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Abstract. Refactoring is a method for improving the structure of pro-
grams/specifications as to enhance readability, modularity and reusabil-
ity. Refactorings are required to be behaviour-preserving in that – to
an external observer – no difference between the program before and
after refactoring is visible. In this paper, we develop refactorings for
an object-oriented specification formalism combining a state-based lan-
guage (Object-Z) with a process algebra (CSP). In contrast to OO-
programming languages, refactorings moving methods or attributes up
and down the class hierarchy, in addition, need to change CSP processes.
We formally prove behaviour preservation with respect to the failures-
divergences model of CSP.

1 Introduction

Refactoring is a technique which has long been used by programmers to improve
the structure of their code once it got unreadable. The word ”refactoring” as
a general term for frequently occurring clean-up operations on programs has
been coined by Fowler [Fow04]. The book [Fow04] collects a large number of
refactorings operating on different levels: the level of methods only, those of
classes and of the class hierarchy. As Fowler puts it, all these refactorings ”should
not change the externally visible behaviour of a program”. For programs, this
type of behaviour preservation is checked via testing: there are a number of tests
associated with every (part of a) program which are being run before and after
the refactoring. An application of a particular refactoring thus does not a priori
guarantee behaviour preservation but has to be tested.

This is different for refactorings for formal specifications: the formal semantics
allows for a proof of correctness of a refactoring, and thus ensures behaviour
preservation. Thus, while refactorings for OO-programs are usually stated via
an example, refactorings for formal specifications are given by pairs of templates
describing before and after state of a refactoring. These template pairs are proven
to guarantee behaviour preservation with respect to the formal semantics of
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the specification language. Thus, whenever some parts of a specification are
an instantiation of a before template, they can be replaced with the proper
instantiation of the corresponding after template. Additional constraints might
constrain the application of the pattern. An overview of these kind of formal
approaches to refactoring can be found in [MT04], in particular [MS04] and
[MS06] follow this approach for Object-Z specifications, one of the formalisms
we will be interested in here. While a lot of the approaches surveyed in [MT04]
show behaviour-preservation only for specific properties (e.g. certain invariants
of classes or relationships between objects), the basis for the correctness proof of
[MS04] is the notion of data refinement [dE98, DB01] in Object-Z. Refinement
exactly guarantees the intended substitutability requirement: for an external
observer the classes before and after refactoring are not different, and this holds
for any kind of (external) observation on the class.

In this paper, we study refactorings for a formal specification language which
in addition to state-based descriptions in Object-Z [Smi00] allows for a descrip-
tion of the dynamic behaviour via the process algebra CSP [Hoa85, Ros97]. This
combination, called CSP-OZ [Fis97], has a semantics defined in terms of the
failures-divergences model of CSP. The integration of two orthogonal formalisms
gives us a convenient way of modelling both data, methods and the ordering of
method executions. For the refactorings, this additional view in our specifica-
tions however imposes additional complexity. A change on the Object-Z side
most often requires a corresponding change in the process. This in particular
applies to refactorings on the level of the class hierarchy where the movement of
a method up or down the hierarchy may involve a corresponding move of CSP
process parts up or down classes.

As our notion of correctness of refactorings, we use refinement as well as it
guarantees the required behaviour preservation. In the combination CSP-OZ,
the appropriate notion of refinement is however process refinement (failures-
divergences refinement), coming from the CSP semantics. Refactorings are only
correct if they preserve the failures-divergences semantics of all involved classes,
up to refinement. We aim at defining generally usable templates for refactorings
such that correctness is guaranteed for every concrete instantiation. Here, we
present a general proof strategy for CSP-OZ refactorings based on an expan-
sion into CSPZ given in [Fis00], which in turn is based on a similar semantics
for Object-Z [Smi00]. This proves to be a convenient approach since (most of
the) refactorings can thus be shown to be correct by syntactical rewritings of
schemas only. We, however, also present a correctness proof for a refactoring
which involves an explicit construction of a refinement. The whole approach is
exemplified with a CSP-OZ specification in which we refactor single classes as
well as introduce a class hierarchy via refactoring.

2 Background

We start with a first part of our case study by which we introduce the formalism
CSP-OZ, its semantics and the notion of refinement. The following, only partially
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given class specification is describing one part of a manufacturing system, namely
a store. Stores are holding workpieces which can be loaded/deloaded from and to
autonomous transportation agents. For this, we first of all need two basic types
for workpieces and for names of transportation agents (Hts): [WP ,Hts ]. The
class Store is a CSP-OZ class consisting of a CSP part describing the dynamic
behaviour (ordering of operations) of the class, and an Object-Z part describing
the static behaviour (data and operations). Parts not relevant for our refactorings
are being omitted (written as ...).

Store
chan load : [wp? : WP ] chan deload : [wp! : WP ]
chan info : ...

main
c= Loading ||| Info

Loading c= load → Loading � deload → Loading
Info c= info → Info

store : F WP ; ...

#store ≤ 100

Init
store = ∅

load
Δ(store)
wp? : WP

#store < 100
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

info =̂ . . . [Giving information on current state to environment]

The specification consists of a declaration of the interface of the class as a
number of channels for communication with other classes (viz. objects). Here,
channels load , deload and info are declared together with their signatures. After
this, a CSP process main is given defining the dynamic behaviour of the class
(viz. its objects). For class Store this is an interleaving (|||) of the processes
Loading and Info. Process Info just repeatedly executes operation info (→ is
the prefix operator describing sequencing), and process Loading consists of an
external choice (�) over either a load or a deload .

The remaining part of the specification defines the variables (sometimes also
called fields) in the state schema (a variable store with an invariant fixing the
size of the store), the initial values (in the init schema) and the operations. An
operation schema typically consists of a Δ-list, declaring the variables which
are allowed to be changed, and input and output variables (denoted by ? and !,
respectively) together with a predicate defining constraints on state changes.
Here, primed variables denote variables in the after state. For instance, operation
load is allowed to change variable store, has an input variable wp? and a predicate
stating the precondition of the operation (store has not to be full) and the
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outcome (the workpiece in the input is added to the store). In addition, CSP-
OZ allows to specify inheritance relationships between classes (not present here),
denoted by inherit superclassname.

Semantics. This combination of CSP and Object-Z has a well-defined semantics
in terms of the failures-divergences model of CSP [Fis00]. The semantics is de-
fined by first translating a CSP-OZ specification to CSPZ (a CSP dialect with Z
syntax for expressions and declarations), from which the failures and divergences
are then derived. For proving the correctness of our refactorings we only need
to go to the level of CSPZ, thus we will only explain this part. The basic idea
is to model the CSP part and the Object-Z part of the CSP-OZ specification
in CSPZ. These two parts can then be combined into a semantics of the whole
CSP-OZ specification using the parallel composition operator (A‖B ) of CSP.
More specifically, the semantics of a CSP-OZ class C is

proc(C ) = procC (C )Chans(procC (C ))‖Chans(procZ (C ))procZ (C ),

where procC (C ) is the semantics of the CSP part and procZ (C ) those of the
Object-Z part. The function Chans computes the channels used in a process
expression, and A‖B , A,B set of events, is the parallel composition allowing the
left process to communicate on events in A and the right in B with synchronisa-
tion on events in the intersection. Thus CSP and Object-Z part synchronise on
joint operations. The semantics procC is either simply the CSP process main (if
the class has no superclass), or the parallel composition of main with the main
process of the superclass S , again synchronising on common operations:

procC (C ) = mainChans(main)‖Chans(procC (S))procC (S )

The semantics of the Object-Z part (procZ ) is defined by first mapping Object-
Z constructs to Z and then transforming them to CSPZ. In this paper we will in
particular use the functions init() and state(), which map Object-Z constructs
to pure Z schemas. The function init() gives a Z schema representing the initial-
isation, and state() a Z schema representing the state of the class. These and
some other functions are used within procZ . Due to lack of space, we omit these
definitions here, for details and rules see [Smi00, Fis00].

Refinement. Correctness, viz. behaviour preservation of refactorings, is in our
setting defined via refinement [dE98, DB01]. Refinement guarantees substitutabil-
ity: while internal representations may change, the changes should not be ex-
ternally visible. Since refactorings are usually applicable in both directions (a
method pushed up to a superclass or down to the subclasses), we need refinement
in both directions.

For the specification formalism CSP-OZ, two notions of refinement are of
importance: data refinement from Object-Z and failures-divergences refinement
from CSP. We start with the former. Data refinement is defined as substitutabil-
ity of one specification by another, and usually proven by forward and backward
simulations. Here, we just need forward simulations and thus give this definition
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only. It assumes to have two Object-Z classes A and C given (or the Object-Z
parts of two CSP-OZ classes), which both consist of a state schema, an initialisa-
tion schema and some operation schemas: A = (AState,AInit , {AOpi}i∈I ) and
C = (CState,CInit , {COpi}i∈I ), where I is some index set for operations.

Definition 1. C is a forward simulation of A, A �D C, if there is a retrieve
relation R between AState and CState such that the following hold:

1. Initialisation: ∀CState • CInit ⇒ (∃AState • AInit ∧ R),
2. Applicability: ∀ i ∈ I , ∀AState,CState • R ⇒ (preAOpi ⇔ preCOpi),
3. Correctness: ∀ i ∈ I , ∀AState,CState,CState ′ •

R ∧ COpi ⇒ ∃AState ′ • R′ ∧ AOpi .

Basically, the idea is to find a relation between the variables in A and C such that
the operations in C are applicable in a state if and only those in A are applicable
in a related state, and the execution of an operation in C can correspondingly be
carried out in A leading to related states again. While the definition of variables
and operations may have been changed in C , its externally visible behaviour
cannot be distinguished from A.

Data refinement, or more specifically forward simulation, is used when we need
to look at the Object-Z part of a CSP-OZ specification in isolation. In the com-
bination, the basis for a definition of refinement is the semantics for CSP-OZ,
i.e. the failures-divergences model of CSP. Again, we will not actually compute
failures and divergences of processes, but work on the level of CSP processes
only. For CSP processes P and Q , we write P �FD Q if Q is a process (failures-
divergences) refinement of P .

Finally, we need to know the relationship between these two kinds of refine-
ment. A lot of research has recently been carried out on the comparison of data
and process refinement, the relevant result here is the following (from [Fis00]).

Theorem 1. Let A, C be Object-Z parts of CSP-OZ classes. Then

A �D C ⇒ procZ (A) �FD procZ (C ) .

Furthermore, process refinement is preserved under parallel composition
([Ros97]), which is the operator used for combining the processes of CSP and
Object-Z part.

Theorem 2. Let P1,P2,Q1,Q2 be CSP processes, A,B sets of events. Then

P1 �FD Q1 ∧ P2 �FD Q2 ⇒ P1A‖BP2 �FD Q1A‖BQ2 .

As a consequence, we can separately show a data refinement relationship on the
Object-Z parts and a process refinement on the CSP parts, and obtain a process
refinement for the combination. Thus refactorings operating on the Object-Z
part alone can be proven correct without having to look into the CSP part.
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3 Case Study

Next, we continue our example and extend it with another class. These two
classes are then the starting point for our refactorings. The second class specifies
machines in the manufacturing system. Similar to stores, machines can load and
deload workpieces. The machine is furthermore an active entity as it actively
seeks to find some transportation agent for a job. The CSP process Acq below
describes the events carried out for an acquisition of a transportation agent (es-
sentially getting offers from agents, choosing the offer with the smallest cost and
ordering this agent), their exact meaning is however not relevant for our aims. In
between these operations, loading, processing and deloading of workpieces takes
place. The operator ; denotes sequential composition. The variables orderTo
and offers are used for the acquisition of transporation agents.

Machine
chan load : [wp? : WP ] chan deload : [wp! : WP ]
chan offer , process , choose, order . . .

main
c= Acq; (load → process → Acq); (deload → main)

Acq c=|||h:Hts offer .h → Skip; choose → order → Skip

wp : WP
orderTo : Hts
offers : seq(Hts × N)

Init
offers = 〈 〉

load
Δ(wp)
wp? : WP

wp′ = wp?

deload
wp! : WP

wp! = wp

There are some obvious similarities between this class and class Store: both
store workpieces (Store up to a hundred, Machine only one) and both load
and deload workpieces. We could thus think of having a common superclass
for both classes describing these common functionalities. This would result in
a specification which does not duplicate the description of two operations, and
there would be a single point in the specification in which changes to these
operations have to be made (for instance during a refinement to code). Our
objective is thus now to introduce a common superclass to Store and Machine,
and move common variables and operations to this superclass. This goal is in
the following achieved through a number of successive refactorings.

First refactoring. Looking at the two definitions of operations load and deload ,
which are candidates for operations of the superclass, we see that they are
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different. Our first refactoring thus works towards making them similar. In
Machine we change state, init schema and operations to

store : F WP
orderTo : Hts
offers : seq(Hts × N)

#store ≤ 1

Init
store = ∅

offers = 〈 〉

load
Δ(store)
wp? : WP

#store < 1
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

Instead of having a variable of type WP we now have a set of WPs of size
one. This looks like a data refinement on the Object-Z side but it is not. The
preconditions of load and deload in the Object-Z part are strengthened: while
previously both operations were always enabled, they are now only enabled when
store is currently empty or filled, respectively. Due to the blocking semantics of
Object-Z such a change becomes visible to an observer: operation load might
sometimes be disabled. Fortunately, in connection with the CSP part it is a cor-
rect refinement since the CSP part ensures an alternating execution of load and
deload , thus the blocking has already been present in the previous specification
of Machine. The correctness of this transformation, i.e. behaviour preservation,
can be proven using a technique presented in [DW06]. We thus will not further
look at the correctness of this refactoring.

Second refactoring. Our next refactoring tackles the remaining difference be-
tween Store and Machine as far as the field store is concerned. We carry out the
refactoring “Replace Magic Number with Symbolic Constant” [Fow04] in both
classes, replacing the numbers 100 and 1 by a variable capacity which is then
initially set to the respective value. The relevant part of Store looks like this
(similarly for Machine):

Store

store : F WP
capacity : N

#store ≤ capacity

Init
. . .
capacity = 100

. . . [plus replacing the number in load ]

Third Refactoring. Looking at Store and Machine we now see that they share
similar variables and methods. Hence a superclass can be extracted from them,
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and variables, part of the initialisation and methods pulled upwards to this
class. The next refactoring (called ”Extract Superclass”) is a combination of
four smaller refactorings (all from [Fow04]): “Extract Class” creates an empty
class (Station) and makes Store and Machine inherit from this class, ”Pull Up
Field” moves variables store and capacity from subclasses to superclass, ”Pull
Up Init” moves initialisation of store to superclass (but not of capacity since this
is different in the two subclasses) and finally ”Pull Up Method” moves methods
load and deload up to Station (shown next, omitting interface declaration).

Station

store : F WP
capacity : N

#store ≤ capacity

Init
store = ∅

load
Δ(store)
wp? : WP

#store < capacity
store ′ = store ∪ {wp?}

deload
Δ(store)
wp! : WP

wp! ∈ store
store ′ = store \ {wp!}

Both Store and Machine inherit from Station, i.e.

Store
inherit Station
. . .

Machine
inherit Station
. . .

and both do not contain definitions of load , deload , store and capacity anymore
(being inherited from Station), only the initialisation of capacity remains in the
subclasses as it differs in the two classes.

Fourth Refactoring. Last, we have to look at the CSP part. The two classes have
quite different CSP parts, in particular both also refer to operations other than
load and deload . Thus neither the CSP part of Store nor that of Machine can be
completely moved to the superclass. However, one part of Store could potentially
be moved to Station, namely we could define the CSP part in Station as

main
c= Loading

Loading c= load → Loading
� deload → Loading ,

and change the CSP part of Store to main
c= Info. This refactoring is called ”Pull

up CSP” (not from [Fow04]); it is moving one part of a parallel composition
in a CSP process of a subclass to a superclass. However, due the semantics of
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inheritance (parallel composition of CSP parts of sub- and superclass) this affects
the CSP part of Machine as well. We have to make sure that the CSP process
obtained by this parallel composition is equivalent to the old CSP process. To
this end, we first rephrase the CSP part of Machine (refactoring ”Rephrase
CSP”, not from [Fow04]) to a form where this parallel composition is explicitly
visible and show behaviour preservation for this transformation. In Machine
we get

main
c= LoadingChans(Loading)‖Chans(Work)Work

Loading c= load → Loading � deload → Loading
Work c= Acq; (load → process → Acq); (deload → Work)
Acq c=|||h:Hts offer .h → Skip; choose → order → Skip

Equivalence, i.e. refinement in both directions, between this new and the old
process of Machine can be automatically shown using the CSP model checker
FDR [FDR97]. Then, Loading can be moved upwards to superclass Station from
both Store and Machine preserving the overall semantics.

4 Correctness of Refactorings

In the example above we have seen several different refactorings, affecting only
the CSP part, only the Object part or both parts.

Object-Z. Refactorings which only affect the classes being changed are called
inner refactorings. Such inner refactorings of the Object-Z part can be easily
derived from the inner refactorings of Object-Z itself (using an approach pre-
sented in [Ruh06]), and can - due to Theorem 1 - proven correct by looking at
the Object-Z part in isolation. Four refactorings of the example fulfil this con-
dition: ”Pull Up Field”, ”Pull Up Method”, ”Pull Up Init” and ”Replace Magic
Number with Symbolic Constant”. Here we just prove correctness of ”Pull Up
Field”, the other proofs are similar.

All of our refactorings will be formally described by a template consisting
of three parts: A (possibly empty) condition stating application conditions for
the refactoring, and two patterns of specifications stating the before and after
state of the refactoring. In the patterns we will not have concrete variables, but
metavariables which can be instantiated in an arbitrary way. The template for
”Pull Up Field” describes how and when a variable v can be moved from (one
or more) subclasses to a superclass.

Condition:

v �∈ vars(state(superbefore)) ∧ v �∈ vars(state(sub2before))
∃ v : T • pv

vars(pv ) ⊂ {v} ∪ vars(state(superbefore))
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Before:

superbefore

vdefsuper

vconssuper

sub1before+
inherit superbefore

vdefsub1
v : T

vconssub1
pv

sub2before∗
inherit superbefore

vdefsub2

vconssub2

After:

superafter

vdefsuper
v : T

vconssuper
pv

sub1after+
inherit superafter

vdefsub1

vconssub1

sub2after∗
inherit superafter

vdefsub2

vconssub2

This refactoring assumes that there is a superclass superbefore with at least
one subclass of type sub1before (denoted by +, regular expression) and zero,
one or more subclasses of type sub2before (denoted by ∗). The subclasses of type
sub1before all have a field v with the same type T and a predicate pv constraining
the values of v . In addition they may have other (differing) fields (summarised in
vdefsub1) with predicates vconssub1 over them. Note that the predicate vconssub1
may also constrain variable v . Subclasses of type sub2before and the superclass
all do not have the variable v in their state schema. Furthermore, the condition
requires that there is at least one possible value for v such that the predicate pv

is fulfilled. The after template describes the specification after the refactoring:
field v and its predicate pv have been pulled upwards into the superclass. Note
that when applying this refactoring to our example, we first pull up one variable
(e.g. store) and an empty predicate (true), and in the second step the other
variable (here capacity) and the predicate #store ≤ capacity.

For correctness, we need to prove that the superclass and all subclasses re-
main equivalent (wrt. refinement) under this transformation. We do this in three
steps: first, we show that the classes which previously have included the variable
remain the same, second, we prove the same for the classes which have not pre-
viously included the variable (i.e. sub2), and third, we have to prove equivalence
for the superclass. We start with proving equivalence for a class of type sub1. The
important part is to prove that the semantics of the state does not change, i.e.
state(sub1before) = state(sub1after ). Using the semantics rules from the language
definition (Chapter 4) of [Smi00] we can transform the left part of the equation:
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state(sub1before)
= [self : sub1before] ∧ (state(superbefore)/(self ))

• state([v : T ; vdefsub1 | vconssub1; pv ])
= [self : sub1before] ∧ (state(superbefore)/(self ))

• state([v : T | pv ]) • state([vdefsub1 | vconssub1])
= [self : sub1before] ∧ ((state(superbefore) ∧ state([v : T | pv ]))/(self ))

• state([vdefsub1 | vconssub1)
= [self : sub1before] ∧ state([vdefsuper ; v : T | vconssuper ; pv ])/(self ))

• state([vdefsub1 | vconssub1)
= [self : sub1after ] ∧ (state(sub1after )/(self ))

• state([vdefsub1 | vconssub1)
= state(sub1after )

Essentially, the state of the class, which owns the variable v before applying the
refactoring does not change through this refactoring. From this we conclude that
the class before and after the refactoring are equivalent (under data refinement).

Next, we prove that classes which did not include the variable, are equivalent
before and after applying the refactoring. This is more complicated than the
first part because we have to show that the enhanced state does not change the
behaviour. Here we have to use another proof technique because the class does
not remain equivalent as far as its state is concerned. It is to be proven that
the class before and after applying the refactoring are refinements of each other
using forward simulation. Here, we only prove that sub2before is a refinement of
sub2after . We have to show that there is a schema R, which fulfils the conditions
of Definition 1. The state of the refactored class is the old state combined with
the variable v and some predicates pv :

state(sub2before) ∧ [v : t | pv ] ≡ state(sub2after )

For this, we choose R to be the identity on the variables of sub2before. We imme-
diately get init(sub2before) = init(sub2after ) and sub2before .Opi = sub2after .Opi ,
because the definition is not modified and the variable v is not used in any of
them. We begin with the initialisation condition from Definition 1:

∀ state(sub2before) • init(sub2before) ⇒ ∃(state(sub2after ) • init(sub2after ) ∧ R)
≡

∀ state(sub2before) • init(sub2before)
⇒ ∃(state(sub2before) ∧ [v : T | pv ] • init(sub2before) ∧ R)

≡ {sub2before and init(sub2before) do not use v}
∀ state(sub2before) • init(sub2before)
⇒ (state(sub2before) ∧ init(sub2before) ∧ ∃ v : T | pv • R)

≡ { Definition of R}
∀ state(sub2before) • init(sub2before)

⇒ (state(sub2before) ∧ init(sub2before) ∧ ∃ v : T • pv )
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≡ ∃ v : T • pv

≡ { Assumption }
true

We omit the simple proof of applicability and go straight to the proof of the
correctness condition of forward simulation:

∀ state(sub2after ), state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ ∃ state(sub2after )′ • R′ ∧ sub2after .Opi

≡
∀ state(sub2before ∧ [v : T | pv ]), state(sub2before), state(sub2before)′

•R ∧ sub2before .Opi ⇒ ∃ state(sub2before ∧ [v : T | pv ])′ • R′ ∧ sub2after .Opi

≡
∀ state(sub2before ∧ [v : T | pv ]), state(sub2before), state(sub2before)′

•R ∧ sub2before .Opi ⇒ ∃ state(sub2before ∧ [v : t | p])′ • R′ ∧ sub2before.Opi

≡ { Definition of R and v is not in Δ}
∀[v : T | pv ], state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ ∃[v : t | p]′ • v = v ′

≡ { Assumption }
∀[v : T | pv ], state(sub2before), state(sub2before)′ • R ∧ sub2before .Opi

⇒ true
≡ true

Thus we have proven that the class sub2before is a refinement of sub2after . The
proof for the common superclass is analogous to the proof of sub2. In a similar
way we can prove correctness of the other inner refactorings on the Object-Z
part, e.g. ”Replace magic number with Symbolic Constant”, ”Pull Up Method”
and ”Pull Up Init”.

CSP. Next we will look at a refactoring only changing the CSP part of a class.
This kind of refactoring is used here in two ways. First, we may want to transform
the CSP part to an equivalent one within the CSP-OZ class (”Rephrase CSP”).
We use ”Rephrase CSP” to bring the CSP part into a shape, in which we can
apply the second CSP refactoring, namely ”Pull Up CSP”. Both can be proven
by concentrating on the CSP part alone (Theorem 1). Hence, we can simply
prove that the CSP part before and after applying the refactoring is the same.

For ”Rephrase CSP” there are two possibilities: we have to show that the
CSP-part before and after refactoring is equivalent wrt. the failures-divergences
semantics of CSP, and this can either be done by using some of the equivalence
rules of CSP (see e.g. [Ros97]) or explicitly asking the CSP modelchecker FDR
(which we have done for our example). The second CSP refactoring we use in
the example is ”Pull Up CSP”. This refactoring is described by the following
template (with empty condition).

Before:

superbefore
main

c= R
subbefore+
inherit superbefore
main

c= PsubChans(P)‖Chans(Q)Q
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After:

superafter
main

c= QChans(Q)‖Chans(R)R

subafter+
inherit superafter
main

c= Psub

The template assumes to have a superclass superbefore and a (nonzero) number
of subclasses subbefore which all have their CSP processes defined as the parallel
composition of some specific process Psub and one joint process Q . The process
Q can then be pulled upwards to the superclass.

We can prove the correctness of this refactoring again by looking at the CSP
part in isolation. We thus simply prove that the CSP part before and after ap-
plying the refactoring is the same. The proof uses the definition of the semantics
of inheritance (parallel composition of sub- and superclass).

procC (subbefore) = (PChans(P)‖Chans(Q)Q)Chans(P‖Q)‖Chans(R)R
= {Chans(XChans(X )‖Chans(Y )Y ) = Chans(X ) ∪ Chans(Y )}

(PChans(P)‖Chans(Q)Q)Chans(P)∪Chans(Q)‖Chans(R)R

= {x‖y − assoc from [Ros97]}
PChans(P)‖Chans(Q)∪Chans(R)(QChans(Q)‖Chans(R)R)

= {Chans(XChans(X )‖Chans(Y )Y ) = Chans(X ) ∪ Chans(Y )}
PChans(P)‖Chans(Q‖R)(QChans(Q)‖Chans(R)R)

= procC (subafter )

Extract Superclass. Finally, we show correctness of a refactoring which changes
both CSP and Object-Z part of a class. ”Extract Superclass” is a complex refac-
toring. First we introduce an empty superclass, then we use the refactorings
”Pull Up Method”, ”Pull Up Field” and ”Pull Up CSP”. The latter three are
also normal refactorings which we have already treated above. Therefore, we
only have to prove correctness of the introduction of a new empty superclass
(with template given below).
Before:

subbefore
main

c= PE

After:

superafter
main

c= Skip
subafter
inherit superafter
main

c= PE
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Fortunately, this new superclass does not add new functionality, so we only
have to prove that both the CSP and Object-Z part will not be changed. First
we prove this for the CSP part:

procC (subafter ) = PEChans(PE)‖Chans(Skip)Skip
= PEChans(PE)‖{�}Skip
= PE ≡ procC (subbefore)

For the Object-Z part correctness trivially holds since the superclass does
not introduce new constraints on the Object-Z part. Thus we have proven that
the introduction of an empty superclass is behaviour preserving as well, which
finishes the correctness proofs for the refactorings of our example. These proofs
exemplarily show all possible types of correctness proofs for CSP-OZ refactor-
ings: most of them proceed by syntactically rewriting of (state, init or operation)
schemas or CSP processes. Some of them, however, explicitly need the construc-
tion of a refinement relation.

5 Conclusion

In this paper we have shown how to carry out refactorings in object-oriented spec-
ifications involving a state-based as well as a behaviour-oriented part. Refactor-
ings thus concerned either only one of the specification parts (CSP or Object-Z)
or both. We have shown correctness of (some of) these refactorings by proving a
refinement relationship between before and after specification. This guarantees
the desired behaviour preservation.

Related work. Refactoring is a widely used technique in program design and
development. An overview over different approaches to refactoring is given in
[MT04]. The use of data refinement as a correctness criterion for refactorings
is also followed in Cornèlio, Cavalcanti et. al. [Cor04, CCS02] and McComb
[MS04, McC04]. Cornèlio defines refactorings and proves their correctness for
a refinement-based object-oriented language (ROOL), McComb and Smith use
Object-Z. While in particular the latter approach is close to ours, both languages
are state based formalisms only and do not include dynamic aspects, like CSP-
OZ does. A different approach to correctness of refactorings is taken by Bannwart
and Müller [BM06]. They show that particular pre- and post-conditions can be
derived from a refactoring and used to ensure correctness by inserting them as
assertions into programs. Then they are able to implement a runtime check of
the correctness of refactorings.

A frequently used formal approach to refactorings is the application of graph
transformations (e.g. [HT04, KHE03, MEDJ05, SD06, BM06a]). Graph trans-
formation rules can be used to describe refactorings when the specification can
be seen as a graph (e.g. in case of UML diagrams). They however cannot deal
with data-specific conditions, and most often do not treat different views, like
the data and process view we have here.



250 T. Ruhroth and H. Wehrheim

References

[BM06a] Baar, T., Markovic̀., S.: A Graphical Approach to Prove the Semantic
Preservation of UML/OCL Refactoring Rules. Technical report, Ecole
Polytechnique Fédérale de Lausanne (2006)

[BM06] Bannwart, F., Müller, P.: Changing Programs Correctly: Refactoring with
Specifications. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 492–507. Springer, Heidelberg (2006)

[CCS02] Cornélio, M.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Refactoring by
Transformation. In: REFINE’2002. Eletronic Notes in Theoretical Com-
puter Science, vol. 70, Elsevier, Amsterdam (2002)

[Cor04] Cornélio, M.L.: Refactorings as Formal Refinment. PhD thesis, Universi-
dade Federal de Pernambuco (2004)

[DB01] Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z. Springer, Heidel-
berg (2001)

[dE98] de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof
Methods and their Comparison. CUP (1998)

[DW06] Derrick, J., Wehrheim, H.: Model Transformations Incorporating Multiple
Views. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 111–126. Springer, Heidelberg (2006)

[FDR97] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2
User Manual (Oct. 1997)

[Fis97] Fischer, C.: A combination of Object-Z and CSP. In: FMOODS ’97, vol. 2,
pp. 423–438. Chapman & Hall, Sydney, Australia (1997)

[Fis00] Fischer, C.: Combination and Implementation of Processes and Data: from
CSP-OZ to Java. PhD thesis, University of Oldenburg (2000)

[Fow04] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, London (2004)

[Hoa85] Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Engle-
wood Cliffs (1985)
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