable vari-
ables [2]. Last but not least, Why provides a multi-prover output as shown on
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Figure [ Actually Why can even by used only as a translator from first-order
formulas to the syntax of those back-end provers. This translation includes a
non-trivial removal of polymorphic sorts when the target logic does not support
polymorphism [3].

3 Krakatoa and Caduceus

The common approach to Java and C source code is to translate them into
Why programs. The Why specification language is then used both for the
translation of input annotations and for the modeling of Java objects (resp. C
pointers/structures). This model of the memory heap is defined by introducing
abstract data types together with operations and an appropriate first-order ax-
iomatization. Our heap memory models for C and Java both follow the principle
of the Burstall-Bornat ‘component-as-array’ model [4]. Each Java object field
(resp. C structure field) becomes a Why mutable variable containing a purely
applicative map. This map is equipped with an access function select so that
select(f,p) denotes the field of the structure pointed-to by p; and an update
function store so that store(f,p,v) denotes a new map f’ identical to f except
at position p where it has value v. These two functions satisfy the so-called theory
of arrays:

select(store(f,p,v),p) =p
p # p' — select(store(f,p,v),p") = select(f,p")

For the example of Figure 2] the translation of the statement p->balance += s
into the Why language is (1) balance := store(balance, p, select(balance,p) + s).
The translation of the postcondition balance == \old(balance)+s is
select(balance,p) = select(balance@,p) + s (where in Why, 2@ de-
notes the old value of z) and its weakest precondition through (1) is
select(store(balance, p, select(balance, p) + s),p) = select(balance, p) + s which
is a first-order consequence of the theory of arrays.

4 Past and Future Work

The heap memory models are original, in particular with the handling of as-
signs clauses [0, and C pointer arithmetic [6]. Since these publications, many
improvements have been made on the platform:

— Improved efficiency, including a separation analysis [7].

More tools, including a graphical interface.

— Support for more provers, e.g. SMT provers (Yices, RV-sat, CVC3, etc.) and
Ergo, with encodings of polymorphic sorts as seen above.

— Enhancements of specification languages both for C and Java: ghost vari-
ables, axiomatic models
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— Specifically to Krakatoa, more support for Java Card source: transactions [g].
— Support for floating-point arithmetic [9].

Several case studies have been conducted: Java Card applets provided by Ax-
alto [I0] and Trusted Logic companies; the Schorr-Waite graph-marking algo-
rithm, considered as a challenge for program verification [I1]; some avionics
embedded code provided by Dassault aviation company, which leaded to an orig-
inal analysis of memory separation [7]. Our intermediate first-order specification
language was also used to design abstract models of programs [12].

To conclude, our platform is tailored to the proof of advanced behavioral
specifications and proposes an original approach based on an intermediate first-
order specification language. Its main characteristic is versatility: multi-prover
output, multi-source input, on-the-fly generation of first-order models.

Future work includes the development of an integrated user environment.
We are also designing an improved support for abstract modeling, by providing
(UML-like) higher-level models and refinement. A key issue for the future is also
the automatic generation of annotations. Long term perspective is to contribute
to Grand Challenge 6 on Verified Software Repository: a key goal for us is to
build libraries of verified software.

Acknowledgements. Many people have been involved in the design and devel-
opment of the platform and the case studies: R. Bardou, S. Boldo, V. Chaudhary,
S. Conchon, E. Contejean, J.-F. Couchot, M. Dogguy, G. Dufay, N. Guenot,
T. Hubert, J. Kanig, S. Lescuyer, Y. Moy, A. Oudot, C. Paulin, J. Roussel,
N. Rousset, X. Urbain.
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