
Testing and Model-Checking Techniques for Diagnosis

Maxim Gromov1 and Tim A.C. Willemse2

1 Institute for Computing and Information Sciences (ICIS)
Radboud University Nijmegen – The Netherlands

m.gromov@cs.ru.nl
2 Design and Analysis of Systems Group,

Eindhoven University of Technology – The Netherlands
t.a.c.willemse@tue.nl

Abstract. Black-box testing is a popular technique for assessing the quality of a
system. However, in case of a test failure, only little information is available to
identify the root-cause of the test failure. In such cases, additional diagnostic tests
may help. We present techniques and a methodology for efficiently conducting di-
agnostic tests based on explicit fault models. For this, we rely on Model-Based
Testing techniques for Labelled Transition Systems. Our techniques rely on, and
exploit differences in outputs (or inputs) in fault models, respectively. We char-
acterise the underlying concepts for our techniques both in terms of mathematics
and in terms of the modal μ-calculus, which is a powerful temporal logic. The
latter characterisations permit the use of efficient, off-the-shelf model checking
techniques, leading to provably correct algorithms and pseudo decision proce-
dures for diagnostic testing.

1 Introduction

Testing has proved to be a much-used technique for validating a systems behaviour,
but in itself it is a quite labour-intensive job. Formal approaches to testing, collectively
known as Model-Based Testing, have been touted as effective means for reducing the
required effort of testing by allowing for automation of many of its aspects. However,
MBT provides only a partial answer to the validation problem, as in most cases its
automation ceases at the point where a test failure has been detected; pinpointing the
root-cause of the test failure remains a laborious and time-consuming task. Finding this
root-cause is known as the diagnosis problem, and it is tightly linked to testing.

Formal approaches to the diagnosis problem rely on the use of models of the system-
under-diagnosis, and are often referred to as Model-Based Diagnosis techniques. While
MBD has been studied extensively in the formal domain of Finite State Machines (see
e.g. [3,4,6,11]), the topic is little studied in the setting of Labelled Transition Systems.
The advantage of many LTS-based theories over FSM-based theories is that the assump-
tions under which they operate are more liberal, which makes them easier to apply in
practice. In this paper, we advocate an LTS-based MBD approach for non-deterministic,
reactive systems. The techniques that we put forward in this paper operate under the
liberal LTS-based testing hypothesis of ioco-based testing [13]; our methods rely on
explicit models describing the faulty behaviour, henceforth referred to as fault models.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 138–154, 2007.
c© IFIP- International Federation for Information Processing 2007

Testing and Model-Checking Techniques for Diagnosis 139

The problem that we consider consists of identifying “correct” fault models among
a given (but large) set of possible fault models. By “correct”, we understand that no
evidence of a mismatch between the malfunctioning system and the fault model can
be found. This can be asserted by e.g. testing. Note that even though this problem is
readily solved by testing the malfunctioning system against each fault model separately,
this is a daunting task which is quite expensive in terms of resources, even when fully
automated. The main contributions of this paper are twofold:

1. inspired by classical FSM-based diagnosis approaches we present diagnostic con-
cepts and techniques to make the fault model selection process more effective in an
LTS-based setting. In particular, we adopt and modify the notion of distinguishabil-
ity (see e.g. [11]) from FSMs to fit the framework of LTSs. Secondly, we introduce
a novel notion, called orthogonality which helps to direct test efforts onto isolated
aspects of fault models. Both notions are studied in the setting of ioco-based testing.

2. we link our diagnostic concepts and techniques to model-checking problems. This
gives rise to effective and provably correct automation of our approach, and leads
to a better understanding of all involved concepts.

Note that the problem of constructing the set of fault models is left outside the scope of
this paper; in general, there are an infinite number of fault models per implementation.
While this is indeed a very challenging problem, for the time being, we assume that
these have been obtained by manually modifying e.g. a given specification, based on
modifications of subcomponents of the specifications. Such modifications can be driven
by the observed non-conformance between the specification and the implementation,
but also fault injection is a good strategy.

Related work. In [8], Jéron et al paraphrase the diagnosis problem for discrete event
systems (modelled by LTSs), as the problem of finding whether an observation of a
system contains forbidden sequences of actions. Their approach takes a description of
the structure of a system as input; the sequences of forbidden actions are specified us-
ing patterns. They subsequently propose algorithms for, a.o., synthesising a diagnoser
which tells whether or not a pattern occurred in the system. A variation on this approach
is given in [10], in which all actions are unobservable except for special “warning” ac-
tions. The problem that is solved is finding explanations for the observations of observed
warning actions. Both works view the diagnosis problem as a supervisory problem.

Apart from the above mentioned works in the setting of LTSs, there is ample lit-
erature on diagnosis based on FSMs. Guo et al, in [6] focus on heuristics for fault
diagnosis, which helps to reduce the cost of fault isolation and identification. El-Fakih
et al [4] define a diagnostic algorithm for nets of FSMs, and in [3] these techniques
are extended; the effectiveness of (a minor modification of) that algorithm is assessed
in [5]. Most FSM-based approaches consist of two steps, the first step being the gener-
ation of a number of candidate fault models (often referred to as candidates), and the
second step being a selection of appropriate candidates. The first step relies on strict
assumptions, which in general are not met in an LTS-based setting.

In [12] the emphasis is on diagnosing non-reactive systems, mostly hardware, al-
though their techniques have also been applied to software. Based on the topology of a
system, explanations for a system’s malfunctioning are computed and ranked according

140 M. Gromov and T.A.C. Willemse

to likeliness. The techniques underlying the diagnosis are based on propositional logic
and satisfiability solvers.

Structure of the paper. In Section 2 we repeat the ioco-based testing theory and the
modal μ-calculus [2], the latter being our carrier for linking diagnosis to the problem
of model-checking. The basic concepts for diagnosis, and their link to model-checking
problems is established in Section 3. In Section 4, we provide an algorithm and a semi-
decision procedure that implement the techniques and concepts of Section 3.

2 Background

In this section, we briefly recall the testing theory ioco as defined in [13]. The ioco
framework and its associated testing hypotheses serve as the basic setting for our diag-
nosis techniques. Furthermore, we introduce the modal μ-calculus [2], which is a modal
logic that we will use as a tool for characterising our diagnostic techniques.

Definition 1. A Labelled Transition System (LTS) with inputs ActI and outputs ActU
is a quintuple 〈S, ActI , ActU , →, s〉, where S is a non-empty set of states with initial
state s ∈ S; ActI and ActU are disjoint finite sets representing the set of input actions
and output actions, respectively. We denote their union by Act. As usual, τ /∈ Act
denotes an internal non-observable action, and we write Actτ for Act ∪ {τ}. The
relation →⊆ S × Actτ × S is the transition relation.

Let L = 〈S, ActI , ActU , →, s〉 be a fixed LTS. Let s, s′, . . . range over S. Throughout
this paper, we use the following conventions: for all actions a, we write s

a−→ s′ iff
(s, a, s′) ∈→, and s � a−→ iff for all s′ ∈ S, not s

a−→ s′.

Ioco-based testing theory. The notion of quiescence is added to an LTS as follows: a
state s is quiescent — notation δ(s) — iff s � τ−→ and for all a ∈ ActU , s � a−→. Informally,
a quiescent state is a state that is “stable” (it does not allow for internal activity) and it
refuses to provide outputs. Let δ /∈ Actτ be a fresh label representing the possibility
to observe quiescence; Actδ abbreviates Act ∪ {δ}. Let σ, σ′, . . . range over Act∗δ ,
actions a range over Actδ, and S′, S′′, . . . ⊆ S. We generalise the transition relation →
to =⇒⊆ S × Act∗δ × S, and write s

σ=⇒ s′ iff (s, σ, s′) ∈=⇒. We define =⇒ as the
smallest relation satisfying the following four rules:

s
ε=⇒ s

s
σ=⇒ s′ s′ τ−→ s′′

s
σ=⇒ s′′

s
σ=⇒ s′ s′ a−→ s′′

s
σ·a===⇒ s′′

s
σ=⇒ s′ δ(s′)

s
σ·δ===⇒ s′

Analogously to →, we write s
σ=⇒ for s

σ=⇒ s′ for some s′. For ease of use, we intro-
duce the following functions and operators.

1. [s]σ
def= {s′ ∈ S | s

σ=⇒ s′}; generalised: [S′]σ
def=

⋃
s∈S′ [s]σ;

2. out(s) def= {a ∈ ActU | s a−→}∪{δ | δ(s)}; generalised: out(S′)def=
⋃

s∈S′ out(s),

3. s-traces(s) def= {σ ∈ Act∗δ | s
σ=⇒},

4. traces(s) def= s-traces(s) ∩ Act∗,

5. der(s) def=
⋃

σ∈Act∗ [s]σ; generalised: der(S′) def=
⋃

s∈S′ der(s).

Testing and Model-Checking Techniques for Diagnosis 141

Note 1. Our notation [S′]σ is a deviation from the standard ioco-notation, where [S′]σ
is written as S′ after σ. While we are not in favour of changing common notation,
our main motivation for using our notation is brevity in definitions, theorems and algo-
rithms, in support of readability.

Definition 2. We say that:

– L is image finite if for all σ ∈ Act∗, [s]σ is finite,
– L is deterministic if for all s′ ∈ S and all σ ∈ Act∗, |[s′]σ| ≤ 1,
– L is strongly converging if there is no infinite sequence of τ transitions,
– A state s ∈ S is input-enabled if for all s′ ∈ der(s) and all a ∈ ActI , we have

s′ a=⇒ . L is input-enabled if s is input-enabled.

Throughout this paper, we restrict to image finite, strongly converging LTSs. The testing
hypothesis for ioco states that implementations can be modelled using input-enabled
LTSs. Note that this does not imply that the theory requires that this LTS is known. The
conformance relation ioco is defined as follows:

Definition 3. Let Li = 〈Si, ActI , ActU , →i, si〉 (for i = 1, 2) be two LTSs. Let s1 ∈
S1 and s2 ∈ S2. Then s1 is ioco-conforming to s2 – notation s1 ioco s2 – when s1 is
input-enabled and

∀σ ∈ s-traces(s2) : out([s1]σ) ⊆ out([s2]σ)

We sometimes write L1 ioco L2 instead of s1 ioco s2.

Note that proving ioco-conformance is generally not feasible, as there is no guarantee
that we have seen all the behaviours of an implementation (because of non-determinism).
In practice, we settle for confidence in ioco-conformance, which is obtained by testing
the implementation with a large set of successfully executed test-cases. A sound and
complete algorithm for ioco for deriving test-cases from a specification is proved correct
in [13]; it is implemented in e.g. TorX [1] and TGV [7].

Modal μ-calculus. The modal μ-calculus is a powerful logic which can be used to
express complex temporal properties over dynamic systems. Next to its modal operators
〈a〉φ and [a]φ, it is equipped with least and greatest fixpoint operators. The grammar
for the modal μ-calculus, given directly in positive form is as follows:

φ ::= tt | ff | X | φ ∧ φ | [a]φ | 〈a〉φ | φ ∨ φ | μX.φ | νX.φ

where a ∈ Actτ is an action and X is a propositional variable from a set of propo-
sitional variables X . A formula φ is said to be in Positive Normal Form (PNF) if all
its propositional binding variables are distinct. We only consider formulae in PNF. A
formula φ is interpreted relative to an LTS L = 〈S, ActI , ActU , →, s〉 and a proposi-
tional environment η : X → 2S that maps propositional variables to sets of states. The
semantics of φ is given by [[φ]]Lη , which is defined as follows:

142 M. Gromov and T.A.C. Willemse

[[tt]]Lη = S
[[ff]]Lη = ∅
[[φ1 ∧ φ2]]Lη = [[φ1]]Lη ∩ [[φ2]]Lη
[[φ1 ∨ φ2]]Lη = [[φ1]]Lη ∪ [[φ2]]Lη
[[X]]Lη = η(X)
[[[a]φ]]Lη = {s ∈ S | ∀s′ ∈ S : s

a−→ s′ ⇒ s′ ∈ [[φ]]Lη }
[[〈a〉φ]]Lη = {s ∈ S | ∃s′ ∈ S : s

a−→ s′ ∧ s′ ∈ [[φ]]Lη }
[[μX.φ]]Lη =

⋂
{S′ ⊆ S | [[φ]]Lη[S′/X] ⊆ S′}

[[νX.φ]]Lη =
⋃

{S′ ⊆ S | S′ ⊆ [[φ]]Lη[S′/X]}

where we write η[S′/X] for the environment that coincides with η on all variables
Y �= X , and maps variable X to value S′. A state s ∈ S satisfies a formula φ, written
s |=L φ when s ∈ [[φ]]Lη . We write L |= φ when s |=L φ.

The operator 〈a〉φ is used to express that there must exist an a transition from the
current state to a state satisfying φ. Dually, the operator [a]φ is used to express that
all states that can be reached by executing an a action satisfy property φ. Remark that
when an a transition is impossible in a state s, the property [a]φ is trivially satisfied in
state s. These operators are well-understood and can be found in early logics such as
Hennessy-Milner Logic. In this paper, we use the following additional conventions: for
sets of actions A we define:

[A]φ def=
∧

a∈A[a] φ 〈A〉φ def=
∨

a∈A 〈a〉φ

Moreover, for a formula φ, we denote its dual by φ. Such a dual formula always exists
and is readily obtained by simple transformations and renamings, see e.g. [2].

The major source for the expressive power of the modal μ-calculus is given by the
fixpoint operators μ and its dual ν. Technically, a least fixpoint μX.φ is used to indicate
the smallest solution of X in formula φ, whereas the greatest fixpoint νX.φ is used
for the greatest solution of X in formula φ. These fixpoint expressions are generally
understood as allowing one to express finite looping and looping, respectively.

Example 1. A system that can always perform at least one action is said to be deadlock-
free (note that we do not require this to be a visible action). This can be expressed in
the modal μ-calculus using a greatest fixpoint: νX. [Actτ]X ∧ 〈Actτ 〉tt. Informally,
the formula expresses that we are interested in the largest set of states (say this would
be X) that satisfies the property that from each reachable state s (s ∈ X), at least one
action is enabled, and all enabled actions lead to states s′ (s′ ∈ X) that also have this
property.

For a more detailed account we refer to [2], which provides an excellent treatment of
the modal μ-calculus.

3 Techniques and Heuristics for Diagnostic Testing

Testing is a much used technique to validate whether an implementation conforms to
its specification. Upon detection of a non-conformance, all that is available is a trace,

Testing and Model-Checking Techniques for Diagnosis 143

also known as a symptom, that led to this non-conformance. Such a symptom is often
insufficient for locating the root-cause (or causes) of the non-conformance; for this,
often additional tests are required. We refer to these additional tests as diagnostic tests.

In a Model-Based Testing setting, the basis for conducting diagnostic tests is given
by a set of fault models. Each fault model provides a possible, formal explanation of
the behaviour of the implementation; one may consider it a possible specification of
the faulty implementation. Remark that we here appeal to the testing hypothesis of
ioco, stating that there is an input enabled LTS model for every implementation. The
different fault models describe different fault situations. The diagnostics problem thus
consists of selecting one or more fault model(s) from the given set of fault models that
best explain the behaviour of the implementation.

Formally, the diagnostics problem we are dealing with is the following: given a spec-
ification S, a non-conforming implementation I and a non-empty set of fault models
F = {F1, F2, . . . , Fn}. A diagnosis of I is given by the largest set D ⊆ F satisfying
I ioco Fi for all Fi ∈ D. The focus of this paper is on two techniques for obtaining D
efficiently, viz. distinguishability and orthogonality. Note that given the partiality of the
ioco-relation, the fault models in D are –generally– all unrelated.

In Sections 3.1 and 3.2, we introduce the notions of (strong and weak) distinguisha-
bility and (strong and weak) orthogonality, respectively. We provide alternative char-
acterisations of all notions in terms of modal logic, which 1) provides a different per-
spective on the technique and, 2) enables the use of efficient commonplace tool support.
The discussion on how exactly the theory and results described in this section can be
utilised for diagnostic testing is deferred to Section 4.

3.1 Distinguishability

Given two fault models F1 and F2 and an implementation I . Chances are that during
naive testing for I ioco F1 and I ioco F2, there is a large overlap between the test-
cases for F1 and F2, as both try to model to a large extent the same implementation.
This means that F1 and F2 often agree on the outcome of most test-cases. An effective
technique for avoiding this redundancy is to exploit the differences between F1 and F2.
In particular, when, after conducting an experiment σ on I , F1 and F2 predict different
outputs, this provides the opportunity to remove at least one of the two fault models
from further consideration. When one or more such experiments exist, we say that the
fault models are distinguishable. Two types of distinguishability are studied: weakly
and strongly distinguishable fault models.

We next formalise the above concepts. At the root of the distinguishability property
is the notion of an intersection of fault models. Intuitively, the intersection of two fault
models contains exactly those behaviours that are shared among the two fault models.

Definition 4. Let Fi = 〈Si, ActI , ActU , →i, si〉, for i = 1, 2 be two LTSs. Assume
Δ /∈ Act is a fresh constant, and denote ActU ∪ {Δ} by ActΔU . Likewise, ActΔ. The
intersection of F1 and F2, denotedF1||F2, is again an LTS defined by 〈(2S1 \∅)×(2S2 \
∅), ActI , ActΔU , →, ([s1]ε, [s2]ε) 〉, where → is defined by the following rules:

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 a ∈ Act

(q1, q2)
a−→ ([q1]a, [q2]a)

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2

(q1, q2)
Δ−→ ([q1]δ, [q2]δ)

144 M. Gromov and T.A.C. Willemse

Remark that no transitions lead to, or start in an element (q, ∅) or (∅, q) since these are
no elements of the state-space of the intersection of two LTSs.

The intersection of two LTSs extends the alphabet of output actions of both LTSs with
the symbol Δ. This action captures the synchronisation of both LTSs over the observa-
tions of quiescence, which in the ioco-setting is treated as an output of the system. A
“true” quiescent state in the intersection of two LTSs indicates that the output actions
offered by both LTSs are strictly disjoint. In order to facilitate the mapping between
the sets Actδ and ActΔ, we use a relabelling function. Let R : ActΔ → Actδ be the
following bijective function:

R(a) def= a if a �= Δ and δ otherwise

We write R−1 to denote the inverse of R. The mapping R and its inverse extend readily
over sets of actions. The extension of the mapping R (and its inverse) over (sets of)
traces, denoted by the mapping R∗ (resp. R−1∗), is defined in the obvious way.

Property 1. Let F1||F2 be the intersection of F1 and F2, and let s1 be a state of F1, s2
be a state of F2, (q1, q2) be a state of F1||F2 and σ ∈ Act∗δ . Then:

1. F1||F2 is deterministic,
2. [([s1]σ, [s2]σ)]a �= ∅ implies ([s1]σR(a), [s2]σR(a)) ∈ [([s1]σ, [s2]σ)]a,
3. out(([q1]ε, [q2]ε)) \ {δ} = R−1(out([q1]ε) ∩ out([q2]ε)).

Some of the above properties should not come as a surprise: at the basis of the in-
tersection operator is the Suspension Automata transformation of [13], which codes a
non-deterministic specification into a deterministic LTS with explicit suspension tran-
sitions. That transformation is known to retain the exact same ioco testing power as the
original specification, albeit on different domains of specification models.

Strong Distinguishability. Recall that the intersection F1||F2 codes the behaviours
that are shared among the LTSs F1 and F2. This means that in states of F1||F2 that
have no output transitions, both LTSs disagree on the outputs that should occur, provid-
ing the opportunity to eliminate at least one of the two fault models. We say that such a
state is discriminating. If a tester always has a finite “winning strategy” for steering an
implementation to such a discriminating state, the fault models are strongly distinguish-
able. Recall that testing is sometimes portrayed as a (mathematical) game in which the
tester is in control of the inputs and the system is in control of the outputs. We next
formalise the notion of strong distinguishability.

Definition 5. The intersection F1||F2 = 〈S, ActI , ActΔU , →, s〉 is said to be root-
discriminating if there exists a natural number k, such that s ∈ DF1||F2(k), where
DF1||F2 : N → 2S is inductively defined by:

⎧
⎪⎪⎨

⎪⎪⎩

DF1||F2(0) = {t ∈ S | out([t]ε) = {δ}}

DF1||F2(n + 1) =
⋂

a∈ActΔ
U

{t ∈ S | [t]a ⊆ DF1||F2(n)}
∪

⋃
a∈ActI

{t ∈ S | ∅ �= [t]a ⊆ DF1||F2(n)}

Testing and Model-Checking Techniques for Diagnosis 145

A state s ∈ DF1||F2(k) is referred to as a k-discriminating state. If it is clear from
the context, we drop the subscript F1||F2 from the mapping DF1||F2 . We say that fault
models F1 and F2 are strongly distinguishable iff F1||F2 is root-discriminating.

Property 2. For all intersections F1||F2 and all k ≥ 0, we have D(k + 1) ⊇ D(k).

Note that a state s is allowed to be (k+1)-discriminating if there is a strategy to move
from state s to a state which is k-discriminating via some input, even though there are
some outputs that would not lead to a k-discriminating state. This is justified by the fact
that the implementations that we consider are input enabled. This means that they have
to be able to accept inputs at all times, and input may therefore pre-empt possible out-
put of a system. Strong distinguishability is preserved under ioco-conformance which
means that if two fault models are strongly distinguishable, then also the implementa-
tions/refinements they model behave observably differently.

Property 3. Let F1, F2 be fault models, and let I1, I2 be implementations. If I1 ioco F1

and I2 ioco F2 and F1 and F2 are strongly distinguishable, then so are I1 and I2.

Strong distinguishability can be characterised by means of a modal μ-calculus formula.
The formal connection is established by the following theorem.

Theorem 1. Let F1, F2 be two fault models. Then F1 and F2 are strongly distinguish-
able iff F1||F2 |= φsd, where

φsd
def= μX. [ActΔU]X ∨ 〈ActI〉X

Weak Distinguishability. Strong distinguishability as a property is quite powerful, as
it ensures that there is a testing strategy that inevitably leads to a verdict about one of
the two fault models. However, it is often the case that there is no such fail-safe strategy,
even though reachable discriminating states are present in the intersection. We therefore
introduce the notion of weak distinguishability.

Definition 6. Two fault models F1, F2 are said to be weakly distinguishable if and only
if der(F1||F2) ∩ D(0) �= ∅.

The problem of deciding whether two fault models are weakly distinguishable is a stan-
dard reachability property as testified by the following correspondence.

Theorem 2. Let F1, F2 be two fault models. Then F1 and F2 are weakly distinguish-
able iff F1||F2 |= φwd, where

φwd
def= μX. 〈ActΔ〉X ∨ [ActΔU]ff

Unlike strong distinguishability, weak distinguishability is not preserved under ioco.
This is illustrated by the following example:

Example 2. Let F1 and F2 be two fault models and let I be an implementation (see
Fig. 1). Clearly, I ioco F1 and I ioco F2. Moreover, F1 and F2 are weakly distinguish-
able, as illustrated by the trace ?b.!e. However, I is clearly not weakly distinguishable
from itself, as distinguishability is irreflexive.

146 M. Gromov and T.A.C. Willemse

?b

!e
!a

!a

F1

!a
?b

!e
!a

!a

F2

!e
?b

!a

!a

I

?b

?b

Fig. 1. Fault models F1 and F2 and implementation I

3.2 Orthogonality

Whereas distinguishability focuses on the differences in output for two given fault mod-
els, it is equally well possible that there is a difference in the specified inputs. Note that
this is allowed in ioco-testing theory: a specification does not have to be input com-
plete; this partiality with respect to inputs supports a useful form of underspecification.
In practice, a fault hypothesis can often be tested by focusing testing effort on particular
aspects. Exploiting the differences in underspecifications of the fault models gives rise
to a second heuristic, called orthogonality, which we describe in this section. We start
by extending the intersection operator of Def. 4.

Definition 7. Let Fi = 〈Si, ActI , ActU , →i, si〉, for i = 1, 2 be two fault models.
Assume Θ = {Θa | a ∈ ActI} is a set of fresh constants disjoint from ActΔ. We
denote Act ∪ Θ by ActΔΘ . The orthogonality-aware intersection of F1 and F2, denoted
F1||ΘF2, is an LTS defined by 〈(2S1 \ ∅) × (2S2 \ ∅), ActΘI , ActΔU , →, ([s1]ε, [s2]ε)〉,
where → is defined by the two rules of Def. 4 in addition to the following two rules:

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 [q1]a �= ∅ [q2]a = ∅ a ∈ ActI

(q1, q2)
Θa−−→ (q1, q2)

∅ �= q1 ⊆ S1 ∅ �= q2 ⊆ S2 [q2]a �= ∅ [q1]a = ∅ a ∈ ActI

(q1, q2)
Θa−−→ (q1, q2)

Property 4. Let F1||ΘF2 be the orthogonality-aware intersection of F1 and F2, and let
(q1, q2) be a state of F1||ΘF2. Then:

1. F1||ΘF2 is deterministic,

2. For all inputs a ∈ ActI , (q1, q2)
a−→ implies (q1, q2) � Θa−−→.

Note that the reverse of Property 4, item 2 does not hold exactly because of the input
incompleteness of fault models in general. Intuitively, the occurrence of a label Θa in
the orthogonality-aware intersection models the fact that input a is specified by only
one of the two LTSs and is left unspecified by the other LTS. The presence of such
labels in the orthogonality-aware intersection are therefore pointers to the orthogonal-
ity of two systems. Once an experiment arrives in a state with an orthogonality label
Θa, testing can focus on one of the two fault models exclusively. Any test failure that is

Testing and Model-Checking Techniques for Diagnosis 147

subsequently found is due to the incorrectness of the selected fault model. We next for-
malise the notions of strong and weak orthogonality, analogously to distinguishability.

Definition 8. Let F1||ΘF2 = 〈S, ActΘI , ActΔU , →, s〉. F1 andF2 are said to be strongly
orthogonal if there is a natural number k such that s ∈ OF1||ΘF2(k), where OF1||ΘF2 :
N → 2S is inductively defined by:
⎧
⎪⎨

⎪⎩

OF1||ΘF2(0) = {t ∈ S | ∃a ∈ ActI : t
Θa−−→}

OF1||ΘF2(n + 1) =
⋂

a∈ActΔ
U

{t | [t]a ⊆ OF1||ΘF2(n) ∧ ∃a′ ∈ ActU : [t]a′ �= ∅}
∪

⋃
a∈ActI

{t | ∅ �= [t]a ⊆ OF1||ΘF2(n) ∨ t Θa−−−→ }

The following theorem recasts strong orthogonality as a modal property.

Theorem 3. Fault modelsF1 and F2 are strongly orthogonal iff F1||ΘF2 |= φso, where

φso
def= μX. (〈ActΔU 〉tt ∧ [ActΔU]X) ∨ 〈ActI〉X ∨ 〈Θ〉tt

Analogously to distinguishability, we define a weak variation of strong orthogonality,
which states that it is possible to reach a state in which an orthogonal label Θa for some
a is enabled.

Definition 9. Given F1||ΘF2 = 〈S, ActΘI , ActΔU , →, s〉. F1 and F2 are said to be
weakly orthogonal iff der(F1||ΘF2) ∩ O(0) �= ∅.

A recast of weak orthogonality into the μ-calculus is as follows.

Theorem 4. Fault models F1 and F2 are weakly orthogonal iff F1||ΘF2 |= φwo, where

φwo
def= μX. 〈ActΔ〉X ∨ 〈Θ〉tt

Orthogonality is not preserved under ioco conformance, which is illustrated by the fol-
lowing example.

Example 3. Let F1 and F2 be two fault models and let I1 and I2 be two implementa-
tions, depicted in Fig. 2. Clearly, I1 ioco F1 and I2 ioco F2. Moreover, F1 and F2 are
(strongly and weakly) orthogonal, as illustrated by the trace ?b.?b which is applicable
for F1, but not applicable for F2. However, I1 and I2 are not orthogonal. Note that by
repeatedly executing experiment ?b.?b and subsequently observing output confidence
in the correctness of (aspects of) F1 can increase.

?b

?b
?c

!a

F1

!e

?c

?b

?c

!a

I2

?b

?b ?c

!a

I1

!e

?c

?b

?b

?c

!a

F2

?b, ?c ?b, ?c ?b, ?c

Fig. 2. Fault models F1 and F2 and implementations I1 and I2

148 M. Gromov and T.A.C. Willemse

4 Automating Diagnostic Testing

In the previous section we formalised the notions of distinguishability and orthogonal-
ity, both in terms of set-theory and modal logic. In this section, we rely on the latter
results for defining provably correct algorithms for eliminating fault models and for
isolating behaviours of fault models for further scrutiny.

First, we introduce the basic tools that we rely on for defining our on-the-fly diag-
nostic testing algorithms and semi-decision procedures. Then, in Section 4.2 we define
the algorithms for strong distinguishability and orthogonality, and in Section 4.3, the
semi-decision procedures for weak distinguishability and orthogonality are given.

4.1 Preliminaries

For the remainder of these sections, we assume that I is an implementation that we wish
to subject to diagnostic testing, and Fi = 〈Si, ActI , ActU , →i, si〉, for i = 1, 2 are two
given fault models. F1||(Θ)F2 = 〈S, Act

(Θ)
I , ActΔU , →, s〉 is the (orthogonality-aware)

intersection of F1 and F2. From this time forth, we assume to have the following four
methods at our disposal:

1. Apply(a): send input action a ∈ ActI to an implementation,
2. Observe(): observe some output a ∈ ActU ∪ {δ} from an implementation,
3. Counterexample(L,φ): returns an arbitrary counterexample for L |= φ if one

exists, and returns ⊥ otherwise.
4. Counterexamples(L, φ): returns one among possibly many shortest counterex-

amples for L |= φ if a counterexample exists, and returns ⊥ otherwise.

We refer to [9] for an explanation of the computation of counterexamples for the modal
μ-calculus. In our ordeals we assume that ⊥ is a special character that we can concate-
nate to sequences of actions.

4.2 Strong Distinguishability and Strong Orthogonality

Suppose F1 and F2 are strongly distinguishable or orthogonal. Algorithm 1 derives and
executes (on-the-fly) an experiment that (see also Theorem 5), depending on the input:

– allows to eliminate at least one fault model from a set of fault models, or
– isolates a fault model for further testing.

Recall that φ denotes the dual of φ (see Section 2). Informally, the algorithm works
as follows for strongly distinguishable fault models F1 and F2 (likewise for strongly
orthogonal fault models): η is the shortest counterexample for F1 and F2 not being
strongly distinguishable. The algorithm tries to replay η on the implementation, and
recomputes a new counterexample when an output produced by the system-under-test
does not agree with the output specified in the counterexample. When the counterexam-
ple has length 0, we can be sure to have reached a discriminating state, and observing
output in this state eliminates at least one of the two considered fault models.

Testing and Model-Checking Techniques for Diagnosis 149

Algorithm 1. Algorithm for exploiting strong distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is a shortest counterexample for P |= φx, φx ∈ {φsd, φso}
Ensure: Returns a sequence executed on I .
1: function A1(P, η, φx)
2: if η = ε then
3: if φx = φsd then return Observe();
4: else choose a from {y ∈ ActI | [P]Θy �= ∅}; return a;
5: end if
6: else � Assume η ≡ e η′ for some action e and sequence η′

7: if e ∈ ActI then Apply(e); return e A1([P]e, η
′, φx);

8: else a := Observe();
9: if a = e then return e A1([P]e, η

′, φx);
10: else if R−1(a) ∈ out(P) then
11: return a A1([P]a,R∗(Counterexamples([P]a, φx)), φx);
12: else return a;
13: end if
14: end if
15: end if
16: end function

Theorem 5. Let F1 and F2 be strongly orthogonal or strongly distinguishable fault
models. Let φ = φsd when F1 and F2 are distinguishable and let φ = φso when F1

and F2 are orthogonal. Then algorithm A1({s}, Counterexamples(F1||ΘF2, φ), φ)
terminates and the sequence σ ≡ σ′ a it returns satisfies:

1. a ∈ Actδ\ActI implies out([I]σ′) �⊆ out([F1]σ′) or out([I]σ′) �⊆ out([F2]σ′),
2. a ∈ ActI implies φ = φso and [F1]σ = ∅ or [F2]σ = ∅.

The sequence that is returned by the algorithm can be used straightforwardly for check-
ing which fault model(s) can be eliminated, or which fault model is selected for further
scrutiny (see also Section 4.5). Such “verdicts” are easily added to our algorithms, but
are left out for readability.

4.3 Weak Distinguishability and Weak Orthogonality

In case F1 and F2 are not strongly but weakly distinguishable (resp. weakly orthogo-
nal), there is no guarantee that a discriminating (resp. orthogonal) state is reached. By
conducting sufficiently many tests, however, chances are that one of such states is even-
tually reached, unless the experiment has run off to a part of the state space in which no
discriminating (resp. orthogonal) states are reachable. Semi-decision procedure 2 con-
ducts experiments on implementation I , and terminates in the following three cases:

1. if a sequence has been executed that led to a discriminating/orthogonal state,
2. if an output was observed that conflicts at least one of the fault models,
3. if discriminating/orthogonal states are no longer reachable.

So long as neither of these cases are met, the procedure does not terminate. The semi-
decision procedure works in roughly the same manner as the algorithm of the previous

150 M. Gromov and T.A.C. Willemse

section. The main differences are in the termination conditions (and the result it returns),
and, secondly the use of arbitrary counterexamples, as shorter counterexamples are not
necessarily more promising for reaching a discriminating/orthogonal state.

Algorithm 2. Procedure for exploiting weak distinguishability/orthogonality

Require: P ⊆ S, |P | = 1, η is any counterexample for P |= φx, φx∈{φwo, φwd}
Ensure: Returns a sequence executed on I upon termination
1: function A2(P, η, φx)
2: if η = ε then
3: if φx = φwd then return Observe();
4: else choose a from {y ∈ ActI | [P]Θy �= ∅}; return a;
5: end if
6: else � Assume η ≡ e η′ for some action e and sequence η′

7: if e ∈ ActI then Apply(e); return e A2([P]e, η
′, φx);

8: else a := Observe();
9: if a = e then return e A2([P]e, η

′, φx);
10: else if R−1(a) ∈ out(P) ∧ Counterexample([P]a, φx) �= ⊥ then
11: return a A2([P]a,R∗(Counterexample([P]a, φx)), φx);
12: else if R−1(a) ∈ out(P) ∧ Counterexample([P]a, φx) = ⊥ then
13: return ⊥;
14: else return a;
15: end if
16: end if
17: end if
18: end function

Theorem 6. Let F1 and F2 be weakly orthogonal or weakly distinguishable fault mod-
els. Let φ = φwd when F1 and F2 are distinguishable and let φ = φwo when F1 and F2

are orthogonal. If algorithm A2({s}, Counterexample(F1||ΘF2, φ), φ) terminates it
returns a sequence σ ≡ σ′ a satisfying:

1. a ∈ Actδ\ActI implies out([I]σ′) �⊆ out([F1]σ′), or out([I]σ′) �⊆ out([F2]σ′),
2. a ∈ ActI implies φ = φwo and [F1]σ = ∅ or [F2]σ = ∅.
3. a = ⊥ implies either φ = φwo and der([s]σ′) ∩ O(0) = ∅, or φ = φso and

der([s]σ′) ∩ D(0) = ∅.

The following example illustrates that the semi-decision procedure does not necessarily
terminate.

Example 4. Suppose the intersection of two fault models is given by F1||F2 and the
malfunctioning implementation is given by I (see Fig. 3). Clearly, F1 and F2 are weakly
distinguishable, which means semi-decision procedure 2 is applicable. A counterex-
ample to non-weak distinguishability is e.g. ?b!e?b?b!a, so the procedure might try to
execute this sequence. However, termination is not guaranteed, as the implementation
may never execute action !a, but output !e instead, making the semi-decision procedure
recompute new counterexamples.

Testing and Model-Checking Techniques for Diagnosis 151

Δ

?b

!a !e

?b

Δ

F1‖F2

?b

!a
!e

?b

I

?b

Fig. 3. No termination guaranteed for semi-decision procedure 2

4.4 Optimisations

The algorithms for strong distinguishability (resp. strong orthogonality) in the previous
section can be further optimised in a number of ways. First, one can include a minor ad-
dition to the standard model-checking algorithm, marking each k-discriminating (resp.
k-orthogonal) state in the LTS that is checked with its depth k. While this has a neg-
ligible negative impact on the time complexity of the model checking algorithm, the
state markings allow for replacing the method Counterexamples() with a constant-
time operation. Secondly, upon reaching a node in D(k) (O(k), respectively), the semi-
decision procedure for weak distinguishability/orthogonality could continue to behave
as algorithm 1. Furthermore, the orthogonality aware intersection is an extension of the
plain intersection. Computing both is therefore unnecessary: only the former is needed;
in that case, the formulae for strong and weak distinguishability need to be altered to
take the extended set of input actions into account.

4.5 Diagnostic Testing Methodology

Distinguishability and orthogonality, and their associated algorithms, help in reducing
the effort that is required for diagnostic testing. Thus far, we presented these techniques
without addressing the issue of when a particular technique is worth investigating. In
this section, we discuss a methodology for employing these techniques in diagnostic
testing. For the remainder of this section, we assume a faulty implementation I and a
given set of fault models F = {F1, . . . , Fn}.

We propose a stepwise refinement of the diagnostic testing problem using distin-
guishability and orthogonality. The first step in our methodology is to identify the
largest non-symmetric set of pairs of strongly distinguishable fault models G. We next
employ the following strategy: so long as G �= ∅, select a pair (Fi, Fj) ∈ G and pro-
vide this pair as input to algorithm 1. Upon termination of the algorithm, an experiment
σ ≡ σ′a is returned, eliminating Fk from F iff a /∈ out([Fk]σ′) (k = i, j). Moreover,
remove all fault models Fl for which [Fl]σ′ �= ∅ and a /∈ out([Fl]σ′) and recompute G.
A worst case scenario requires at most |G| iterations to reach G = ∅. The process can
be further optimised by ordering fault models w.r.t. ioco-testing power, but it is beyond
the scope of this paper to elaborate on this.

When G is empty, no strongly distinguishable pair can be found in F . The set
of fault models can be further reduced using the weak distinguishability and strong

152 M. Gromov and T.A.C. Willemse

orthogonality heuristics, in no particular order, as neither allows for a fail-safe strategy
to a conclusive verdict. As a last resort, weak orthogonality is used before conducting
naive testing using the remaining fault models.

5 Example

As an illustration of some of the techniques that we presented in this paper, we consider
a toy example concerning the prototypical coffee machine. The black-box behaviour of
the coffee-machine is defined by specification S in Fig. 4, where action ?c and !c rep-
resent a coffee request and production, ?t and !t represent a tea request and production,
and ?m and !m represent a coffee-cream request and production. Among the set of fault

?c

!c ?t

!t
?m!m

?c, ?t, ?m

!c, !t

?c, ?t

!Δ ?c, ?t
!Δ, ?Θm

?c, ?t

?Θc, ?Θt, ?Θm

S F1 F2 F1||F2 F1||ΘF2

Fig. 4. Specification S and fault models F1, F2 and F3 of a coffee machine

models for a misbehaving implementation of S are fault models F1 (modelling e.g. a
broken keypad in the machine) and F2 (modelling e.g. a broken recipe book). Comput-
ing their intersection and their orthogonal-aware intersection, we find that F1 and F2

are strongly distinguishing and strongly orthogonal. The preferred choice here would
be to run algorithm 1 with arguments setting it to check for strong distinguishability
using e.g. ?t as input for the shortest counterexample. Algorithm 1 would first offer
?t to the implementation (which is accepted by assumption that implementations are
input-enabled). Since then the shortest counterexample to non-strong distinguishability
would be the empty string ε, the algorithm queries the output of the implementation
and terminates. Any output the implementation produces either violates F1 or F2, or
both. In case one would insist on using strong orthogonality, algorithm 1 would be used
with the emtpy string ε as the shortest counterexample to non-strong orthogonality. The
algorithm would return the sequence ?m, indicating that isolated aspects of F1 can be
tested by experiments starting with input ?m.

6 Concluding Remarks

We considered the problem of diagnosis for reactive systems, the problem of finding an
explanation for a detected malfunction of a system. As an input to the diagnosis prob-
lem, we assumed a set of fault models. Each fault model provides a formal explanation
of the behaviour of an implementation in terms of an LTS model. From this set of fault
models, those models that do not correctly describe (aspects of) the implementation
must be eliminated. As may be clear, this can be done naively by testing the implemen-
tation against each fault model separately, but this is quite costly. We have introduced

Testing and Model-Checking Techniques for Diagnosis 153

several methods, based on model-based testing and model checking techniques, to make
this selection process more effective.

Concerning issues for future research, we feel that the techniques that we have de-
scribed in this paper can be further improved upon by casting our techniques in a quan-
titative framework. By quantifying the differences and overlap between the outputs de-
scribed by two fault models, a more effective strategy may be found. The resulting quan-
titative approach can be seen as a generalisation of our notion of weak distinguishability.
Such a quantitative approach may very likely employ techniques developed in model
checking with costs (or rewards). A second issue that we intend to investigate is the
transfer of our results to the setting of real-time, in particular for fault models given by
Timed Automata. In our discussions, we restricted our attention to the problem of se-
lecting the right fault models from a set of explicit fault models by assuming this set was
obtained manually, thereby side-stepping the problem of obtaining such fault models in
the first place. Clearly, identifying techniques for automating this process is required
for a full treatment of diagnosis for LTSs. Lastly, and most importantly, the efficacy of
the techniques that we have developed in this paper must be assessed on real-life case-
studies. There is already some compelling evidence of their effectiveness in [5] where
a notion of distinguishability is successfully exploited in the setting of communicating
FSM nets.

Acknowledgement. The authors would like to thank Vlad Rusu, Jan Tretmans and
René de Vries for stimulating discussions and advice on the subjects of diagnosis and
testing.

References

1. Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L., Mauw, S.,
Heerink, L.: Formal test automation: A simple experiment. In: Csopaki, G., Dibuz, S., Tarnay,
K. (eds.) Testcom ’99, pp. 179–196. Kluwer, Dordrecht (1999)

2. Bradfield, J.C., Stirling, C.P.: Modal logics and mu-calculi: an introduction. In: Bergstra, J.,
Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, ch. 4, pp. 293–330. Elsevier,
Amsterdam (2001)

3. El-Fakih, K., Prokopenko, S., Yevtushenko, N., von Bochmann, G.: Fault diagnosis in
extended finite state machines. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS,
vol. 2644, pp. 197–210. Springer, Heidelberg (2003)

4. El-Fakih, K., Yevtushenko, N., von Bochmann, G.: Diagnosing multiple faults in communi-
cating finite state machines. In: Proc. FORTE’01, pp. 85–100. Kluwer, Dordrecht (2001)

5. Gromov, M., Kolomeetz, A., Yevtushenko, N.: Synthesis of diagnostic tests for fsm nets.
Vestnik of TSU 9(1), 204–209 (2004)

6. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Heuristics for fault diagnosis when
testing from finite state machines. Softw. Test. Verif. Reliab. 17, 41–57 (2007)

7. Jard, C., Jéron, T.: Tgv: theory, principles and algorithms. STTT 7(4), 297–315 (2005)
8. Jéron, T., Marchhand, H., Pinchinat, S., Cordier, M.-O.: Supervision patterns in discrete event

systems diagnosis. In: Proc. WODES 2006, IEEE, New York (2006)
9. Kick, A.: Generation of Counterexamples and Witnesses for Model Checking. PhD thesis,

Fakultät für Informatik, Universität Karlsruhe, Germany (July 1996)

154 M. Gromov and T.A.C. Willemse

10. Lamperti, G., Zanella, M., Pogliano, P.: Diagnosis of active systems by automata-based rea-
soning techniques. Applied Intelligence 12(3), 217–237 (2000)

11. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic fsm specifications. IEEE
Trans. Comput. 54(9), 1154–1165 (2005)

12. Pietersma, J., van Gemund, A.J.C., Bos, A.: A model-based approach to sequential fault
diagnosis. In: Proceedings IEEE AUTOTESTCON 2005 (2005)

13. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools 17(3), 103–120 (1996)

	Testing and Model-Checking Techniques for Diagnosis
	Introduction
	Background
	Techniques and Heuristics for Diagnostic Testing
	Distinguishability
	Orthogonality

	Automating Diagnostic Testing
	Preliminaries
	Strong Distinguishability and Strong Orthogonality
	Weak Distinguishability andWeak Orthogonality
	Optimisations
	Diagnostic Testing Methodology

	Example
	Concluding Remarks
	References

