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Abstract. The behavior of a Web service can be described by means of a
contract, which is a specification of the legal interactions with the service.
Given a repository of Web services, from the client viewpoint a proper
service selection should be based on functional as well as non-functional
aspects of the interactions. In this paper we provide a technique that
enables a client both to discover compatible services and to compare them
on the basis of specific performance requirements. Our technique, which
is illustrated on a simple probabilistic calculus, relies on two families
of client-specific probabilistic testing preorders. These are shown to be
precongruences with respect to the operators of the language and not to
collapse into equivalences unlike some more general probabilistic testing
preorders appeared in the literature.

1 Introduction

The recent trend in Web services is fostering a computing scenario where clients
must be able to search at run time services that provide specific capabilities.
This scenario requires Web services to publish their capabilities in some known
registry and it entails the availability of powerful search operations for capa-
bilities. Possible capabilities that one would like to search concern the format
of the exchanged messages, the protocol – or contract – required to interact
successfully with the service, and, when considering QoS-aware Web services,
capabilities describing non-functional aspects of the service.

The Web Service Description Language (wsdl) [11,10,9] and the Web Service
Conversation Language (wscl) [1] are examples of standardized technologies
for describing the interface exposed by a service. Such a description includes the
service location, the format (or schema) of the exchanged messages, the transfer
mechanism to be used (e.g. soap-rpc, or others), and the contract. Both wsdl

and wscl documents can be published in registries [2,13] so that they can be
searched and queried.

This immediately asks for a definition of compatibility between different pub-
lished contracts. It is necessary to define precise notions of contract similarity and
compatibility and use them to perform service discovery. Unfortunately, neither
wsdl nor wscl can effectively define these notions, for the very simple reason
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that they do not provide any formal characterization of their contract languages.
This calls for a mathematical foundation of contracts and formal relationships
between clients and contracts, which have been investigated in [16,7,8].

With respect to non-functional aspects of Web services, neither wsdl nor
wscl take them into account. In fact, a few extensions have been proposed in
the literature [18,15] to enrich service descriptions, in particular wsdl interfaces
and uddi registries, with QoS aspects. In some cases, a “QoS certifier” takes
care of certifying the QoS claims of Web services that register themselves with
it. Anyway, the QoS aspects are necessarily quantified on the basis of an “average
client” interacting with the service, whereas the behavior of each specific client,
especially in involved interactions, may result in significant deviations from the
declared – possibly certified – quantities.

To overcome this limitation – which may cause many clients to make a wrong
service selection – it is first of all necessary that the service contracts are enriched
with the description of performance aspects. In fact, to make principled choices
a specific client cannot only rely on claims like “the response time is 93 msec”,
but needs to see in the service contract more low-level performance details, like
e.g. an estimate of the probability with which at a certain branching point a
service behaves in a given way rather than in a different one.

In this paper we propose a technique by means of which, given a specific client
and a repository of Web services whose contracts embody QoS details, the client
can detect the presence of compatible services in the repository and, if any, order
them on the basis of certain performance requirements that are of interest to
the client.

The formal machinery that we develop to implement the technique relies on
a basic weighted process calculus to describe client and service contracts. The
calculus comprises weighted active and passive actions [6,3] and its only oper-
ators are termination, action prefix, and alternative composition. Weights are
associated with actions to express performance aspects, with a generative inter-
pretation in the case of active actions and a reactive interpretation in the case
of passive actions [17]. As far as active actions are concerned, generative weights
can be given a time-abstract interpretation (probabilities) or a continuous-time
interpretation (rates of exponentially distributed durations). In the first case, the
performance model underlying the interaction of a client with a service is a finite
discrete-time Markov chain, while in the second case it is a finite continuous-time
Markov chain [19].

A probabilistic variant of testing preorder [14] is then employed both to verify
the compatibility of a service with a client and to order compatible services
on the basis of client-specific performance properties. Testing preorder is an
effective means to achieve the second objective in practice. In fact, a client –
suitably enriched with success decorations in the appropriate places – can be
viewed as a test that different services pass with different probabilities. Those
probabilities precisely characterize the client-specific quality guarantees provided
by the various services.
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On the theoretical side, the peculiarity of our probabilistic testing preorder,
which is shown to be a precongruence with respect to the operators of the basic
weighted process calculus, is that of being test specific. In other words, its defin-
ition does not exhibit any universal quantification over tests. Therefore we have
to do with as many test-specific probabilistic testing preorders as there are tests.
An important consequence is that our probabilistic testing preorders do not col-
lapse into equivalences. This happened for instance with the testing preorder
for fully generative probabilistic processes of [12], as two processes can be in a
certain relation with respect to a test and in the opposite relation with respect
to another test. As another example, the testing preorder for continuous-time
Markovian processes of [4] suffered from a similar problem, as it is not possible
to define it in a way that is consistent with all the reward-based performance
measures.

This paper is organized as follows. In Sect. 2 we define the basic weighted
process calculus for describing the functional and performance aspects of client
and service contracts. In Sect. 3 we define two families of client-specific proba-
bilistic testing preorders, one for the time-abstract case and one for the conti-
nuous-time case, and we investigate their precongruence properties. In Sect. 4 we
show how to use the two families of client-specific probabilistic testing preorders
for compatibility verification. In Sect. 5 we exhibit some examples in which the
two families of client-specific probabilistic testing preorders are used to order
different services that are compatible with the same client. Finally, in Sect. 6 we
provide some concluding remarks.

2 Basic Language for QoS-Aware Contracts

In this section we introduce the syntax and the semantics for a very simple
weighted process calculus called WPC, which we shall use to formalize the be-
havior of client and service contracts in a way that takes performance aspects
into account. WPC builds on a set Name of action names including τ for invisi-
ble actions, which will be ranged over by a, b. Its set of operators is formed only
by termination, action prefix, and alternative composition.

Similarly to [6,3], an action of WPC can be either active or passive. An active
action represents an activity undertaken by a process, either locally or in coop-
eration with other processes. By contrast, a passive action models a situation in
which a process waits for another process to initiate some activity in which the
former is involved as well.

Performance aspects are described by associating a positive real number –
which we call weight – with each action and by assuming that the execution
probability of each action is proportional to the number associated with it. More
precisely, according to the terminology of [17], the choice among active actions is
assumed to be generative, i.e. weights are considered across active actions with
arbitrary names. By contrast, the choice among passive actions is assumed to
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be reactive, i.e. weights are considered only within sets of passive actions having
the same name. Thus, the choice between two passive actions having different
names is nondeterministic.

An active action will be denoted by <a, w> with the generative weight w ∈
RI >0, while a passive action will be denoted by <a, ∗u> with the reactive weight
u ∈ RI >0. Since in WPC an invisible action can only represent a local activity,
it cannot be passive, i.e. it will be of the form <τ, w>. We note that the choice
between two observable actions is external – in the sense that it can be influenced
by the environment – independently from the fact that the actions are active or
passive. Instead, the choice between two invisible actions is internal.

The generative weights associated with the active actions can be given a time-
abstract interpretation or a continuous-time interpretation. In the first case, they
represent non-normalized probability values and the preselection policy applies.
This simply means that the choice among several simultaneously enabled active
actions is solved probabilistically on the basis of action weights. In the second
case, the weights represent the rates of the exponential distributions quantifying
the durations of the actions. In this case the race policy applies, which means
that the fastest action among the enabled ones will be executed. It can be shown
that also in the second case each enabled action has an execution probability
proportional to its weight. Moreover, the average sojourn time for a term turns
out to be the inverse of the sum of the weights of the actions enabled by the
term.

Definition 1. The set P of the process terms of WPC is generated by the fol-
lowing syntax:

P ::= 0 | <a, w>.P | <b, ∗u>.P | P + P

where b �= τ .

The semantics for WPC can be defined in the usual operational style, provided
that the multiplicity of each transition – corresponding to the number of different
proofs for the derivation of the transition – is taken into account. The reason
is that the idempotency law P + P = P no longer holds when dealing with
probabilistic processes. As an example, in the continuous-time case, a term like
<a, 4.6>.P + <a, 4.6>.P is not equivalent to <a, 4.6>.P but to <a, 9.2>.P ,
because the average sojourn time for <a, 4.6>.P + <a, 4.6>.P is 1/9.2.

As a consequence, the behavior of each WPC term is given by a multitransition
system, whose states correspond to process terms and whose transitions are
labeled with actions. Observed that the null term 0 cannot execute any action
– hence the corresponding labeled multitransition system is just a state with no
transitions – we now provide the semantic rules for the other operators of WPC:

– Action prefix: <a, w>.P (resp. <b, ∗u>.P ) can execute an action named a
(resp. b �= τ) and then behaves as P :

<a, w>.P
a,w

−−−→ P <b, ∗u>.P
b,∗u

−−−→ P



Performance-Oriented Comparison of Web Services 273

– Alternative composition: P1 + P2 behaves as either P1 or P2 depending on
whether P1 or P2 executes an action first:

P1
a,w

−−−→ P ′

P1 + P2
a,w

−−−→ P ′
P1

b,∗u

−−−→ P ′

P1 + P2
b,∗u

−−−→ P ′

P2
a,w

−−−→ P ′

P1 + P2
a,w

−−−→ P ′
P2

b,∗u

−−−→ P ′

P1 + P2
b,∗u

−−−→ P ′

Example 1. Consider a service computing the greatest common divisor and a ser-
vice computing the square root. Their contracts are described in WPC as follows:

S1(w1) = <gcd, ∗1>.<op1, ∗1>.<op2, ∗1>.<res, w1>.<end, 1>.0
S2(w2) = <sqrt, ∗1>.<op, ∗1>.(<τ, 1>.<res, w2>.<end, 1>.0 +

<τ, 1>.<error, 1>.0)

where we use passive actions to model messages that are sent from the client to
the service, and we use active actions to model messages that are sent from the
service back to the client.

The contract S1(w1) describes the behavior of a service that computes the
greatest common divisor of two positive integer numbers, with w1 representing
the performance of the service in completing the operation. The service is linear:
the conversation is wrapped between actions gcd and end that delimit the actual
exchange of information between client and service.

The need for an explicit end action to signal a terminated interaction is not
immediately evident. The problem arises when a contract has the form:

<τ, w′>.0 + <τ, w′′>.<a, w>.P

because a client interacting with a service that exposes this contract cannot
distinguish a completed interaction where the service has internally decided to
behave like 0 from an interaction where the service has internally decided to
perform the a action, but it is taking a long time to respond. By providing an
explicit end action signaling a completed interaction, the service tells the client
not to wait for further messages. This way of modeling a completed interaction
is consistent with the wscl language, which accounts for an explicit termination
message called “empty”.

The contract S2(w2) describes the behavior of a service that computes the
square root of a real number, with w2 representing again the performance of
the service in completing the operation. After the number has been sent from
the client, the service internally decides whether the operation can be completed
successfully, by sending the result back to the client, or if the computation ter-
minates either because the input is invalid (the number is less than zero) or for
any other reason (the computational capacity of the service has been exceeded).
Invisible actions allow us to model such kind of so-called internal choices.

Finally, we can combine the two contracts and define:

S1(w1) + S2(w2)
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that describes the behavior of services providing both operations. Because of the
actions gcd and sqrt that uniquely determine the kind of operation to carry on,
clients can decide which operation to invoke. In other words, this is a so-called
external choice.

3 Client-Specific Probabilistic Testing Preorders

In this section we define two families of client-specific probabilistic testing pre-
orders for WPC and we investigate their precongruence property.

3.1 Interaction System of a Service and a Client

Given a service S and a client C both formalized in WPC, their interaction can
be described by means of their parallel composition, which we denote by S ‖ C.
If we view C as a test and we mark some of its terminal states as successful,
then we can talk about the probability with which S passes the test, which
corresponds to the QoS guarantee provided by S when interacting with C.

From now on, clients will thus be formalized through the set Ps of terms
generated by the following syntax:

P ::= 0 | s |
∑

i∈I

<ai, w̃i>.Pi

where the zeroary operator “s” stands for successful termination, I is a finite
non-empty set, and w̃i stands for a generative or reactive weight (in the second
case ai �= τ). The use of a guarded alternative composition operator – instead
of an action prefix operator and a binary alternative composition operator – is
necessary to avoid terms like 0 + s that are ambiguous for the computation of
the probability of passing a test.

The intended meaning of S ‖ C is that S and C have to communicate on any
observable action name. If at a certain point the set of observable action names
enabled by the current derivative of S is disjoint from the set of observable action
names enabled by the current derivative of C, and neither the S derivative nor
the C derivative can evolve autonomously by performing an invisible action,
then the service requested by C cannot be completed by S.

More precisely, in order for them to be executable, the observable active ac-
tions of the current derivative of S (resp. C) must be matched by passive actions
of the current derivative of C (resp. S) having the same name. This leads to the
generative-reactive synchronization mode described in [6] for time-abstract prob-
abilistic processes and in [3] for continuous-time probabilistic processes. This
synchronization mode is defined by the following two operational rules:

S
b,w

−−−→ S′ C
b,∗u

−−−→ C′

S ‖ C
b,w· u

weightp(C,b)

−−−−−−−−−−−−→ S′ ‖ C′

S
b,∗u

−−−→ S′ C
b,w

−−−→ C′

S ‖ C
b,w· u

weightp(S,b)

−−−−−−−−−−−−→ S′ ‖ C′
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where the weight of P ∈ {S, C} with respect to passive actions of name b �= τ is
defined as follows:

weightp(P, b) =
∑

{| u | ∃P ′. P
b,∗u

−−−→ P ′ |}

In addition, we have two operational rules for the autonomous evolution of S
(under the constraint that C has not terminated yet) and of C when performing
an invisible action:

S
τ,w

−−−→ S′ C /∈ {0, s}

S ‖ C
τ,w

−−−→ S′ ‖ C

C
τ,w

−−−→ C′

S ‖ C
τ,w

−−−→ S ‖ C′

The constraint on the autonomous evolution of S is motivated by the fact that
nothing can change from the point of view of passing a test once the test has
reached its termination.

Definition 2. Let S ∈ P and C ∈ Ps. The interaction system of service S and
client C is process term S ‖ C, where we say that:

– A configuration is a state of the labeled multitransition system underlying
S ‖ C, which is formed by a service part and a client part.

– A configuration is successful iff its client part is “s”.

3.2 Computations: Execution Probability and Average Duration

A computation is a sequence of transitions that can be executed starting from
S ‖ C. We say that two computations are independent of each other if it is not the
case that one of them is a proper prefix of the other one. Moreover we say that
a computation is successful if so is its last configuration. We denote by C(S, C),
IC(S, C), and SC(S, C) the multisets of the computations, of the independent
computations, and of the successful computations of S ‖ C, respectively.1

Let us define the length of a computation as the number of transitions occur-
ring in it. From the fact that recursion is not allowed and the finitely-branching
structure of S and C, it immediately follows that C(S, C) is finite and all of its
computations have finite length. Moreover, SC(S, C) ⊆ IC(S, C) because of the
maximality of the length of the successful computations.

Two important quantities that can be associated with each computation are
its execution probability and – in the continuous-time case – its average duration.
Below we provide their inductive definitions.

Definition 3. Let S ∈ P, C ∈ Ps, and c ∈ C(S, C). The probability of execut-
ing c is the product of the execution probabilities of the transitions of c, which
is defined by induction on the length of c through the following RI ]0,1]-valued
function:

prob(c) =

{
1 if length(c) = 0

w
weightt(S ‖ C) · prob(c′) if c ≡ S ‖ C

a,w
−−−→ c′

1 Since transitions have multiplicities, computations also have multiplicities.
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where the total weight of S ‖ C is defined as follows:

weight t(S ‖ C) =
∑

{| w | ∃a, S′, C′. S ‖ C
a,w

−−−→ S′ ‖ C′ |}

We also define the probability of executing a computation of K as:

prob(K) =
∑

c∈K

prob(c)

for all K ⊆ IC(S, C).

Definition 4. Let S ∈ P, C ∈ Ps, and c ∈ C(S, C). Assume a continuous-time
interpretation for all the generative weights occurring in S and C. The aver-
age duration of c is the sequence of the average sojourn times2 in the states
traversed by c, which is defined by induction on the length of c through the fol-
lowing (RI >0)∗-valued function:

time(c) =

{
ε if length(c) = 0

1
weightt(S ‖ C) ◦ time(c′) if c ≡ S ‖ C

a,w
−−−→ c′

where ε is the empty average duration and ◦ is the sequence concatenation opera-
tor. We also define the multiset of the computations of K whose average duration
is not greater than θ as:

K≤θ = {| c ∈ K | length(c) ≤ length(θ) ∧
∀i = 1, . . . , length(c). time(c)[i] ≤ θ[i] |}

for all K ⊆ C(S, C) and θ ∈ (RI >0)∗.

Example 2. Consider three potential clients of the services S1(w1) and S2(w2)
introduced in Ex. 1, whose contracts are described in WPC as follows:

C1,s = <gcd, 1>.<op1, 1>.<op2, 1>.<res, ∗1>.<end, ∗1>.s
C2,s = <sqrt, 1>.<op, 1>.(<res, ∗1>.<end, ∗1>.s + <error, ∗1>.s)
C3,s = <sqrt, 1>.<op, 1>.<res, ∗1>.<end, ∗1>.s

It is easy to see that:

SC(S1(w1), C1,s) = {S1(w1) ‖ C1,s
gcd,1

−−−→ ·
op1,1

−−−→ ·
op2,1

−−−→ ·
res,w1
−−−→ ·

end,1
−−−→ 0 ‖ s}

SC(S2(w2), C2,s) = {S2(w2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

res,w2
−−−→ ·

end,1
−−−→ 0 ‖ s,

S2(w2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

error,1
−−−→ 0 ‖ s}

SC(S2(w2), C3,s) = {S2(w2) ‖ C3,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

τ,1
−−−→ ·

res,w2
−−−→ ·

end,1
−−−→ 0 ‖ s}

from which we derive that prob(SC(S1(w1), C1,s) = prob(SC(S2(w2), C2,s) = 1
and prob(SC(S2(w2), C3,s)) = 1

2 .

2 The average sojourn time of a term is the inverse of the sum of the weights of the
actions enabled by the term.
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3.3 Preorder Definition

We are now in a position to define two families of client-specific probabilistic
testing preorders – one for the time-abstract case and one for the continuous-
time case – which can be used by the clients to order the services on the basis of
the QoS levels resulting from the interaction with them. This is helpful from the
client viewpoint to select the service providing the best performance guarantees.

Definition 5. Let S1, S2 ∈ P and C ∈ Ps. We say that S1 is probabilistic testing
less than S2 with respect to C in the time-abstract case, written S1 �C

PT,ta S2, iff:
prob(SC(S1, C)) ≤ prob(SC(S2, C))

Definition 6. Let S1, S2 ∈ P and C ∈ Ps. Assume a continuous-time interpre-
tation for all the generative weights occurring in S1, S2, and C. We say that
S1 is probabilistic testing less than S2 with respect to C in the continuous-time
case, written S1 �C

PT,ct S2, iff for all θ ∈ (RI >0)∗:
prob(SC≤θ(S1, C)) ≤ prob(SC≤θ(S2, C))

3.4 Precongruence Property

We conclude by proving that the two families of client-specific probabilistic test-
ing preorders are precongruences with respect to the operators of WPC. The
result will be presented for the time-abstract case only, as in the continuous-
time case it is similar.

As far as action prefix is concerned, the result is formulated in a non-standard
way. The reason is that we do not have to do with a standard testing preorder
with universal quantification over all tests, but with a family of client-specific
testing preorders. Thus, whenever two interaction systems S1 ‖ C and S2 ‖ C
perform a transition that causes C to evolve to C′, the two derivative interaction
systems can no longer be compared with respect to C, but have to be compared
with respect to C′.

In the following, we denote by C
p

===⇒ C′ the fact that client C can evolve to
C′ with probability p after executing a finite sequence of zero or more invisible
transitions. The probability p is computed as a product of ratios, each of which
relates to an invisible transition in the sequence and is given by the weight of the
transition itself divided by the sum of the weights of all the invisible transitions
departing from the source state of the considered transition. In the case in which
C′ = C, we let p = 1.

Theorem 1. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci

b,∗ui,j

−−−→ Ci,j

it holds S1 �Ci,j

PT,ta S2, then <b, w>.S1 �C
PT,ta <b, w>.S2 for all b �= τ and

w ∈ RI >0.

Theorem 2. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci

b,wi,j

−−−→ Ci,j

it holds S1 �Ci,j

PT,ta S2, then <b, ∗u>.S1 �C
PT,ta <b, ∗u>.S2 for all b �= τ and

u ∈ RI >0.
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Theorem 3. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci it holds

S1 �Ci

PT,ta S2, then <τ, w>.S1 �C
PT,ta <τ, w>.S2 for all w ∈ RI >0.

In the case of the alternative composition, precongruence is achieved only for
pairs of interaction systems satisfying certain weight-related constraints. More
precisely, such constraints are concerned with the total active weight of a service
S when evolving locally or interacting with a client C:

Ws(S, C) =
∑

S
a,w
−−−→ S′

{| w | a = τ ∨ ∃u, C′. C
a,∗u

−−−→ C′ |}

and with the total active weight of a client C when interacting with a service S
alternative to another service R:

Wc(C, S, R) =
∑

C
b,w−−−→ C′

{| w · weightp(S,b)
weightp(S,b)+weightp(R,b) | ∃u, S′. S

b,∗u

−−−→ S′ |}

Theorem 4. Let S1, S2 ∈ P and C ∈ Ps. Whenever for all C
pi===⇒ Ci it holds

S1 �Ci

PT,ta S2 with Ws(S1, Ci) = Ws(S2, Ci) and weightp(S1, b) = weightp(S2, b)
for all b �= τ such that Ci enables an active b-action, then S1 + S �C

PT,ta S2 + S

and S + S1 �C
PT,ta S + S2 for all S ∈ P.

The constraint “Ws(S1, Ci) = Ws(S2, Ci)” is strictly necessary to achieve pre-
congruence with respect to alternative composition. Consider e.g. the following
terms:

S1 = <a, 40>.0 + <b, 60>.0
S2 = <a, 5>.0 + <b, 5>.0
S = <a, 1>.0 + <b, 9>.0
C = <a, ∗1>.s + <b, ∗1>.0

where the only invisible transition sequence of the client is C
1===⇒ C with:

Ws(S1, C) = 40 + 60 = 100 �= 10 = 5 + 5 = Ws(S2, C)

Then we have:
prob(SC(S1, C)) = 40

100 = 0.4 < 0.5 = 5
10 = prob(SC(S2, C))

but:
prob(SC(S1+S, C)) = 40

110 + 1
110 ≈ 0.37 > 0.3 = 5

20 + 1
20 = prob(SC(S2+S, C))

Similarly, the constraint “weightp(S1, b) = weightp(S2, b) for all b �= τ such that
Ci enables an active b-action” is strictly necessary. Consider e.g. the following
terms:

S1 = <a, 4>.0 + <b, 6>.0 + <c, ∗1>.0
S2 = <a, 5>.0 + <b, 5>.0 + <c, ∗50>.0
S = <c, ∗55>.<d, ∗1>.0
C = <a, ∗1>.s + <b, ∗1>.0 + <c, 10>.<d, 10>.s
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where the only invisible transition sequence of the client is C
1===⇒ C with:

Ws(S1, C) = 4 + 6 = 10 = 5 + 5 = Ws(S2, C)

and:
weightp(S1, c) = 1 �= 50 = weightp(S2, c)

Then we have:
prob(SC(S1, C)) = 4

20 = 0.2 < 0.25 = 5
20 = prob(SC(S2, C))

but:
prob(SC(S1 + S, C)) = 4

20 + 10
20 · 55

56 ≈ 0.69 >

> 0.51 ≈ 5
20 + 10

20 · 55
105 = prob(SC(S2 + S, C))

4 Compatibility Verification

The selection of the service providing the best performance guarantees for a
client has to be preceded by a phase during which the client searches the Web
service registry for all the services that are compatible with it. Such services are
the ones that ensure the complete satisfaction of the client request.

Compatibility is a functional property that can be verified with the time-
abstract family of client-specific probabilistic testing preorders. The first step
consists of building a canonical service that ensures the termination of the client
along each of its branches. The second step consists of searching the Web service
registry for all the services that – with respect to a variant of the client in which
all of its terminal states are made successful – are not less than the canonical
service. In other words, the canonical service is the search key for the Web service
registry of the considered client.

The canonical service is formalized as the dual of the client, which is obtained
from the client by making passive (resp. active) all of its observable active (resp.
passive) actions, by eliminating all of its invisible actions, and by changing to
0 all of its successful terminal states. All the generative and reactive weights
occurring in the dual are set to 1, as their values are unimportant for the sake
of termination. In the following we denote by obs(C) the fact that at least one
observable action occurs inside client C.

Definition 7. Let S ∈ P, C ∈ Ps, and Cs be the everywhere-successful variant
of C. We say that S is compatible with C iff:

prob(SC(S, Cs)) = 1

Definition 8. Let C ∈ Ps. The dual of C is defined by induction on the syn-
tactical structure of C as follows:

dual(0) = 0
dual(s) = 0
dual(

∑

i∈I

<bi, ∗ui>.Ci +
∑

j∈J

<bj , wj>.Cj +
∑

k∈K

<τ, wk>.Ck) =

=
∑

i∈I

<bi, 1>.dual(Ci) +
∑

j∈J

<bj , ∗1>.dual(Cj) +
∑

k∈K,obs(Ck)
dual(Ck)
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where: bj �= τ for j ∈ J ; I, J , and K are pairwise disjoint with I ∪ J ∪ K finite
and non-empty; the term on the right-hand side of the last clause is 0 if all the
three index sets are empty.

Lemma 1. Let C ∈ Ps. Whenever dual(C) is deterministic, then dual(C) ‖ Cs
has as many maximal computations as Cs and all of them are successful.

Note that the determinism of dual(C) is essential. Consider e.g. the following
pair composed of a client and its dual:

C = <τ, 1>.<a, 1>.<b, 1>.0 + <τ, 1>.<a, 1>.<c, 1>.0
dual(C) = <a, ∗1>.<b, ∗1>.0 + <a, ∗1>.<c, ∗1>.0

Then dual(C) ‖ Cs deadlocks after the interaction of the first (resp. second)
passive a-action of dual (C) with the second (resp. first) active a-action of Cs.

Theorem 5. Let S ∈ P and C ∈ Ps. Whenever dual(C) is deterministic and
dual(C) �Cs

PT,ta S, then S is compatible with C.

Example 3. Consider the three clients whose everywhere-successful variants are
shown in Ex. 2. In order to check the compatibility of these clients with respect
to the services defined in Ex. 1 we have to compute their dual contracts:

dual (C1) = <gcd, ∗1>.<op1, ∗1>.<op2, ∗1>.<res, 1>.<end, 1>.0
dual (C2) = <sqrt, ∗1>.<op, ∗1>.(<res, 1>.<end, 1>.0 + <error, 1>.0)
dual (C3) = <sqrt, ∗1>.<op, ∗1>.<res, 1>.<end, 1>.0

Now we have that:

SC(dual (C2), C2,s) = { dual (C2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

res,1
−−−→ ·

end,1
−−−→ 0 ‖ s,

dual (C2) ‖ C2,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

error,1
−−−→ 0 ‖ s}

hence:

1 = prob(SC(dual (C2), C2,s)) ≤ prob(SC(S2(w2), C2,s) = 1

that is:

dual(C2) �C2,s
PT,ta S2(w2)

from which we conclude that service S2(w2) is compatible with client C2. On
the other hand:

SC(dual(C3), C3,s) = {dual(C3) ‖ C3,s
sqrt,1
−−−→ ·

op,1
−−−→ ·

res,1
−−−→ ·

end,1
−−−→ 0 ‖ s}

and
1
2 = prob(SC(S2(w2), C3,s)) < prob(SC(dual(C3), C3,s)) = 1

that is service S2(w2) is not compatible with client C3. Indeed, the client C3
blindly assumes that the service always completes the operation successfully,
but this assumption may prove fatal if the service proposes an error action. By
similar arguments, it is easy to verify that S1(w1) is compatible with C1, and
that S1(w1) + S2(w2) is compatible with both C1 and C2.
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5 Selecting the Best Compatible Service

While the time-abstract family of client-specific probabilistic testing preorders
allows us to reason about the probability that a client interacts with a service
following a given computation, the family of continuous-time preorders allows
us to reason about the average duration of any of such computations. In this
section we present a few examples that show how the continuous-time preorders
can be used to sort compatible services according to their performance, and we
stress the importance of the client’s contract in the selection of the best service.

Example 4. We have seen that S1(w1)+S2(w2) is compatible with C2. Consider
now the following variant of C2:

C′
2 = <sqrt, 1>.<op, 1>.(<res, ∗1>.<end, ∗1>.s + <error, ∗1>.0)

Then, for all c ∈ SC(S1(w1) + S2(w2), C′
2), we have:

time(c) = 1 ◦ 1 ◦ 1
2 ◦ 1

w2
◦ 1

from which we notice that greater values for the parameter w2 guarantee smaller
interaction times with the service.

Example 5. Observed that for all c ∈ SC(S1(w1) + S2(w2), C1,s) we have:

time(c) = 1 ◦ 1 ◦ 1 ◦ 1
w1

◦ 1

it is easy to find w′
1, w′

2, w′′
1 , w′′

2 such that:

S1(w′
1) + S2(w′

2) �C′
2

PT,ct S1(w′′
1 ) + S2(w′′

2 )

and:

S1(w′′
1 ) + S2(w′′

2 ) �C1,s
PT,ct S1(w′

1) + S2(w′
2)

that is, the relative ordering between services may depend upon clients. This ex-
ample shows that the usual probabilistic testing preorder, with universal quan-
tification over all the tests, is not suitable to be used in our framework for
selecting the best service.

Example 6. In previous work that relate the contracts of different services [7,8,16],
services are typically ordered according to their ability of guaranteeing the ter-
mination of the client. In our framework such a relation can be roughly stated
as follows (recall that Cs is the everywhere-successful variant of C, see Def. 7):

S � S′ iff ∀C. prob(SC(S, Cs)) = 1 ⇒ prob(SC(S′, Cs)) = 1

meaning that the set of clients that S is compatible with is a subset of the set
of clients that S′ is compatible with. If we consider a service whose contract is:

S3 = <sqrt, ∗1>.<real, ∗1>.<error, 1>.0

we can state, for instance, that S2(w2) � S3. Indeed, a client that success-
fully terminates when interacting with S2(w2) must take into account all of the
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possible behaviors of S2(w2). Since, roughly speaking, contract S3 is “more de-
terministic” than S2(w2), a client that successfully terminates when interacting
with S2(w2) does so also when interacting with S3. However, it is hardly the
case that S3 can be considered “better” than S2(w2), as it simply reports a
failure regardless of the client’s input. While � makes sense from a purely func-
tional point of view (client termination is guaranteed if S2(w2) is replaced by
S3) it makes little sense when QoS aspects are taken into account. By appropri-
ately placing the “s” operator in the client’s contract, both abstract-time and
continuous-time preorder families can be used for sorting services according to
the client’s expectations (obtaining a result rather than an exception).

6 Conclusion

In this paper we have presented a technique for using a simple weighted process
calculus to reason about the compatibility and the performance of services with
respect to potential clients. The technique is directly related to and extends
previous work on contracts [7,8] and session types [16]. On the practical side,
one contribution of the paper is to provide a formal foundation that subsumes
and refines existing mechanisms for specifying and assessing QoS aspects of Web
services, by associating performance parameters with the single actions occurring
during the conversation between a client and a service, rather than with the
service as a whole. On the theoretical side, we have provided a motivation for
the study of test-specific relations, which do not collapse into equivalences. This
allows us to use such relations for ordering services in non-trivial ways according
to a specific client’s expectations, so as to maximize the client’s satisfaction.

There are several directions for further investigations, we mention three of
them. First, the weighted process calculus presented in this paper can be ex-
tended with a recursion operator, so as to make the language suitable for mod-
eling more realistic scenarios where clients and services perform arbitrarily long
interactions adhering to some regular pattern. It is reasonable to expect that
this extension does not significantly affect the theory developed so far, and that
the results proved in the finite case still hold once the usual annoyances deriving
from recursion (such as divergence) have been appropriately taken care of.

Second, the notion of dual contract that we have formalized in Sect. 4 only
provides a sufficient condition that guarantees the termination of a client when
interacting with a service, however there is strong evidence that this notion can
be relaxed. Since the dual contract is used as a search key in a Web service
registry, it is desirable to find the smallest (or principal) key so as to maximize
the number of services that are found to be greater than or equal to the key,
according to the time-abstract preorder.

Third, we have not taken into account any aspect concerning the composi-
tion of Web services. Because of their very nature, it is often the case that
several Web services have to be assembled together to accomplish a given task.
Hence, it is interesting to investigate whether (some variant of) the weighted
process calculus presented in this paper is suitable to reason about QoS aspects of
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compound services. In this respect, the fact that the probabilistic testing pre-
orders happen to be precongruences with respect to the operators of the process
calculus (action prefix and alternative composition) is particularly important,
as this property guarantees that the substitution of a component service with
another providing better performance does not compromise the performance of
the compound service as a whole.
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