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Abstract. The authors consider combining correlations of different orders in 
kernel principal component analysis (kPCA) and kernel canonical correlation 
analysis (kCCA) with the correlation kernels. We apply combining methods, 
e.g., the sums of the correlation kernels, Cartesian spaces of the principal 
components or the canonical variates and the voting of kPCAs and kCCAs 
output and compare their performance in the classification of texture images. 
Further, we apply Kansei information on the images obtained through 
questionnaires to the public to kCCA and evaluate its effectiveness.  

Keywords: kernel method, principal component analysis, canonical correlation 
analysis, correlation kernel, combining classifiers, Kansei information, texture 
classification.  

1   Introduction  

Kernel principal component analysis (kPCA) [1] and kernel canonical correlation 
analysis (kCCA) [2], [3], [4] are kernelized versions of PCA and CCA in multivariate 
statistical analysis. In PCA, the linear projections which allow to reconstruct original 
feature vectors are obtained with minimal quadratic errors. It is used to reduce the 
dimensionality of the original data retaining most existing structure in the data. In 
CCA, linear transformations that yield maximum correlation between two kinds of 
features vectors of objects, e.g., their images and sounds, are obtained. It is also 
applied to dimensionality reduction or feature extraction. In the kernel methods, the 
inner products of the feature vectors are replaced to nonlinear kernel functions [5], 
[6]. Nonlinear mappings of the feature vectors to high-dimensional spaces are then 
performed in implicit manners. Then nonlinear characteristics of the original data can 
be extracted with them.  

Correlation kernels were recently proposed as kernel functions [7], [8]. They are inner 
products of the autocorrelation functions of the feature vectors. The idea was shown 
about forty years ago and their characteristics are that higher-order correlation kernels are 
effectively calculated [9]. They are suitable to image data, which have strong spatial 
correlations and support vector machines (SVM), kPCA and kCCA with the correlation 
kernels were applied to invariant texture classification [10], [11], [12].  
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In this study we consider combining correlation kernels of different orders in 
kPCA and kCCA in the classification of texture images. Combining classifiers have 
been of wide interest in pattern recognition [13], [14] and they can show higher 
classification performance than any single classifiers. Some combining methods: use 
of the sums of the correlation kernels as kernel functions, use of Cartesian spaces of 
the principal components or the canonical variates as feature vectors and the voting of 
output of the classifiers with kPCA or kCCA are employed and compared in their 
classification performance. Further, we try to use Kansei information, the perceptual 
and cognitive ability to feel objects, e.g., impressions to images. Kansei information 
was applied to image retrieval systems with CCA [15] and it can be adopted in kCCA 
as the second feature vectors.  

In Sect. 2, related theoretical background: kPCA, kCCA, correlation kernels, 
combining methods and Kansei information are mentioned. In Sect. 3, Method and 
results of texture classification experiment with kPCA and kCCA are shown. 
Discussions are given in Sect. 4.  

2   Theoretical Background  

2.1   Kernel Principal Component Analysis (kPCA)  

The feature vectors xi (1 ≤ i ≤ n) of sample objects are transformed to φ(xi) in another 
feature spaces with an implicit nonlinear mapping h. We assume that the mean of the 
transformed features are zero, i.e., ∑i=1

n h(xi) = 0, for simplicity. The mean centering 
can be done in the calculation of kernel functions [1]. The kernel version of PCA is 
PCA for h(xi) and the principal components are obtained through the eigenproblem  

Φv =λv   (1) 

where Φ is a kernel matrix and its elements are calculated with a kernel function Φij = 
h(xi)·h(xj) =φ(xi, xj). Let vr = (vr1, …, vrn)

T (1 ≤ r ≤ R ( ≤ n)) be the eigenvectors in the 
non-increasing order of the corresponding non-zero eigenvalues λr, which are 
normalized as λrvr·Tvr = 1. The rth principal component ur for a new data x is then 
obtained by  

ur = ∑i=1
n vrih(xi)·h(x) = ∑i=1

n vriφ(xi, x) (2) 

Classification methods, e.g., the nearest-neighbor method, the discriminant analysis 
and SVMs can be applied in the principal component space (u1, ···, uR).  

2.2   Kernel Canonical Correlation Analysis (kCCA)  

The kernel version of CCA is as follows [2], [3], [4]. Let (xi, yi), (1 ≤ i ≤ n) be pairs of 
the feature vectors of n sample objects, which describe different aspects of the 
objects, e.g., sounds and images. Define kernel matrices Φ and Θ by Φij = φ(xi, xj) 
and Θij = θ(yi, yj), (1 ≤ i, j ≤ n), which correspond to the inner products of implicit 
functions of x and y, respectively. Then we obtain the eigenvectors (f T, gT)T of the 
generalized eigenproblem:  
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0 f 2+ xI 0 f
   =

 0 g 0 2+ yI g
 

(3) 

Small multiples of the identity matrix γxI and γyI are added for the regularization. The 
canonical variates u and v of (x, y) of a object are linear projections of the implicit 
functions of x and y which maximize correlation between them. They are obtained 
with the eigen vectors f and g by  

u = ∑i=1
n fiφ(xi, x) 

v = ∑i= 1
n giθ(yi, y) 

(4) 

An indicator vector is used as the second feature vector y for classification 
problems [2]. When an object x is categorized into one of C classes, the indicator 
vector corresponding to x is defined by  

y = (y1, ···, yC)T 

 
yc = 1  if x belongs to class c 

yc = 0   otherwise      (1 ≤ c ≤ C) 

(5) 

Then the linear inner product yi
 Tyj is used as the kernel function θ(yi, yj). The 

canonical variates ui (1 ≤ i ≤ C-1) are obtained corresponding to non-zero eigenvalues 
of Eq. (3). This is equivalent to Fisher’s discriminant analysis in two class problems. 
Standard classification methods are also applied in the canonical variate space.  

2.3   Correlation Kernels and Their Modification  

The autocorrelation of the original feature vector x is used in the correlation kernels 
[7], [8]. In the following, we consider 2-dimensional image data x(l, m), (1 ≤ l ≤ L, 1 ≤ 
m ≤ M) as the feature vector x. The kth-order autocorrelation rx(l1, l2, ··· , lk-1, m1, m2, 
··· , mk-1) of x(l, m) is defined by  

rx(l1, l2, ···, lk-1, m1, m2, ···, mk-1) 
= ∑l ∑m x(l, m)x(l+l1, m+m1) ··· x(l+lk-1, m+mk-1) 

(6) 

The inner product of the autocorrelations rxi and rxj of image data xi(l, m) and xj(l, m) 
is calculated by the sum of the kth power of the cross-correlation ccxi, xj(l1, m1) of the 
image data [9]  

rxi·rxj(k)=∑l1=0
L-1∑m1=0

M-1{ccxi, xj(l1, m1)}
k/(LM) (7) 

ccxi, xj(l1, m1) = ∑l=1
L-l1∑m=1

M-m1xi(l,m)xj(l+l1, m+m1)/(LM) (8) 

Computational costs are reduced in the practical order even for high-order k of the 
correlation and large data size L and M since the calculation of the explicit values of 
the autocorrelations are avoided. Equation (7) is employed as the kth-order correlation 
kernel function k(xi, xj) and thus Φ in Eq. (3).  
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Since the performance of the correlation kernels of odd or higher-orders is 
degraded, the following modified versions of the correlation kernels have been 
proposed [12] and are used in this study.  

Lp norm kernel (P) 
rxi·rxj = sgn(ccxi, xj(l1, m1))|∑l1,m1{ccxi, xj(l1, m1)}

k|1/k 
(9) 

Absolute correlation kernel (A)  
rxi·rxj = ∑l1, m1 |ccxi, xj(l1, m1)|

k (10) 

Absolute Lp norm kernel (AP)  
rxi·rxj = | ∑l1, m1{ccxi, xj(l1, m1)}

k |1/k (11) 

Absolute Lp norm absolute kernel (APA)  
rxi·rxj = |∑l1, m1 |cc xi, xj(l1, m1)|

k |1/k (12) 

Max norm kernel (Max)  
rxi·rxj = max l1, m1 ccxi, xj(l1, m1) (13) 

Max norm absolute kernel (MaxA)  
rxi·rxj = max l1, m1 |ccxi, xj(l1, m1)| (14) 

The Lp norm kernel (P) and the absolute correlation kernel (A) take the kth roots 
and absolute values, respectively, of the original ones. The max norm kernel (MAX) 
is regarded as the Lp norm kernel in the limit of k → ∞. The absolute Lp norm kernel 
(AP), the absolute Lp norm absolute kernel (APA) and the Max norm absolute kernel 
(MaxA) are combinations of them.  

2.4   Combining Correlation Kernels  

The following combining methods in three levels are employed for combining 
autocorrelation features of different orders.  

First is combination in a kernel level. The sums of the correlation kernels of 
different orders are used as kernel functions, which are used in [7], [8].  

φ(xi, xj) = ∑k=1
km rxi·rxj(k) (15) 

Second is combination in a feature level. Cartesian spaces of the principal 
components in kPCA or the canonical variates in kCCA with the correlation kernels 
of different orders are used as combined feature spaces: (u1, ···, unc, u’1, ···, u’nc’) (0 ≤ 
nc, n’c ≤ C-1) obtained from two sets of the canonical variates (u1, ···, uc-1) and (u’, ···, 
u’C-1), for instance.  Third is combination of classifiers output level. Classification 
methods are applied to the principal component spaces or the canonical variate spaces 
with different correlation kernels and their output (classification results) are 
combined. In this study, the simple nearest-neighbor classifier and the majority vote 
output are used as the classification method and combining classifiers, respectively.  
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2.5   Kansei Information  

Kansei information can be obtained from human experts or from the public. A 
standard way is that we prepare impression words for objects, e.g., {beautiful, dark, 
clear} for images and ask the persons to choose the impression words which they 
think most matched to the objects. We then use the vectors the elements of which are 
the numbers of the votes of the impression words to the objects as Kansei 
information. Questionnaire systems can be employed to collect them.  

The obtained vectors, which we call the impression vectors, are used as the second 
feature vectors y instead of the indicator vectors in Eq. (5) in kCCA. The canonical 
variates obtained with them retain Kansei information and then consist of the features 
differ from those without them. These features can contribute to increases in 
classification performance.  

3   Texture Classification Experiment  

Classification experiment with 30 texture images arbitrarily taken from the Brodatz 
album [16] were done using kPCA and kCCA with combining correlation kernels of 
different orders as well as Kansei information.  

3.1   Collection of Kansei Information  

We made a questionnaire system on Web to collect Kansei information from Japanese 
undergraduate student in our faculty. Java Server Pages (JSP) was used for the client-
server system. The Web page shows 30 texture images in the Brodatz album in Fig. 1 
and asks people to choose one image which matches each Japanese impression word. 
Twenty impression words for images [17] are used: delicate, beautiful, bold, sharp, 
decorative, fine, sophisticated, simple, soft, deep, impressive, quiet, elegant, chic, 
natural, hard, grave, silent, solid,  rural. We sent requests for the questionnaire by e-
mail to about 200 students and obtained answers from 50 students.  

  

 

Fig. 1. Texture images from the Brodatz album 

Kansei information of each texture image is a 20-dimensional vector the element of 
which is the number of the vote of the impression word to the image (the impression 
vector). For instance, the impression vector for the top-left texture image (Brodatz 
D101), top-left in Fig. 1, was  
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y1 = (1,1,0,0,7,1,1,25,1,0,7,2,1,0,1,0,0,3,0,2) (16) 

which indicates that many answerers thought the image simple. We use the 
impression vectors as the second feature vectors y in kCCA.  

3.2   Method  

Thirty 8bit image data of 640×640 pixels in the Brodatz album are obtained from 
AMOVIP-DB [18]. Ten subimages of 10×10 pixels are taken from each original 
image without overlap, 300 images in total, are used as sample data and one hundred 
subimages for each, 3000 images in total, are used as test data as well.  

As the second feature vector y in kCCA , we use the indicator vectors (Eq. (5)) or 
the impression vectors, in which Kansei information is taken into account. The values 
of regularization parameters γx and γy in kCCA are set to be 0.1n. The principal 
components with 299 non-zero elements in kPCA and the canonical variates with 29 
elements in kCCA with the indicator vectors and 19 elements in kCCA with the 
impression vectors are calculated with the sample data. In kPCA, the first 50 elements 
of the principal components are used for classification.  

A simple nearest neighbor classifier (1-NN) in the feature space (the principal 
component spaces, the canonical variate spaces and their combination) in each kPCA 
and kCCA is used for the classification of the test data. For the combining methods, 
the sums of the correlation kernels of different orders in a kernel level, Cartesian 
spaces of the principal components and the canonical variates with the correlation 
kernels of different orders in a feature level, and the majority vote of the 1-NN 
classifiers output with kPCA and kCCA with the correlation kernels are employed as 
explained in Sect. 2.4. Further, the impression vectors (Kansei information) as well as 
the indicator vectors are adopted for the second feature vectors y in kCCA.  

To express the set (M, φ) of the kernel method and the kernel function φ, the 
following symbols are used.  

 

kPCA: P, kCCA with the indicator vector: I, kCCA with the impression vector K  
 

the kth-order correlation kernel: Ck, the kth-order Lp norm kernel: Pk, the max 
norm kernel: Max, etc., the symbols in which are the same as Eqs. (9)-(14), for the 
kernel function φ  

 

For instance, (P, C2) indicates kPCA with the 2nd-order correlation kernel.  

3.3   Results  

Figure 2 shows the correct classification rates (CCRs) of the single classifiers. The 
correct classification rates are calculated with the first r principal components (u1, ···, 
ur) (1 ≤ r ≤ 50)) for all r in kPCA and with the first i canonical variates (u1, ···, ui) (1 ≤ 
i ≤ 29 or 19) for all i in kCCA. The maximum values of CCRs are usually obtained 
with parts of the principal components or the canonical variates. The highest CCRs 
are obtained with the max norm kernel (Max) in all cases and their values are: 0.2237 
(P, r = 50), 0.2250 (P (max), r = 32) in kPCA; 0.2347 (I, i =29) with the indicator 
vector (I), in kCCA; 0.2237 (K, i = 19), 0.2250 (K (max), i = 15) with the impression 
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vector (K). In most cases kCCAs with the indicator vector (I) show the highest CCRs, 
as is expected since kCCA is superior to kPCA and the indicator vector is most 
suitable for classification tasks.  

Figure 3 shows CCRs with the combined classifiers, the sum of the kernels (a), 
Cartesian spaces of the principal components and the canonical variates (b), and the 
voting of the 1-NN classifiers output (c). In each case, the kernels or the classifiers are 
added in descending order of CCRs of the single classifiers and CCRs with all 
elements of the principal components and the canonical variates. The highest CCRs 
are obtained with the combination of small numbers (1 – 14) of the classifiers, though 
the maximum 96 classifiers can be combined. Table 1 shows the highest CCRs and 
the combination of the classifiers. The maximum value 0.2560 is obtained with 
Cartesian subspace of canonical variates of the three correlation kernels ((I, Max), (I, 
AP7), (I, APA3)), and the second value 0.2553 is with Cartesian space of the six 
correlation kernels ((I, Max), (K, Max), (I, AP7), (I, APA3), (I, AP9), (I, A5)), both in 
kCCA. While the optimal combination consists of the kernels with the indicate 
vectors, Kansei information contributes to the second one. In the combination with 
the voting, the highest CCR is obtained with the combination including both kPCA 
and kCCA.  

Since the combining with Cartesian space performs well, CCRs of all combination 
of two and three kernels are calculated and the optimal combination of the correlation 
kernels with Cartesian spaces is shown in Table 2. Using the all elements of the 
canonical variates, CCR increases to 0.2567 with 2 classifiers ((I, Max), (I, A3)) and 
0.2684 with 3 classifiers ((I, Max), (I, AP7), (I, A7)). Using the optimal elements of 
the canonical variates in descending order of the corresponding eigenvalues, CCR 
increases to 0.2623 with 2 classifiers ((I, Max), (K, P4)) and 0.2787 with 3 classifiers 
((I, Max), (I, A5), (K, C3)). They exceed the maximum CCR 0.2560 in Table 1. Note 
that the combination with the classifiers with low CCR in themselves, e.g., (I, C6), (I, 
C8), shown in Fig. 2, shows high CCRs, though the best single classifiers (I, Max) is 
included in most cases. The second-best single classifier (P, Max) does not appear in 
Table 2.  

 
Fig. 2. Correct classification rates (CCRs) of the single classifiers 
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Fig. 3. CCRs of combined classifiers. The sum of the correlation kernels (a), Cartesian space of 
the feature vectors (b), the voting of the classifiers output (c).  

Table 1. Highest CCRs of the combining classifiers in Fig3  

 
 
 
 
 
 
 

Table 2. Highest CCRs of the combining classifiers in Cartesian spaces of the feature vectors  

 
 
 
 
 

(a) Sum (b) Cartesian (c) Voting

P 0.2333 (P, Max) 0.2267 (P, Max), (P, P4), (P, APA7), (P, P6), (P, P8) 0.2253 (P, Max)

I 0.2440 (I, Max), (I, AP7), (I, APA3) 0.2560 (I, Max), (I, AP7), (I, APA3) 0.2347 (I, Max)

K 0.2247 (K, Max), (K, A3) 0.2397 (K, Max), (K, A3) 0.2237 (K, Max)

I+K
0.2553 (I, Max), (K, Max), (I, AP7), (I, APA3),

(I, AP9), (I, A5)

0.2390 (I, Max), (K, Max), (I, AP7),

(I, APA3)

P+I+K

0.2367 (I, Max), (P, Max), (K, Max), (I, AP7),

(I, APA3), (I, AP9), (I, A5), (I,APA5), (P,P4), (I, P4),

(P, APA7), (P, P6), (P, P8), (K, A3)

0.2521(I, Max), (P, Max), (K, Max),

(I, AP7), (I, APA3)

Highest CCR (classifiers)

0.2567 (I, Max), (I, A3) 0.2623 (I, Max) 5, (K, P4) 6 0.2683 (I, Max), (I, AP7), (I, A7) 0.2787 (I, Max) 29, (I, A5) 29, (K, C3) 9 

0.2560 (I, A7), (K, Max) 0.2617 (I, Max) 21, (I, C6) 29 0.2677 (I, Max), (I, AP7), (I, C8) 0.2767 (I, Max) 29, (I, A7) 29, (K, APA7) 6 

0.2557 (I, Max), (I, A7) 0.2610 (I, Max) 8, (I, A9) 29 0.2643 (I, Max), (I, P4), (I, A7) 0.2753 (I, Max) 12, (I, C6) 29, (I, APA3) 6

0.2550 (I, Max), (I, C6) 0.2603 (I, Max) 18, (I, A7) 29 0.2643 (I, Max), (I, AP7), (I, A9) 0.2753 (I, Max) 29, (I, A7) 29, (K, P6) 4

0.2550 (I, Max), (I, A9) 0.2600 (I, Max) 8, (K, C2) 29 0.2640 (I, Max), (I, C8), (K, P4) 0.2750 (I, Max) 29, (I, A7) 29, (K, P4) 5

all elements optimal elements

2 classifiers

Highest CCRs with Cartesian space

3 classifiers

all elements optimal elements
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4   Discussion  

The combination of the correlation kernels of different orders and Kansei information 
were employed in kPCA and kCCA, and their performance is compared in the 
experiment of texture classification. The combining with Cartesian space of the 
feature elements (principal components and the canonical variates) obtained with 
different kernels in kPCA and kCCA performed better than the use of the sum of the 
correlation kernels and the voting of the output of the 1-NN classifiers with multiple 
kPCAs and kCCAs.  

As can be seen from Fig. 2, the highest CCRs were obtained with the combination 
of only a few classifiers. This is ascribed to the correlations between the feature 
elements of the correlation kernels, and then not so many classifiers can contribute to 
increases in CCR. However, after the CCRs once drop to the minimum values, they 
increase again as the numbers of the classifiers increase in most cases. This implies 
that the classifiers with low CCRs in themselves have a potential ability to improve 
classifiers performance through combining. In fact, high CCRs were obtained with the 
combination of the classifiers of the highest CCR and rather low CCR in Table 2. 
Choosing the optimal combination of the classifiers as well as the feature elements 
with brute-force search is impractical as their number increases. Even the calculation 
of CCRs for the all combination of the feature elements of three classifiers in 96 
classifiers was a formidable task. It is expected that applying feature selection 
methods to the feature elements obtained with multiple kPCAs and kCCAs works and 
it is a future problem.  
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