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Abstract. In 2006, the inventors of TRMC public key cryptosystem
proposed a new variant of TRMC, TRMC-4, which can resist the exist-
ing attack, in particular, the Joux et al attack. In this paper, we show
that the new version is vulnerable to attack via the linearization equa-
tions (LE) method. For any given valid ciphertext and its corresponding
TRMC-4 public key, we can derive the corresponding plaintext within
224

F28 -operations, after performing once for the public key a computa-
tion of complexity less than 234. Our results are confirmed by computer
experiments.
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1 Introduction

For the last three decades, public key cryptosystems (PKC) become an indis-
pensable part of our modern communication system. The security of traditional
PKC, such as RSA and ElGamal, depends on hard number theory based prob-
lems such as factoring or discrete logarithms. However, due to the quantum
computer attack by Shor [Sho97], and demand for more efficient cryptosystems
for small devices, there is a need to search for alternatives which are based on
other classes of problems.

Multivariate public key cryptosystem (MPKC) is a promising alternative.
Different from traditional PKC, the public key of MPKC is usually a set of
quadratic polynomials. The security of MPKC relies on the difficulty of solving
systems of nonlinear polynomial equations with many variables, and the latter is
an NP-hard problem in general. Compared with RSA public key cryptosystems,
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the computation in MPKC can be very fast because it is operated on a small
finite field.

The first promising construction of MPKC is the Matsumoto-Imai (MI) scheme
[MI88] proposed in 1988. Unfortunately, it was defeated by Patarin in 1995 with
the linearization method [Pat95].

Tractable rational map cryptosystem (TRMC) is a family of MPKC. It is a
type of stepwise triangular system (STS) [Wo05]. There are some STS schemes
such as TTM cryptosystems [Moh99] and TTS signature schemes [YC05]. All
existing instances of TTM have a common defect: their plaintext and ciphertext
variables always satisfy some linearization equations. Hence, they are all insecure
[GC00], [DH03], [DS03], [NHLCD06]. Compared to TTM, the construction of
TRMC is more systematic. Its central map is a so-called tractable rational map.

A previous version of TRMC is TRMC-2. The decryption of TRMC-2 involves
solving a sub-system of equations. Joux et al pointed out that the existence of
the sub-system turned out to be a weakness [JKMR05]. Utilizing this weakness,
Joux et al introduced a variant of the XL algorithm and built a pseudo-private
key equivalent to the original private key for a given valid ciphertext. With this
pseudo-private key, they find the corresponding plaintext.

To avoid this attack, the inventors of TRMC proposed TRMC-4 [WC04] re-
cently. But unfortunately, we find there exist some linearization equations sat-
isfied by plaintext variables mi and ciphertext variables wj , namely

n,m∑

i=1,j=1

aijmiwj +
n∑

i=1

bimi +
m∑

j=1

cjwj + d = 0.

Linearization equation attack was proposed first by Patarin in 1995 to defeat
the MI scheme [Pat95]. The linearization equation is also called the Patarin
relation. The authors claimed that it would be computationally infeasible if
one carefully designs the tractable rational maps [WC04]. But for TRMC-4,
we find that there are some Paratin relations in TRMC-4 and we can find all
linearization equations in 234 operations. Then for a given valid ciphertext, via
three eliminations, we can find the corresponding plaintext in 224 operations.

This paper is organized as follows. We introduce tractable rational map and
TRMC-4 encryption scheme in Section 2. In Section 3, we describe how to attack
TRMC-4, present a practical attack procedure, and calculate the complexity of
our attack. Finally, in Section 4, we conclude the paper.

2 TRMC Cryptosystems

2.1 Tractable Rational Map

TRMC is an MPKC. Its central map is a so-called tractable rational map, which
is different from other MPKCs such as TTM etc..
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Let K be a finite field. A tractable rational map is a map on K of following
form:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
...
yj

...
yn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= φ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
...

xj

...
xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1(x1)
r2(x2) · p2(x1)

q2(x1)
+ f2(x1)

g2(x1)
...
rj(xj) · pj(x1,x2,··· ,xj−1)

qj(x1,x2,··· ,xj−1)
+ fj(x1,x2,··· ,xj−1)

gj(x1,x2,··· ,xj−1)
...
rn(xn) · pn(x1,x2,··· ,xn−1)

qn(x1,x2,··· ,xn−1)
+ fn(x1,x2,··· ,xn−1)

gn(x1,x2,··· ,xn−1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where fj , gj, pj , qj are polynomials on K, rj is an invertible polynomial over K
whose inverse can easily be computed.

The inverse process is very simple. One can derive x1 = r−1
1 (y1) from y1 =

r1(x1), then compute x2 from x1 and y2. By iteration, we can obtain the values
of x3, · · · , xn in turn. So TRMC can be regarded as a triangular system.

2.2 TRMC-4

Let K = F28 be a finite field with 28 elements. Map F : K
45 → K

50 is a
composition of 4 maps φ1, φ2, φ3, φ4. Let

(x1, · · · , x45) = φ1(m1, · · · , m45), (y1, · · · , y50) = φ2(x1, · · · , x45),

(z1, · · · , z50) = φ3(y1, · · · , y50), (w1, · · · , w50) = φ4(z1, · · · , z50),

where φ1 and φ4 are invertible affine maps, φ2 and φ3 are tractable rational
maps. Note that the central map of TRMC-4 is the composition of two tractable
rational maps.

The expressions of φ2 and φ3, except for a few parameters, are public in-
formation in the TRMC-4. φ1 and φ4 are taken as the private key, while the
expression of the map (w0, · · · , w50) = F (m0, ..., m45) is the public key. The
public key F (m1, · · · , m45) is 50 quadratic equations in 45 variables. Denote by
Fj the j-th component function of F .

(w1, · · · , w50) = F (m1, · · · , m45)
= φ4 ◦ φ3 ◦ φ2 ◦ φ1(m1, · · · , m45)
= (F1(m1, · · · , m45), · · · , F50(m1, · · · , m45))

To list φ2 and φ3, we firstly fix some notation.
Let E = F248 be a degree 6 extension field of K. π : E → K

6 is a natural
K-linear isomorphism. Namely we take a basis of E over K, {θ1, · · · , θ6}, and
define π by π(a1θ1 + · · · + a6θ6) = (a1, · · · , a6) for any a1, · · · , a6 ∈ K. It is
natural to regard π as a K-linear isomorphism from E

8 to K
48.

In TRMC-4, the intermediate variables x1, · · · , x45, y1, · · · , y48 and z1, · · · , z48
are grouped into elements in E, shown in Table 1. Here the second and the forth
column are the images of entries in the first and the third column, respectively.
For example, π(X1) = c1θ1 +x1θ2 + · · ·+x5θ6. The c1, · · · , c6 ∈ K are constants,
such that c1, c4, c5 �= 0 to avoid decryption failure.
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Table 1. Intermediate variables and their corresponding entries in E

X1 (c1, x1, x2, x3, x4, x5) Y1 (y1, y2, y3, y4, y5, y6)
X2 (c2, x6, x7, x8, x9, x10) Y2 (y7, y8, y9, y10, y11, y12)
X3 (c3, x11, x12, x13, x14, x15) Y3 (y13, y14, y15, y16, y17, y18)
X4 (x16, x17, x18, x19, x20, x21) Y4 (y19, y20, y21, y22, y23, y24)
X5 (x22, x23, x24, x25, x26, x27) Y5 (y25, y26, y27, y28, y29, y30)
X6 (x28, x29, x30, x31, x32, x33) Y6 (y31, y32, y33, y34, y35, y36)
X7 (x34, x35, x36, x37, x38, x39) Y7 (y37, y38, y39, y40, y41, y42)
X8 (x40, x41, x42, x43, x44, x45) Y8 (y43, y44, y45, y46, y47, y48)
X̃1 (c4, x1, x4, x7, x10, x13) Z1 (z1, z2, z3, z4, z5, z6)
X̃2 (c5, x2, x5, x8, x11, x14) Z2 (z7, z8, z9, z10, z11, z12)
X̃3 (c6, x3, x6, x9, x12, x15) Z3 (z13, z14, z15, z16, z17, z18)

Z4 (z19, z20, z21, z22, z23, z24)
Z5 (z25, z26, z27, z28, z29, z30)
Z6 (z31, z32, z33, z34, z35, z36)
Z7 (z37, z38, z39, z40, z41, z42)
Z8 (z43, z44, z45, z46, z47, z48)

φ2 is defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X̃1;
Y2 = X̃2X̃1;
Y3 = X̃3X̃2;
Y4 = X4X1 + X3X2(

Y5 Y6

Y7 Y8

)
=

(
X1 X2

X3 X4

) (
X5 X6

X7 X8

)
=

(
X1X5 + X2X7 X1X6 + X2X8

X3X5 + X4X7 X3X6 + X4X8

)
;

y49 = L1L6 + L2L7 + L3L8 + L4L9 + L5L10;
y50 = L1L11 + L2L12 + L3L13 + L4L14 + L5L15.

(2.1)

where L1, · · · , L15 are randomly chosen linear maps in x1, · · · , x45.
φ3 is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = Y 2
1

Y3
Y2

+ g1(Y5Y8+Y6Y7
Y4

) = X̃1X̃3 + g1(X5X8 + X6X7);
Z2 = Y2 + g2(Y5Y8+Y6Y7

Y4
) = X̃2X̃1 + g2(X5X8 + X6X7);

Z3 = Y3 + g3(Y5Y8+Y6Y7
Y4

) = X̃3X̃2 + g3(X5X8 + X6X7);
Z4 = Y4 = X4X1 + X3X2;
Z5 = Y5 = X1X5 + X2X7;
Z6 = Y6 = X1X6 + X2X8;
Z7 = Y7 = X3X5 + X4X7;
Z8 = Y8 = X3X6 + X4X8;
z49 = y49;
z50 = y50.

(2.2)

where gi, i = 1, 2, 3, are maps from E to E, each of them corresponds to a map
fi, where fi = π ◦ gi ◦ π−1, is a K-linear transformation from K

6 to K
6.

The inverting process of TRMC-4 is very simple. Applying φ−1
4 on w1, · · · , w50,

one can derive the z1, · · · , z50, then the Z1, · · · , Z8 and Y4, · · · , Y8. One can
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compute the value of Y1, Y2, Y3 from the first three formulas of (2.2) and Z1, Z2, Z3.
Then from the first three formulas of (2.1), one can obtain X̃1, X̃2, X̃3 hence
X1, X2, X3. Then one can derive X4, X5, X6, X7, X8 from the matrix equation
and the fourth equation. So one obtains all the (x1, · · · , x45). Finally, apply-
ing φ−1

1 on (x1, · · · , x45), one derives all plaintext (m1, · · · , m45). Note that if
Z4 = Y4 = 0, the decryption mentioned above will not work.

3 Cryptanalysis on TRMC-4

The inventors of TRMC claimed [WC04] that searching the general Patarin
relations would be computationally infeasible by carefully designing the tractable
rational maps. But through theoretical analysis, we find that there still exist
Patarin relations in TRMC-4 and we can find all Patarin relations in a short
times. Given a valid ciphertext, starting from these equations, we can find the
corresponding plaintext easily.

3.1 Linearization Equations

Firstly, set

M1 =
(

X1 X2
X3 X4

)
, M2 =

(
X5 X6
X7 X8

)
, M =

(
Y5 Y6
Y7 Y8

)
=

(
Z5 Z6
Z7 Z8

)
.

Denote by A∗ the associated matrix of a square matrix; for a second order

matrix A =
(

a b
c d

)
, its associated matrix is A∗ =

(
d −b

−c a

)
.

In TRMC-4, we have

M = M1M2, det(M1) = Y4 = Z4,

Hence
M2det(M1) = M∗

1 M,

namely, (
X5 X6
X7 X8

)
Z4 =

(
X4 X2
X3 X1

) (
Z5 Z6
Z7 Z8

)
. (3.1)

Expanding it, that is,
⎧
⎪⎪⎨

⎪⎪⎩

X4Z5 + X2Z7 + X5Z4 = 0;
X2Z8 + X4Z6 + X6Z4 = 0;
X1Z7 + X3Z5 + X7Z4 = 0;
X1Z8 + X3Z6 + X8Z4 = 0.

(3.2)

Since F is derived from φ3 ◦ φ2 by composing from the inner and outer sides
by invertible affine maps φ1 and φ4. Hence equation (3.2) imply that for any
(m1, · · · , m45) ∈ K45 satisfying the equation of the form:

45,50∑

i=1,j=1

aijmiFj +
45∑

i=1

bimi +
50∑

j=1

cjFj + d = 0 (3.3)
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Furthermore, the four equations in (3.2) are all linearly independent, therefore
there exist at least 24 linearization equations such that their corresponding coef-
ficient vectors are linearly independent. Actually, given the value of Zi, the equa-
tions in Xi are also linearly independent. Hence, given a valid ciphertext, there
still exist at least 24 linearly independent linear equations in (m1, · · · , m45). Let
V denote the K-linear space composed of all linearization equations of the form
(3.3), and let D ≥ 24 be its dimension.

To find all equations in V is equivalent to find a basis of V . The equation (3.3)
is equivalent to a system of equations on the coefficients aij , bi, cj, and d. The
number of unknowns in these equations is equal to the number of monomials in
mi, Fj . So there are 2346 = 45 × 50 + 45 + 50 + 1 unknowns in these equations.

To find a basis of V , we randomly select slightly more than 2346, say 2500,
plaintexts (m1, · · · , m45), substitute them in (3.3) to get a system of 2500 linear
equations, and solve the resulting system. Let {(a(ρ)

ij , b
(ρ)
i , c

(ρ)
j ,d(ρ)), 1 ≤ ρ ≤ D}

be the coefficient vectors corresponding to a basis of V , where i, and j stand for
i = 1, · · · , 45, 1 ≤ j ≤ 50, respectively. Hence, we derive D linearly independent
equations in mi and Fj . Let Eρ(1 ≤ ρ ≤ D) denote the equations:

⎧
⎨

⎩

45,50∑
i=1,j=1

a
(ρ)
ij miFj +

45∑
i=1

b
(ρ)
i mi +

50∑
j=1

c
(ρ)
j Fj + d(ρ) = 0

(1 ≤ ρ ≤ D)
(3.4)

The work above depends only on any given public key, and it can be solved
once for all cryptanalysis under that public key.

3.2 First Elimination

Let’s assume we have a valid ciphertext w′ = (w′
1, · · · , w′

50). our goal is to find
its corresponding plaintext m′ = (m′

1, · · · , m′
45).

Substituting (F1, · · · , F50) = (w′
1, · · · , w′

50) into Eρ(1 ≤ ρ ≤ D), we can
derive D linear equations in mi. Reducing these D equations, we can derive
a system of linearly independent linear equations. Let l (l ≥ 24) denote the
number of linearly independent equations in these system. Let E′

1, · · · , E′
l denote

these equations. Doing a simple Gaussian elimination, from these l equations we
can represent l variables of x1, · · · , x45 by linear combinations of other 45 − l.
That is, we can find two disjoint subsets of {1, · · · , 45}, A′

1 = {u′
1, · · · , u′

l} and
A1 = {u1, · · · , u45−l}, and linear expressions

mu′
j

= hj(mu1 , · · · , mu45−l
), 1 ≤ j ≤ l (3.5)

such that E′
1, · · · , E′

l holds when (3.5) are substituted into them.
Let S denote a (45 − l)-dimensional affine subspace of K

45 defined by (3.5);
the component mu′

j
of any vector (m0, · · · , m45) in S is hj(mu1 , · · · , mu45−l

).
Now substitute (3.5) into Fj(m1, · · · , m45) and derive 50 new quadratic func-

tions F̂j(mu1 , · · · , mu45−l
) (1 ≤ j ≤ 50).
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3.3 Second Elimination

Furthermore, through theoretical analysis, we find there still exist linearization
equations on S.

Firstly, we denote by Z ′
i, i = 1, · · · , 8, the value of Zi corresponding to a given

valid ciphertext w′ = (w′
1, . . . , w

′
50). Similar notations Y ′

i , X ′
i, X̃ ′

i, x′
i and m′

i are
denoted for Yi, Xi, X̃i, xi and mi, respectively.

Since we have found a basis of all linearization equations and each linearization
equation is a linear combination of this basis, this fact holds when the variables
Fj in the equations are substituted by w′

j . Applying this fact to (3.1), we know
(

X5 X6
X7 X8

)
=

(
X4 X2
X3 X1

) (
Z ′

5 Z ′
6

Z ′
7 Z ′

8

)
Z ′

4
−1 (3.6)

namely,
(

X5 X6
X7 X8

)
=

(
(X4Z

′
5 + X2Z

′
7)Z

′
4
−1 (X2Z

′
8 + X4Z

′
6)Z

′
4
−1

(X1Z
′
7 + X3Z

′
5)Z

′
4
−1 (X1Z

′
8 + X3Z

′
6)Z

′
4
−1

)
(3.7)

The linear equations in mi derived from (3.6), (3.7) are all linear combinations
of the equations E′

1, · · · , E′
l , in other words, (3.6), (3.7) holds on S.

Calculate the determinants of matrixes in two sides of matrix equation (3.6),
then

X5X8 + X6X7 = C′Z4 (3.8)

where C′ = (Z ′
5Z

′
8 + Z ′

6Z
′
7)Z

′
4
−2.

Substitute (3.7) (3.8) into (2.2), then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 = X̃1X̃3 + g1(C′Z4)
Z2 = X̃2X̃1 + g2(C′Z4)
Z3 = X̃3X̃2 + g3(C′Z4)
Z4 = X1X4 + X2X3

Z5 = Z ′
5Z

′
4
−1

Z4

Z6 = Z ′
6Z

′
4
−1

Z4

Z7 = Z ′
7Z

′
4
−1

Z4

Z8 = Z ′
8Z

′
4
−1

Z4

(3.9)

From the first three equations of (3.9), we can derive:
{

X̃3(Z2 + g2(C′Z4)) = X̃1(Z3 + g3(C′Z4))
X̃2(Z1 + g1(C′Z4)) = X̃1(Z3 + g3(C′Z4))

(3.10)

Equation (3.10) implies that there exist at least 10 to 12 linearly independent
linearization equations for remaining 45−l plaintext variables and the new public
key polynomials, that is:

45−l,50∑

i=1,j=1

âijmuiF̂j +
45−l∑

i=1

b̂imui +
50∑

j=1

ĉjF̂j + d̂ = 0 (3.11)

And these equations are still linearly independent when the value of F̂i is given.
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Additionally, from the last five equations, we find that some (at least 24)
polynomials of the new public key polynomials can be linearly expressed by
other polynomials.

In order to make our attack more efficient, we can do Gauss reduction first
on the new public key polynomials. Note that here we must combine the given
valid ciphertext with the new public key polynomials. Concretely, we consider
the coefficients in each polynomial as a row vector and we concatenate w′

i and the
coefficient vector corresponding to Fi. Therefore, we derive a 50× (

(45−l+2
2

)
+1)

matrix. Doing Gauss reduction on this matrix, we can obtain a matrix whose
order less than 26. Hence, we derive a new set of public key polynomials, denoted
by ˆ̂

Fi. Set there are t ≤ 26 polynomials in this set. Denote the valid ciphertext
corresponding to the new public key polynomials by ŵ′

i, i = 1, · · · , t.
So the equation (3.11) can be changed into:

45−l,t∑

i=1,j=1

âijmui

ˆ̂
Fj +

45−l∑

i=1

b̂imui +
t∑

j=1

ĉj
ˆ̂
Fj + d̂ = 0 (3.12)

To find all equations of the form (3.12), we can use the same method as the
one used for equations (3.3). Firstly, we must derive a system of linear equation
in âij , b̂i, ĉj and d̂. Since the number of public key polynomials decrease to t,
these equation have only

(45 − l)t + 45 − l + t + 1 ≤ 594

unknowns. We randomly select 600 m ∈ S, and substitute them in (3.12) to get
a system of 600 linear equations and then solve it.

Let D̂ and {(â(ρ)
ij , b̂

(ρ)
i , ĉ

(ρ)
j , d̂(ρ)) : 1 ≤ ρ ≤ D̂} be the dimension and a basis

of solution space, respectively. So we derive D̂ linearly independent quadratic
equations in mui , i = 1, · · · , 45 − l and ˆ̂

Fj , j = 1, · · · , t. Then Substitute ˆ̂
Fj

by ŵj to get D̂ linear equations in mui . Assuming we can derive k (k ≥ 10)
linearly independent equations, denote these equations by Ê′

1, · · · , Ê′
k. Doing a

simple Gaussian elimination, from these k equations we can represent k vari-
ables of mu1 , · · · , mu45−l

by linear combinations of other 45 − l − k. That is,
we can find two disjoint subsets of {1, . . . , 45 − l}, B′

1 = {v′1, · · · , v′k} and
B1 = {v1, · · · , v45−l−k}, and linear expressions

mv′
j

= ĥj(mv1 , · · · , mv45−l−k
), 1 ≤ j ≤ k (3.13)

such that Ê′
1, · · · , Ê′

k holds when (3.13) are substituted into them. Let Ŝ denote
(45−l−k)-dimensional affine subspace of S, where for each vector (m1, · · · , m45)
in Ŝ, mv′

j
is substituted by (3.13) for any 1 ≤ i ≤ k.

Now substitute (3.13) into Fj(m1, · · · , m45) and derive t new quadratic func-
tions F̃j(mv1 , · · · , mv45−l−k

), j = 1, · · · , t.
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3.4 Third Elimination

Again, through theoretical analysis on F̃j(mv1 , · · · , mv45−l−k
), j = 1, · · · , t, we

find that we can do elimination once more.
Since we have found a basis of all linearization equations on S and each

linearization equations is a linear combination of this basis, this fact of course
holds when the variables ˆ̂

Fj in the equations are substituted by ŵ′
j . Applying

this fact to (3.10), we know {
X̃3 = X̃1C

′
1

X̃2 = X̃1C
′
2

(3.14)

where C′
1 = (Z ′

3 + g3(C′Z ′
4))(Z

′
2 + g2(C′Z ′

4))
−1, C′

2 = (Z ′
3 + g3(C′Z4))(Z ′

1 +
g1(C′Z ′

4))
−1, in other words, (3.14) holds on Ŝ.

Substitute (3.14) into the first three equations of (3.9), then
⎧
⎨

⎩

Z1 = X̃2
1C′

1 + g1(C′Z4)
Z2 = X̃2

1C′
2 + g2(C′Z4)

Z3 = X̃2
1C′

1C
′
2 + g3(C′Z4)

(3.15)

We find X̃2
1 can be expressed as linear combinations of the Zi. Utilizing the fact

that squaring is a linear operation on a field of characteristic 2, we have, on Ŝ,
the 6 expressions corresponding to X̃2

1 is of the form
∑

a′
im

2
i + b′ and K-linear

combinations of Fj(m1, · · · , m45) and 1 (constant). Thus, of linear combinations
of F̃j(mv1 , · · · , mv45−l−k

), j = 1, · · · , t, there must exist at least 6 expressions
which all contain only squaring terms and a constant term and correspond to
X̃2

1 .
It is easy to solve the following linear system on the ãi and b̃j :

⎧
⎨

⎩

50∑
i=1

ãiF̃i(mv1 , · · · , mv45−l−k
) +

45−l−k∑
j=1

b̃jm
2
vj

+ c̃ = 0

∀mv1 , · · · , mv45−l−k
∈ Ŵ

(3.16)

Set (ã(ρ)
1 , · · · , ã

(ρ)
50 , b̃

(ρ)
1 , · · · , b̃

(ρ)
45−l−k, c̃(ρ)), 1 ≤ ρ ≤ p (where p such that p + k =

15, because the vectors in K
6 corresponding to X̃i have 15 variables), is a basis

of solution space of system (3.16). Set
⎧
⎨

⎩

45−l−k∑
j=1

(b̃(ρ)
j )1/2mvj + (

50∑
i=1

ãiw
′
i)

1/2 + c̃(ρ) = 0

1 ≤ ρ ≤ p

(3.17)

For any (m1, · · · , m45) ∈ Ŝ, its corresponding (mv1 , · · · , mv45−l−k
) satisfied

(3.17). Therefore we can represent p variables of mv1 , · · · , mv45−l−k
as linear

expressions of the remaining variables.
So far, we represent totally l + k + p variables of (m1, · · · , m45) as linear

expressions of the remaining 45−l−k−p variables. In other words, we eliminated
l + k + p variables in public key polynomials.
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3.5 Finding The Plaintext

Substitute the linear expressions derived from (3.17) into F̃j(mv1 , · · · , mv45−l−k
),

j = 1, · · · , t to get t new public key polynomials. There are 45 − l − k − p(≤ 6)
in these new polynomials. Denote them by ˜̃Fj(mv1 , · · · , mv45−l−k

), j = 1, · · · , t.
Since 45− l−k−p(≤ 6) is very small, in principle, we can use the Gröbner bases
method or XL method to solve the system

˜̃Fj = ŵ′
j (3.18)

very easily and to find the plaintext.

3.6 A Practical Attack Procedure, Its Complexity and Experimental
Verification

Our attack can be further divide into the following five steps.

Step 1: Find a basis of the linear space of the coefficient vectors (aij , bi, cj, d)
of the linearization equations.

As mentioned in subsection (3.1), we randomly select 2500 plaintexts (m1,
· · · , m45) and substitute them into equation (3.3) to get a linear system of 2500
equations on 2346 unknowns. The computational complexity to solve it is

23462 × 2500 < 25003 < 234.

operations on the finite field K = F28 .
This step is independent of the value of the ciphertext w′ and can be done

once for a given public key.
Our computer experiments show that indeed D is equal to 24.

Step 2: For a given valid ciphertext (w′
1, · · · , w′

50), we substitute it into (3.4)
and solve the system of linear equations to get linear expression (3.5). Substitute
(3.5) into the public key polynomials to derive a set of new public key polynomials
F̂1, · · · , F̂50. Then we combine the given valid cipheretext and the new public key
polynomials and do Gauss reduction as subsection (3.3) described. At last, we
derive t linearly independent public key polynomials and t new valid ciphertext
components.

The first part of this step is of computational complexity about

452 · D < 453 < 215,

and the second part is
((

45 − l + 2
2

)
+ 1

)2

× 50 < 222.

Our computer experiments show that the number of linear expression derived
in this step is l = 24, and the number of the linearly independent public key
polynomials is t = 26.
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Step 3: Solve (3.12) to get a basis of solution spaceof (3.12),{(â(ρ)
ij , b̂

(ρ)
i , ĉ

(ρ)
j , d̂(ρ)) :

1 ≤ ρ ≤ D̂} then substitute the given ciphertext into result system of equations to
derive linear expression (3.13).

The first part of this step is of computational complexity about

(594)2 × 600 < 224,

and the second part is
(45 − l)2 · D̂ < 211.

Our computer experiments show D̂ = k = 12.

Substituting (3.13) into ˆ̂
Fj , j = 1, · · · , t, we can derive a set of new public key

polynomials F̃j(mv1 , · · · , mv45−l−k
),j = 1, · · · , t.

Step 4: Solve (3.16) to get a basis of solution space of it and then solve the
system of equations (3.17) to derive p linear expressions in remainder 45−l−k−p
components.

The first part of this step is of computational complexity about

(96 − l − k)3 < 218,

and the second part is
p(45 − l − k)2 < 210.

Our computer experiments show p = 3,

Step 5: Use the Gröbner basis method to solve the system of equations (3.18)
to get 45 − l − k − p values of plaintext components and then collect all linear
expressions between the variables derived in previous steps to get the values of
remainder plaintext components.

Our computer experiments show that there is 6 variables and 8 polynomials
in the last new public key polynomials ˜̃Fj(mv1 , · · · , mv45−l−k

), j = 1, · · · , t. The
computational complexity in this step is

(
63

3!

)3

< 218.

Hence, the total computational complexity of our attack is less then 234
F28-

operations.
We implement our attack on a Pentium IV 2.4Ghz PC with 256M memory, and

we code the attack using VC++. For any given valid ciphertext, our experiments
successfully find the corresponding plaintext less than 7 minutes, where 6 minutes
were spent on the execution of the step 1 in subsection (3.6), and less than 1
minute was spent to execute the remaining steps.

4 Conclusion

In this paper, we present a very efficient attack on TRMC-4. We need to do
precomputation first, which takes 6 minutes on a PC with a 2.4Ghz Pentium
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IV processor. Our attack then recovers the corresponding plaintext of any valid
ciphertext in less than 1 minute. The total computational complexity is less
than 234

F28-operations. The key point of the attack is finding all linearization
equations in polynomial time. Therefore, TRMC-4 is totally insecure.

Although we break the TRMC-4, we still think the design of TRMC is a
interesting idea; one can carefully design the tractable rational map to improve
the security of TRMC.
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