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Abstract. In this work a novel texture model particularly suited for un-
supervised image segmentation is proposed. Any texture is represented
at region level by means of a finite-state hierarchical model resulting from
the superposition of several Markov chains, each associated with a differ-
ent spatial direction. Corresponding to such a modeling, an optimization
scheme, referred to as Texture Fragmentation and Reconstruction (TFR)
algorithm, has been introduced.

The TFR addresses the model estimation problem in two sequential
layers: the former “fragmentation” step allows to find the terminal states
of the model, while the latter “reconstruction” step is aimed at estimating
the relationships among the states which provide the optimal hierarchical
structure to associate with the model. The latter step is based on a
probabilistic measure, i.e, the region gain, which accounts for both the
region scale and the inter-region interaction.

The proposed segmentation algorithm was tested on a segmentation
benchmark and applied to high resolution remote-sensing forest images
as well.

Keywords: Segmentation, texture model, Markov chain, remote sens-
ing, forest classification.

1 Introduction

Image segmentation [1,2,3,4] is a low-level processing which is of critical impor-
tance for many applications in several domains, like medical imaging, remote
sensing, source coding, and so on. Although segmentation has been widely stud-
ied in the last decades in many cases it remains still open, as for textured images,
where the spatial interactions may cover long ranges asking for high order com-
plex modeling. In this work we focus on a remote sensing application, which is
the segmentation of forest images [5,6] that represents a basic step for land cover
classification and monitoring.

There are a large number of approaches to segmentation, but due to space
limitations, here we confine ourselves to reviewing only those that have been
tested using the same benchmarking system [7] as we use, and which therefore
serve as points of comparison. In [8] image blocks are modeled by means of local
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Gauss Markov Random Fields (GMRF) and the segmentation is performed in
the parameter space by assuming an underlying Gaussian Mixture. Similar to the
previous, but with an auto-regressive 3-D model (AR3D) in place of the Gauss
MRF, is the method presented in [3]. In [9] an approach, namely the JSEG,
is presented where segmentation is achieved in two steps: a color quantization
followed by a processing of the label map which accounts for spatial interaction.
Another method taken in consideration is the segmentation algorithm under-
lying the content-based image retrieval system Blobworld [1]. Here a Gaussian
Mixture model is assumed in a feature space, where contrast, anisotropy and po-
larity are the salient texture descriptors, and the EM algorithm carries out the
clustering. Finally, the algorithm presented in [10] (EDISON) combines a region-
based approach with a contour-based one, hence balancing the global evidence
which characterizes a region-based model with the local information typically
dominant in the contour modeling.

In this work we present a method based on a hierarchical finite-state prob-
abilistic texture modeling. The model is coupled with an optimization scheme,
namely the Texture Fragmentation and Reconstruction (TFR) algorithm, which
first estimates the states at the finest level (fragmentation), and then relates
them hierarchically (reconstruction) as to provide the desired hierarchical seg-
mentation.

In order to assess the accuracy of the proposed method, we have used the
Prague Texture Segmentation Data Generator Benchmark [7] where all the al-
gorithms mentioned above were tested as well. Furthermore, we provide a few
results obtained by the TFR in the case of high resolution remotely sensed im-
ages portraiting wooded areas.

2 Hierarchical Texture Model

In this work we present a hierarchical, discrete and region-based probabilistic
model for texture representation, which is particularly suited for unsupervised
image segmentation. In order to apply the model, an early processing is then
needed to provide a discrete image that roughly represents the original data. In
general this processing may be any known pixel-wise texture feature extraction
followed by a clustering, but in practice we reduce it to a simple color-based seg-
mentation, since the textural information will be handled in the discrete space.
Obviously, this first operation is associated with an information loss which re-
duces the description capability of the model. However, while this could be a
rather serious limit in a synthesis framework, it is not that critical in an analy-
sis problem like segmentation, and especially in an unsupervised setting where
robustness, rather than precision, is quite often the most relevant issue.

To introduce the model, let us consider the example in Fig.1, where a tex-
tile pattern (a) is associated with some graphical representations. Imagine first
a simple 3-level discrete approximation of the data (say, the color-states blue,
black and red), and consider its partition in uniform connected regions. A Re-
gion Adjacency Graph (RAG) representation of this partition is shown in (b).
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Fig. 1. Hierarchical texture model. Textile pattern (a); H-RAG: 3- and 2-state RAG,
(b) and (c) respectively; 3-state chain models for east and south directions, (d) and (e)
respectively; and 2-state chain for east direction (f).

Likewise, in case of a 2-state partition (for example, let black and red collapse
in a single state) we would get a RAG like that depicted in (c). Notice that,
by merging state black with red without involving the blue one, we established
a clear relationship between the two graphs, which form together a Hierarchical
RAG (H-RAG) [11]. In this toy example the H-RAG has only two layers because
we have considered only two nested partitions, but in practice it has usually more
layers as we start from much finer segmentations.

Now, let us observe how the textural properties are reflected in the adjacency
graphs (b) and (c) as cyclic occurrence (strictly periodic in the specific exam-
ple) of subgraphs of three and two nodes, respectively for (b) and (c). Such
phenomenon can be synthetically represented for any given spatial direction by
means of state diagrams, as in (d) and (e) for directions east and south respec-
tively, when three color states are considered (b), and in (f) for east direction if
we have only two states (c). As well as the RAGs, and for the same reasons, these
diagrams are hierarchically related for any given direction, (see for example (d)
and (f)). The example also clearly shows that, for a fixed periodical texture com-
ponent, the coarser the scale of the RAG representation, the lesser the order at
which it is revealed on the graph. In other words, the multiscale representation
allow us to represent simultaneously both micro- and macro-textural features
with the same (low) order but in different layers of the hierarchical model.

As can be seen, the compact representation (d)-(f) not only accounts for the
adjacency among states but also for their directionality (mutual positioning)
and relevance, through the specification of transition probabilities (TP) on a
pixel-by-pixel step basis. Approximated TPs are indicated on the graphs just to
give an idea of their relationship with the visual appearance of the texture. In
particular, observe that intra-region TPs account for the shape of the texture
components. As an example, consider the blue patches that regularly occur in
the sample. Due to their rectangular shape, the associated intra-region TP in
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the vertical direction (e) is larger than the horizontal one (d). The remaining,
inter-region, TPs accounts instead for the spatial context, that is, the relative
occurrence and positioning of the neighboring regions.

More precisely our texture model refers to the graphical representations in-
troduced above and is basically a simultaneous hierarchical finite-state Markov
model that for a given texture is completely defined by the triple (Ω, T , P),
where Ω is the set of states of the finest, but discrete, version of the texture, T
is a tree structure representing the hierarchical relationships among the states1

and, finally, P = {Pω}ω∈Ω is the set of TP matrices (TPMs) for the terminal
states. TPMs are given by

Pω(ω′, j) =
|Sω−→j ω′ |

|Sω| ∀ω′ ∈ Ω, 1 ≤ j ≤ 8, (1)

where Sω is the set of pixels with state ω and Sω−→j ω′ is the restriction of Sω

to its sites whose neighbor in position (direction) j belongs to state ω′. While
the TPMs defined above describe globally a texture, a single connected region
element n of a given state ω has itself an own TPM, Pn

ω, computed through the
same formula but restricted to the region Sn

ω ⊆ Sω.
Observe that at coarser level representations the states are completely defined

by combination of related offspring states according to the given structure T ,
which means that their TPMs are derived by simple weighted averages. More-
over, notice that in general a color may occur in a texture according to different
configurations, hence increasing the number of states which do not necessarily
represent different colors.

3 Texture Fragmentation and Reconstruction (TFR)
Algorithm

Let us consider now the application of the above modeling in the particular case
of unsupervised segmentation. The image to be segmented is then a composi-
tion of an unknown number of different textures whose corresponding models
are unknown as well and need to be estimated during the process of texture
identification. The model fitting consists in estimating the states (with related
TPMs) at the finest scale and the hierarchical tree which univocally defines each
intermediate state.

The determination of the number of textures of a given image, classically
referred to as cluster validation problem, is strictly related to the spatial scale
(hence to the hierarchical structure) at which we are interpreting the image.
When the scale is not fixed somehow, the cluster validation becomes an ill-posed
problem. To give an example, the same texture of Fig.1 may be interpreted as a
composition of three different textures if we refer to a finer scale.

As a consequence we aim at solving this problem simultaneously with the
estimation of the internal structures, according to the model defined above. In
1 Hence, the states of Ω are associated with the terminal nodes, while the root repre-

sents the whole image.
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practice, this means that we fit the image with only one hierarchical model which
(when correctly derived) includes as non-overlapped substructures the marginal
models associated with the single textures. Then, by specifying a spatial scale,
we automatically get the proper pruning of the structure which provides us with
the marginal models and the associated image partition.

Fig. 2. TFR algorithm flow chart

In order to estimate this overall model we implemented the optimization
scheme shown in Fig.2, namely the Texture Fragmentation and Reconstruction
(TFR) algorithm, which first extracts a proper number of terminal states through
the top-down fragmentation step, composed of blocks CBC (Color-Based Clus-
tering) and SBC (Spatial-Based Clustering), and then relates them by means
of a recursive bottom-up merging step, as to reconstruct the whole hierarchical
structure.

The estimation of the states is performed in two steps, the former (CBC) deal-
ing with color information, hence working at the pixel level, the latter (SBC)
focused on the spatial information at the region level in the TPM space. In prin-
ciple, CBC may be any color quantization process, but in our implementation we
preferred the use of the TS-MRF (tree-structured Markov random field) segmen-
tation algorithm [2], since it avoids the generation of punctiform regions (which
are not reliably characterized in terms of TPM) due to regularization of the
MRF. Furthermore, the tree-structured formulation ensures a quick processing
and allows to balance the energy among the discrete color states.

Once the color segmentation has been obtained, we switch to a region-based
representation, by taking connected regions with uniform color as basic elements
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characterized by TPMs. Since the color of a region only partially defines its
state2, the SBC applies to each set of elements with common color, as to split it
in subgroups which are homogeneous also in terms of TPM, that is providing the
desired states. The split is realized by means of a k-means algorithm [12] applied
in the feature space resulting from a PCA (Principal Component Analysis) [12]
on the TPM space. The PCA was necessary because of the large dimensionality
of the full feature space w.r.t. the number of elements which does not allow a
reliable characterization.

The steps described above, CBC and SBC, realize the “fragmentation” whose
goal is the estimation of the terminal states of the hierarchical model. The “re-
construction”, that is the estimation of the hierarchy structure, is realized by
means of the region (or state) merging process, which is nothing but a sequen-
tial binary combination of the states driven by a specific parameter, namely the
region gain which accounts for the mutual spatial relationships among the cor-
responding regions. Indeed the merging selection process is not symmetric, as
the gain is a measure of the scale of the region weighted by an additional term
which quantifies the attraction operated by the other regions (candidates for the
merging). The scale factor allows to always privilege the merging of small regions
so that the final hierarchy is such that micro-textural features are represented
at the bottom, while the macro ones will appear at upper levels, and finally
inter-texture mergings will be placed at the top of the structure, in order to
keep separate the marginal sub-models corresponding to the different textures.

In this work we compare two different region gains. The former, already pro-
posed in [13], is defined as

Gi �
= p(s∈Ri)

maxj �=i p(r∈Rj|s∈Ri)
=

p(s ∈ Ri) · 1
p(r/∈Ri|s∈Ri)

· p(r/∈Ri|s∈Ri)
maxj �=i p(r∈Rj|s∈Ri)

where Ri is the region of interest, s is an image site and r is any of the eight
neighbors of s. The first two factors represent the scale, since one is proportional
to the area of the region and the other quantifies its compactness. The third term
accounts for the relative occurrence of the nearest neighbour region (context).

The latter, introduced here, is a modification of the former where the con-
textual term has been reinforced by means of the Kullback-Leibler Divergence
(KLD), D(qi‖qj), between the region spatial distributions, that is

log Gi
KLD

�
= min

j �=i

{
log

p(s ∈ Ri)
p(r ∈ Rj |s ∈ Ri)

+ D(qi‖qj)
}

, (2)

where qi and qj are normals (see details about KLD for Gaussians in [14]).

2 More states may correspond to the same color, because either it appears in different
configurations in a texture or it occurs in different textures.
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4 Application to the Prague Benchmark and Numerical
Evaluation

The proposed algorithm, that is the TFR or the TFR+ (when the gain includes
the KLD term), is compared with other algorithms which were tested on the
same benchmark system [7] and are briefly recalled in the introduction. The
system provides a comparison w.r.t. a large number of indicators, some of which
are region-based, some others are pixel-wise accuracy indicators, and a few of
them give a measure of consistency. A complete description of all the parameters
can be found on the system website [7].

Table 1. Up arrows indicate that larger values of the parameters are better;
down arrows, the opposite. Benchmark criteria: CS, correct segmentation; OS, over-
segmentation; US, under-segmentation; ME, missed error; NE, noise error; O, omission
error; C, commission error; CA, class accuracy; CO, recall - correct assignment; CC,
precision - object accuracy; I., type I error; II., type II error; EA, mean class accuracy
estimate; MS, mapping score; RM, root mean square proportion estimation error; CI,
comparison index; GCE (LCE), Global (Local) Consistency Error.

For the sake of brevity we do not show here the segmentation maps, which
can be found on the benchmark web site [7] as well, but just the numerical
results summarized in Tab.1. The interpretation of these indicators may seem
quite ambiguous since (of course) no algorithm outperforms uniformly all the
other ones. However it can be easily recognized that the two versions of TFR
seem to outperform the other ones w.r.t. many indicators, with TFR+ being
generally better than TFR. In particular, the main drawback of the reference
methods is the tendency to over-segment while, on the contrary, only the TFR
has a tendency to under-segment. In this regard, the best trade-off is reached by
the TFR+, which outperforms TFR and can be considered as the best one.
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5 Application to Remotely Sensed Data

Finally, in this section an application of the proposed method to remote-sensing
data is presented. We worked on high resolution (50cm) aerial images covering
wooded areas, which match well with the proposed modeling since they present
different relevant texture patterns with acceptable stationarity. Such images are
curtesy of the “French Forest Inventory” (IFN).

We present two experiments. The former, see Fig.3, refers to an area composed
of several classes of trees plus no tree lands and shadows. Since we have no
ground-truth related to these data, we build up the latter experiment where a
mosaic image was obtained which is composed of four square subimages, see
Fig.4. Three of them represent different quasi stationary tree textures, while
the last one (bottom-left) is a mixing of an urban class and one of the other
(bottom-right) tree textures.

We experimented only the case of TFR+, since it has been shown to be better
than TFR in the previous section. Also no comparative algorithms have yet been
tested on these data, and eventually we can only make conjectures about the
performances of TFR+. A comparison with another method currently under
development could be made later.

Fig. 3. Left: Forest image, south of Bourgogne, France. c©IFN. Right: Segmentation
map obtained by the TFR+ algorithm (5 classes: two kinds of poplars, oaks, no trees,
and shadows).

The 1024×1024 forest image and the associated 5-class TFR+’s segmentation
are shown in Fig.3. One class represents just the shadows, one is associated with
low vegetation areas, the remaining three classes correspond to different tree
patterns. The segmentation seems to be quite promising according to a visual
inspection. Indeed, in order to obtain such good result, a slight modification of
the TFR+ algorithm was necessary. In fact, the proposed optimization schemes
(meaning both TFR and TFR+) are sensitive to the presence of continuous
regions, like background colors, because these are typically large and, hence, work
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Fig. 4. Left: Mosaic of different kinds of remotely sensed forest patterns, south of
Bourgogne c©IFN. Right: Segmentation map obtained by the TFR+ (4 classes).

as collectors of other regions. This becomes a critical problem when different
textures have the same background color and share a long contour, where we
can found many of such regions which cross the border and, therefore, link the
textures forcing a merging. Unfortunately this was the case of the shadow regions
present in the image (see Fig.3, left hand side). For this reason we decided to
simply detect the background regions (just the shadows, in this case) after the
CBC step, and ignore them in the subsequent steps (SBC and region merging).

Instead, in the latter experiment such modification was not necessary. The
results are encouraging in this case as well. In particular, from the segmentation
shown in Fig.4, we can see that the three different tree patterns have been
detected with satisfactory precision. As for the mixed urban-tree area (bottom-
left), the urban elements are assigned with a fourth class, while the trees are
largely assigned with the correct tree class (that at bottom-right).

6 Conclusion

In this work we have presented a novel texture model which is particularly suited
for the task of image segmentation in an unsupervised framework. The model
aims at describing each texture at multiple scales through a region-based hierar-
chical approach which allows a very simple, but effective, segmentation scheme
(the TFR) which processes color and spatial information in two independent
steps, as to obtain an image decomposition in texture states. Finally a region
merging procedure allows us to properly relate the states hierarchically, and
single out the textured regions.

Numerical results proved the superior performance of the proposed method
w.r.t. to other algorithms on the Prague benchmark data. Encouraging results
have been obtained as well on satellite images. Future research will be focused
on the replacement of k-means at SBC layer with a more effective clustering
method.



312 G. Scarpa, M. Haindl, and J. Zerubia

Acknowledgments. This work was carried out during the tenure of an ERCIM
fellowship (Scarpa’s postdoc), and supported by EU MUSCLE project (e-team:
shape modelling), FP6-507752, and partially by the project 1ET400750407. The
authors would also like to thank the “French Forest Inventory” (IFN) for pro-
viding the remotely sensed data covering the forest areas.

References

1. Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A
system for region based image indexing and retrieval. In: 3th ICVIS, Amsterdam,
The Netherlands, pp. 509–516. Springer, Heidelberg (1999)

2. D’Elia, C., Poggi, G., Scarpa, G.: A Tree-Structured Markov random field model
for Bayesian image segmentation. IEEE Transactions on Image Processing 12(10),
1259–1273 (2003)
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