The Why /Krakatoa/Caduceus Platform
for Deductive Program Verification*
(Tool Paper)

Jean-Christophe Filliatre'® and Claude Marché?-3

L CNRS, Lab. de Recherche en Informatique, UMR 8623, Orsay, F-91405
2 INRIA Futurs, ProVal, Parc Orsay Université, F-91893
3 Univ Paris-Sud, Orsay, F-91405

Abstract. We present the Why /Krakatoa/Caduceus set of tools for de-
ductive verification of Java and C source code.

1 Introduction

Why /Krakatoa/Caduceus is a set of tools for deductive verification of Java and
C source code. In both cases, the requirements are specified as annotations in
the source, in a special style of comments. For Java (and Java Card), these
specifications are given in the Java Modeling Language [I] and are interpreted
by the Krakatoa tool. For C, we designed our own specification language, largely
inspired from JML. Those are interpreted by the Caduceus tool. The tools are
available as open source software at http://why.lri.fr/.

The overall architecture is presented on Figure[[l The general approach is to
generate Verification Conditions (VCs for short): logical formulas whose validity
implies the soundness of the code with respect to the given specification. This
includes automatically generated VCs to guarantee the absence of run-time er-
rors: null pointer dereferencing, out-of-bounds array access, etc. Then the VCs
can be discharged using one or several theorem provers. The main originality of
this platform is that a large part is common to C and Java. In particular there
is a unique, stand-alone, VCs generator called Why, which is able to output VCs
in the native syntax of many provers, either automatic or interactive ones.

Figure [shows a short example of annotated C code. Clauses requires in-
troduces a precondition, ensures a postcondition, and assigns specifies the
set of modified memory locations. \valid is a built-in predicate which specifies
that the given pointer can be safely dereferenced, and \old denotes the value
of the given expression at the function entry. Other kind of annotations include
loop invariants and variants. VCs are generated modularly: when calling credit
from test, only the specification of credit is used. To make this possible, the
assigns clause is essential.

* This research is partly supported by ANR RNTL grant “CAT”.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 173 2007.
© Springer-Verlag Berlin Heidelberg 2007

http://why.lri.fr/

174 J.-C. Filliatre and C. Marché

Annotated C program JML-annotated Java program

| |

sy Why program <«

Why
. ‘ Automatic provers
Interactive provers (Simplify, Yices
(Coq, PVS, @@= Verification Conditions s DI, ’

haRVey, Ergo,

Isabelle, etc.) CVC-lite, CVC3, ete.)

Fig. 1. Platform Architecture

typedef struct purse { /%@ requires \valid(pl) && \valid(p2)

int balance; @ && pl !'= p2 && pl->balance ==
} purse; @ ensures pl->balance == 100

ox/

/*@ requires \valid(p) &% s >= 0 void test(purse *pl, purse *p2) {

@ assigns p->balance credit(p1,100);

@ ensures p->balance == p2->balance = 0;

@ \old(p->balance) + s return pl->balance;

o*/ }

void credit(purse *p,int s) {
p—>balance += s;

}

Fig. 2. Example of annotated C source code

2 The Why Verification Condition Generator

The input syntax of Why is a specific language dedicated to program verification.
As a programming language, it is a ‘WHILE’ language which (1) has limited side-
effects (only mutable variables that cannot be aliased), (2) provides no built-in
data type, (3) proposes basic control statements (assignment, if, while) but
also exceptions (throwing and catching). A Why program is a set of functions,
annotated with pre- and postconditions. Those are written in a general purpose
specification language: polymorphic multi-sorted first-order logic with built-in
equality and arithmetic. This logic can be used to introduce abstract data types,
by declaring new sorts, function symbols, predicates and axioms.

The VCs generation is based on a Weakest Precondition calculus, incorpo-
rating exceptional postconditions and computation of effects over mutable vari-
ables [2]. Last but not least, Why provides a multi-prover output as shown on

The Why /Krakatoa/Caduceus Platform for Deductive Program Verification 175

Figure [Actually Why can even by used only as a translator from first-order
formulas to the syntax of those back-end provers. This translation includes a
non-trivial removal of polymorphic sorts when the target logic does not support
polymorphism [3].

3 Krakatoa and Caduceus

The common approach to Java and C source code is to translate them into
Why programs. The Why specification language is then used both for the
translation of input annotations and for the modeling of Java objects (resp. C
pointers/structures). This model of the memory heap is defined by introducing
abstract data types together with operations and an appropriate first-order ax-
iomatization. Our heap memory models for C and Java both follow the principle
of the Burstall-Bornat ‘component-as-array’ model [4]. Each Java object field
(resp. C structure field) becomes a Why mutable variable containing a purely
applicative map. This map is equipped with an access function select so that
select(f,p) denotes the field of the structure pointed-to by p; and an update
function store so that store(f,p,v) denotes a new map f’ identical to f except
at position p where it has value v. These two functions satisfy the so-called theory
of arrays:

select(store(f,p,v),p) =p
p # p' — select(store(f,p,v),p") = select(f,p")

For the example of Figure 2] the translation of the statement p->balance += s
into the Why language is (1) balance := store(balance, p, select(balance,p) + s).
The translation of the postcondition balance == \old(balance)+s is
select(balance,p) = select(balance@,p) + s (where in Why, 2@ de-
notes the old value of z) and its weakest precondition through (1) is
select(store(balance, p, select(balance, p) + s),p) = select(balance, p) + s which
is a first-order consequence of the theory of arrays.

4 Past and Future Work

The heap memory models are original, in particular with the handling of as-
signs clauses [0, and C pointer arithmetic [6]. Since these publications, many
improvements have been made on the platform:

— Improved efficiency, including a separation analysis [7].

More tools, including a graphical interface.

— Support for more provers, e.g. SMT provers (Yices, RV-sat, CVC3, etc.) and
Ergo, with encodings of polymorphic sorts as seen above.

— Enhancements of specification languages both for C and Java: ghost vari-
ables, axiomatic models

176 J.-C. Filliatre and C. Marché

— Specifically to Krakatoa, more support for Java Card source: transactions [g].
— Support for floating-point arithmetic [9].

Several case studies have been conducted: Java Card applets provided by Ax-
alto [I0] and Trusted Logic companies; the Schorr-Waite graph-marking algo-
rithm, considered as a challenge for program verification [I1]; some avionics
embedded code provided by Dassault aviation company, which leaded to an orig-
inal analysis of memory separation [7]. Our intermediate first-order specification
language was also used to design abstract models of programs [12].

To conclude, our platform is tailored to the proof of advanced behavioral
specifications and proposes an original approach based on an intermediate first-
order specification language. Its main characteristic is versatility: multi-prover
output, multi-source input, on-the-fly generation of first-order models.

Future work includes the development of an integrated user environment.
We are also designing an improved support for abstract modeling, by providing
(UML-like) higher-level models and refinement. A key issue for the future is also
the automatic generation of annotations. Long term perspective is to contribute
to Grand Challenge 6 on Verified Software Repository: a key goal for us is to
build libraries of verified software.

Acknowledgements. Many people have been involved in the design and devel-
opment of the platform and the case studies: R. Bardou, S. Boldo, V. Chaudhary,
S. Conchon, E. Contejean, J.-F. Couchot, M. Dogguy, G. Dufay, N. Guenot,
T. Hubert, J. Kanig, S. Lescuyer, Y. Moy, A. Oudot, C. Paulin, J. Roussel,
N. Rousset, X. Urbain.

References

1. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (2004)

2. Filliatre, J.C.: Verification of non-functional programs using interpretations in type
theory. Journal of Functional Programming 13(4), 709-745 (2003)

3. Couchot, J.F., Lescuyer, S.: Handling polymorphism in automated deduction. In:
CADE-21, Springer, Heidelberg (2007)

4. Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program
Construction, 102-126 (2000)

5. Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and
frame conditions. In: Hurd, J., Melham, T. (eds.) TPHOLSs 2005. LNCS, vol. 3603,
Springer, Heidelberg (2005)

6. Filliatre, J.C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15-29. Springer,
Heidelberg (2004)

7. Hubert, T., Marché, C.: Separation analysis for deductive verification. In: Heap
Analysis and Verification (HAV’07) (2007)

8. Marché, C., Rousset, N.: Verification of Java Card applets behavior with respect
to transactions and card tears. In: SEFM’06, IEEE Computer Society Press, Los
Alamitos (2006)

The Why /Krakatoa/Caduceus Platform for Deductive Program Verification 177

9.

10.

11.

12.

Boldo, S., Filliatre, J.C.: Formal Verification of Floating-Point Programs. In:
ARITH’07 (2007)

Jacobs, B., Marché, C., Rauch, N.: Formal verification of a commercial smart
card applet with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.)
AMAST 2004. LNCS, vol. 3116, Springer, Heidelberg (2004)

Hubert, T., Marché, C.: A case study of C source code verification: the Schorr-Waite
algorithm. In: SEFM’05, IEEE Computer Society Press, Los Alamitos (2005)
Filliatre, J.C.: Queens on a Chessboard: an Exercise in Program Verification (2007),
http://why.lri.fr/queens/

http://why.lri.fr/queens/

	Introduction
	The Why Verification Condition Generator
	Krakatoa and Caduceus
	Past and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

