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Abstract. An integrated quantitative approach to data assimilation,
prediction and anomaly detection over real-time public health surveil-
lance data streams is introduced. The importance of creating dynamical
probabilistic models of disease dynamics capable of predicting future new
cases from past and present disease incidence data is emphasized. Meth-
ods for real-time data assimilation, which rely on probabilistic formula-
tions and on Bayes’ theorem to translate between probability densities
for new cases and for model parameters are developed. This formulation
creates future outlook with quantified uncertainty, and leads to natural
anomaly detection schemes that quantify and detect disease evolution
or population structure changes. Finally, the implementation of these
methods and accompanying intervention tools in real time public health
situations is realized through their embedding in state of the art infor-
mation technology and interactive visualization environments.
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1 Introduction and Motivation

Surveillance systems collect, analyze and report data continuously. Recent
progress in information science and technology is increasingly enabling the col-
lection of public health data worldwide in near real-time. In the United States,
partly motivated by bio-security concerns, real-time bio-surveillance systems,
that follow direct and indirect indicators of (epidemic) public health outbreaks
have been developed nationwide, at the city level e.g. for New York City or Los
Angeles, and at the state level such as in Michigan, Utah or Ohio. The monitoring
of indirect data streams, pertaining e.g. to work or school absenteeism, emer-
gency room and physician office calls, sales of certain over-the-counter medicines,
known as syndromic surveillance [1,2,3,4] is also underway.
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The use of a large number of real time data streams to infer the status and
dynamics of the public health of a population presents enormous opportunities
as well as significant scientific and technological challenges. A recent commit-
tee report from the Institute of Medicine of the National Academies concluded:
“... that steps [must] be taken now to adapt or develop decision-aid models
that can be readily linked to surveillance data to provide real-time feedback
during an epidemic” [17]. Among the “Grand Challenges in Global Health”
(http://www.gcgh.org/), articulated by a consortium of international organi-
zations such as the Bill and Melinda Gates Foundation, The Wellcome Trust
and the Canadian Institutes of Health Research, one finds the development of
“... technologies that permit quantitative assessment of population health sta-
tus”. Naturally, the early identification and detection of emerging pathogens,
pandemics or bioterrorist attacks call for the development and deployment of
real-time syndromic surveillance systems.

Real time public health surveillance has as its primary mission pre-emptying
the successful invasion or establishment of emerging infectious diseases. Its goals
include the prevention or mitigation of epidemic growth, if possible by setting
quantitative targets for intervention as events unfold and by providing a running
time expectation for logistic allocations, including medicines, hospital beds and
vaccines, if available. The success of real time public health surveillance depends
on our ability to develop not only effective detection systems but also ways of
evaluating the uncertainties associated with outbreaks, methods and models.

To a great degree, the reliability of a surveillance system hinges on its abil-
ity to make the extrapolations needed to predict the likely course of a public
health emergency given the incoming streaming information. Hence, the need
to develop statistical models of data assimilation that effectively estimate the
changing parameters that characterize models of disease dynamics. In this paper
a general procedure for data assimilation from real time data streams that feeds
into epidemic models of communicable disease spread is developed. This proce-
dure allows i) the estimation of probability densities for epidemiological parame-
ters (such as disease transmissibility) and ii) the prediction of future observables
with a quantified degree of confidence. This dynamical estimation/extrapolation
environment lends itself naturally to a statistical anomaly detection scheme ca-
pable of identifying shifts in the public health status of a population, either via
pathogen evolution, or as the result of changes in the population structure.

2 Data Assimilation and Probabilistic Prediction

Real time estimation of epidemiological parameters is conditioned by the types
of data available as well as the target quantities for estimation (Figure 1). It is
essential to produce running time statistics that incorporate past and present
measurements as well as ways to assimilate these data to generate probabilistic
predictions of new cases with quantified uncertainty because often the objective
of real time surveillance is to detect change. This approach also allows the use of
statistical estimation to partially bypass issues of non-stationarity in the data,
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Fig. 1. Number of cases of H5N1 human influenza. Cases confirmed by the World
Health Organization for Vietnam (top) and Indonesia (bottom), from January 2004 to
June 2006. Although these are currently the two countries with most recorded cases,
the incidence times series is very stochastic and intermittent (note the y-scale).

which typically hinder purely statistical (stationary) approaches to syndromic
surveillance. Technically, this can be achieved by adopting a probabilistic ap-
proach to the prediction of new cases (or their proxy variables) at a given time
t, ΔC(t), given past incidence time series and a model for the disease dynamics
written in terms of a set of parameters Γ . The set Γ includes familiar parameters
such as measures of transmissibility (e.g. the reproduction number R) and the
duration of the infectious and incubation periods.

Here we focus on the estimation of a key quantity in epidemiology known as
the reproduction number or ratio which quantifies the transmissibility of infec-
tious diseases under identifiable initial conditions. In the context of novel in-
fectious pathogens (e.g., the 1918-19 influenza pandemic, or the 2002-03 SARS
epidemic) to which most of the population is completely susceptible, the basic
reproduction number (denoted by R0) quantifies the number of secondary cases
generated by a primary case during its period of infectiousness within a purely
susceptible population. In more practical situations, the population’s actual sus-
ceptibility is affected by recurrent exposures to the infectious agent (e.g., dengue
fever, influenza), vaccination campaigns (e.g., influenza, measles, mumps) and by
“depletion” of susceptibles during the course of an outbreak. Then, the reproduc-
tion number denoted by R accounts for the residual immunity in the population.
The relationship between R0 and R may be modeled by R = (1− p)R0 where p
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denotes the proportion of the population that is effectively protected to infection,
assuming a well-mixed population [5,7,18,19,20]. In the advent of an epidemic,
the timely estimation of the reproduction number with the minimal amount of
available data crucial as it would allow public health authorities to determine
the types and intensity of interventions necessary to achieve fast epidemic con-
trol. The level of critical vaccination coverage needed to diminish or eliminate
various infectious diseases have also been determined from the magnitude of the
estimated reproduction number [5,7,18,19,20].

A number of approaches have been used to estimate the reproduction number
of infectious diseases including trajectory matching via least square fitting of
epidemic models to time series epidemic data (e.g., [9,10,11]), methods that rely
on the final epidemic size relation with the reproduction number (e.g., [13,15,6]),
methods that make use of serological survey data (e.g., [14,12]), and recent prob-
abilistic approaches that estimate the effective reproduction number over time
(e.g., [8,21,22,23,24,16]).

The dynamical probabilistic approach described here [8,21,22,23,24,16] allows
for the estimation of parameter density distributions via Bayes’ theorem. Fur-
thermore, as byproducts, the method leads to the automatic uncertainty quan-
tification of predictions and a scheme for anomaly detection. The probabilistic
prediction for new cases (ΔC(t)) is written in terms of the probability distribu-
tion of given previous incidences (ΔC(t− τ)) and dynamical parameters, which
we denote by

P [ΔC(t)← ΔC(t− τ)|Γ ] = P [ΔC(t)|ΔC(t − τ), Γ ] . (1)

This distribution encapsulates the dynamical prescriptions from different dy-
namical models of (epidemiological) disease dynamics. Below we show how this
formulation can be specified in practice for different models, how it implies the
full distribution for epidemiological parameters Γ , and how it leads naturally to
predictions with quantified uncertainty and to anomaly detection schemes. Given
probabilistic information on past cases and/or parameters, the probability for
new cases is given as

P [ΔC(t)] =
∫
dΔC(t− τ) dΓ P [ΔC(t)|ΔC(t − τ), Γ ] P [ΔC(t− τ), Γ ] . (2)

If parameters or previous cases are known exactly, then the distributions under
the integral on the right become δ-functions, enforcing specific (observed) values.
This identity gives rise to practical schemes for parameter estimation and new
case prediction, as we illustrate below.

The probabilistic prescription of new cases (1) implies in turn the distribution
of model parameters Γ . The key to parameter estimation, given a probabilistic
disease dynamics model, is the well known Bayes’ theorem

P [Γ |ΔC(t)← ΔC(t− τ)] =
P [ΔC(t)← ΔC(t − τ)|Γ ] P [Γ ]

P [ΔC(t)← ΔC(t− τ)] (3)

where the denominator is a normalization factor.
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Thus observation of time series for epidemiological quantities ΔC at consecu-
tive times is equivalent to knowledge of the probability distribution for epidemi-
ological parameters. The latter is given, in analogy to (2) as

P [Γ ] =
∫
dΔC(t− τ) dΔC(t) P [Γ |ΔC(t), ΔC(t − τ)]P [ΔC(t− τ), ΔC(t)] .

(4)
This expression also allows for the inclusion of uncertainties in case counts, which
may result e.g. from underreporting or other sampling biases.

3 Probabilistic Disease Models and Real Time Estimation
of Epidemiological Parameters

In this section, it is shown how standard “mean-field” compartment models
of communicable diseases prescribe P [ΔC(t)|ΔC(t − τ), Γ ]. Alternative models
have been proposed to achieve the same goal, including the probabilistic re-
construction of putative chains of transmission [8,22], and stochastic ensemble
methods [25]. The approach that we follow here has however the distinct advan-
tage of simplicity. Furthermore, its implementation requires only a very modest
computational effort. Other methods present certain advantages, however, such
as the estimation of probable chains of transmission [8,21,22].

Mathematical models predicting the time evolution of the average number
of infectious cases, deaths, etc. at a given time are among the most useful and
most commonly used descriptions of contagion processes. Classical epidemiolog-
ical models such as SIR (Susceptible-Infectious-Removed) or SEIR (Susceptible-
Exposed-Infectious-Removed) are of this form. Each class or compartment counts
the mean number of individuals in a specific epidemiological state and may refer
additionally to a geographic location, age or risk group.

We have shown elsewhere [23] that in the absence of sources these models imply
a relation between new case (or death) numbers at consecutive times, of the form

〈ΔC(t+ τ)〉 = b(Γ )ΔC(t), (5)

where the 〈...〉 denotes expectation and b(Γ ) = exp [τλ(Γ )] . For example in the
case of the SIR and SEIR models we have

λSIR = γ (R− 1) ; λSEIR =
κ+ γ

2

[
−1 +

√
1 +

κγ

(κ+ δ)2
(R− 1)

]
. (6)

which are the leading positive eigenvalues characterizing the evolution of case
numbers. Here κ−1 is the latency period, γ−1 is the duration of the infectious
period, and R is the effective reproduction number, which is defined as the mean
number of infected cases caused by an infectious individual. Other models will
result in a different form of λ.

These average relations for future new cases can now be used to define a
probabilistic model for new cases as

ΔC(t+ τ) ∼ P [ΔC(t+ τ)← ΔC(t)|Γ ] = P [b(Γ )ΔC(t)] , (7)
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where ΔC(t + τ) is taken as a stochastic variable distributed according to the
distribution P [〈A〉], with average 〈A〉. Note that the “mean field” models do not
prescribe ΔC(t+ τ), only its average. Knowledge of higher correlations, such as
the variance in case numbers, can help constrain the form of P among a class
of discrete (for cases, deaths) probability density distribution functions. In the
absence of additional information a Poisson distribution is the highest entropy
(i.e. most general) form. Another common choice is a Negative Binomial, which
allows for clumping effects, but requires the specification of a quantity related
to the variance of ΔC(t+ τ).

Depending on knowledge of details of the contagion process, correlations
among observables and availability of data different model choices in this class
may be appropriate, although an SIR or SEIR forms are often adequate.

There are many circumstances when disease cases, or their proxy variables,
do not change purely under contagion dynamics. These additional effects may
result from multiple introductions, e.g. from an animal reservoir, as well as from
unexpected patterns of human behavior. Introductions create cases in addition
to those due to contagion, and may start epidemics if initially R > 1. To include
these effects, we have developed models [23] that account for infections from a
reservoir, in addition to the usual transmission from infectious individuals to
others. This results in the modification of (5), due to additive terms,

〈ΔC(t+ τ)〉 = ΔB(t+ τ) + b(Γ ) [ΔC(t) −ΔB(t) + τγRψ(t, τ, Γ )] , (8)

where ψ(t, τ, Γ ) =
∫ t+τ

t
dt′ exp [−λ× (t′ − t)] fcΔB(t′). Here ΔB(t) are the new

cases due to introductions from the reservoir at time t, and fc is the probability
that such cases are transmissible between humans.

This expression shows that inference of disease transmissibility between hu-
mans requires statistical knowledge on the number of introductions. This can

Fig. 2. Predicted effective reproduction number for H5N1 influenza in humans in Viet-
nam. This is an example of the application of the method described in the text, for
details see [23].
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usually be inferred from qualitative information and/or can be parameterized to
create scenarios, under varying proportions of observable cases being attributable
to contagion vs. introductions. We have recently performed such analysis to place
bounds on the current transmissibility of H5N1 avian influenza, from data of the
outbreaks in Southeast Asia (e.g. see Figure 2)[23].

4 Anomaly Detection

Anomaly detection is not a simple business because often alternative evolution-
ary changes may lead to similar outcomes. For example, in the case of com-
municable diseases these may lead to changes in susceptibility or infectiousness
and both “anomalies” often result in comparable outcomes at the population
level. Nevertheless, it is desirable to determine when the statistical predictions
of epidemiological models fail to describe future data automatically. Inability to
predict correctly may signal disease evolution (potentially increasing or decreas-
ing transmissibility or lethality ), or changes in the population structure due to
population movements and/or unforeseen human behavior.

The probabilistic prediction of new cases (or deaths, etc) that we described
above also lends itself to natural and simple schemes for anomaly detection. One
approach consists in extracting a prediction for the interval of future cases (or
deaths) at a chosen level of confidence (Figure 3). This prescription can be for-
malized in terms of a two-sided p-value significance test, where p = α/2 is the
probability that corresponds to a 1 − α level of confidence in the predictions of
the model. The model is rejected, and an anomaly is flagged, if case numbers are

Fig. 3. Schematic illustration of the implementation of anomaly detection. The
Bayesian method described in section 3 allows the prediction of the number of cases,
with given confidence bounds. Whenever the number of observed cases falls outside
that prediction an anomaly is detected and the need for further epidemiological inves-
tigation is flagged. Here such events start happening from week 15.
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smaller than those corresponding to probability p, or are larger than those corre-
sponding to 1 − p. The significance α is typically chosen to be α = 0.05, which
corresponds to (dis)agreement with model predictions at 95% confidence level.

The automatic detection of anomalies should prompt investigations potentially
for faults in surveillance, or disease evolution or changes in the population struc-
ture. If several measurable quantities are available for prediction and anomaly
detection, several statistical tests can be combined into a collective test. The im-
plementation of this aggregated test can take different forms depending on the
independency and judged relevance of the individual tests and is the subject of
meta-analysis [26]. The changes in disease dynamics (anomalies), may result from
co-evolutionary processes, that is, from the interplay between pathogen evolution
and changing social landscapes and, consequently, while their detection may be
possible, the identification of the underlying mechanisms may not be straightfor-
ward without further investigation.

5 Visualization, Interventions and Table Top Exercises

We are currently using the methods described above to create a real-time pub-
lic health situation awareness and intervention environment. Our objective is to
embed real-time statistical inference methods and modeling algorithms in a state-
of-the-art visualization and computing environment at the Decision Theater (DT)
of Arizona State University. The technology under development will integrate two
types of public health applications in a unified user environment: the first is the
real-time analysis of geographically tagged public health data; the second is a plat-
form to simulate disease outbreaks for public health planning. As a byproduct, we
are also developing a platform for research and visual analysis of spatially-explicit
disease transmission models.

The platform was prototyped with the Arizona Department of Health Services
to study West Nile Virus in Maricopa County, Arizona, USA. The initial imple-
mentation was built using open-source software: a postgres/postgis database
[28,27] for the storage and retrieval of spatial data, the statistical software ap-
plication R [29], algorithms from the DCluster package, written in R [30], and
a visualization and rendering application dubbed Minerva [31] developed at the
Decision Theater to visualize spatial disease data and now being used in other ap-
plication areas as well. Figure 4 shows an implementation of the system during a
working session to study West Nile Virus in the Decision Theater with staff from
the Arizona Department of Health Services.

The Minerva application is the front-end of the information system. This
program performs four tasks in a common application: (i) it provides ODBC con-
nectivity to postgres/postgis databases to retrieve data to render through stan-
dard SQL, (ii) it renders data in the DT environment using OSG, (iii) it allows
users to select layers of data, associated with display properties such as the color
and shape, and (iv) it has menus for launching algorithms and choosing parame-
ters, but it does not run them itself. The key to coordinating model runs and data
transfers lies with the methods used to access the database. Scripts, written in
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Fig. 4. Analysis of West Nile Virus in the Decision Theater at ASU. The photo was
taken during a working session at the Decision Theater with the Arizona Department
of Health Services, Vector Borne and Zoonotic Disease Department staff. The interac-
tive visualization environment shows spatial analysis of West Nile Virus cases during
2004 and 2005 including demographic and environmental data and spatial clustering
algorithms.

R, connect to the database and execute an SQL command that imports a frame
of current data into R. Additional R commands transform the data to match the
required format for the spatial and statistical analysis. The results are uploaded
back into the database into tables which can be queried and rendered by Minerva.
Each time a layer is selected for visualization, Minerva starts an R script, waits for
the database to indicate it has been updated, and renders the data. Minerva stores
binary versions of the rendered layers so they can be turned on and off through
the user interface without running the algorithms multiple times during a session.

The fully-developed system will allow the calculation of statistical metrics and
mathematical forecasts, coupled with a real-time geographic information system.
The power and flexibility of the Decision Theater visualization environment pro-
vides the computational and informational infrastructure to deliver a real-time epi-
demiology decision support system that can be used during public health events,
for public health planning, and in developing a better understanding of the spa-
tial spread of multiple diseases. In addition, it allows the visualization of multiple
interchangeable data sets simultaneously. Thus, this system can be used for sev-
eral critical features of a real-time public health information system, such as: 1)
data acquisition, storage, and retrieval; 2) exploring the descriptive epidemiology
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of the disease; 3) determining the major demographic and socio-economic factors
that contribute to the spread of the disease, 4) the development of modeling and
simulation exercises, and 5) assessing the effects of health interventions in human
populations.

The value of using real-time epidemiological decision support environments
such as the Decision Theater relies heavily on the access and use by public health
officials and on approaches to research and modeling that drive these systems.
Current approaches to disease transmission modeling rely too heavily on the anal-
ysis of historical data or on the ability to predict future outbreaks, but overlook
the needs of public health officials to understand the current unfolding situations
in ways that extract meaningful knowledge. The modeling approach in this paper
takes a significant step towards the creation of quantitative tools that can deliver
real time information to health officials who can best apply the knowledge gained.
The visualization of that information in a real-time spatial context is necessary to
base real-time decisions that include the current state of disease epidemics as they
unfold. Table-top exercises, simulation, and analyses of current infections in the
population in cooperation with public health officials also serve to educate health
professionals on how to use the information system prior to outbreaks in mean-
ingful ways that will be directly transferable to the monitoring and management
of actual health events.

6 Conclusions and Outlook

An integrated quantitative approach to data assimilation, prediction and anomaly
detection over real time public health surveillance data streams has been pre-
sented. The foundation of the system that we envisage, and its main difference
to other current approaches, is the use of epidemiological models as the basis for
statistical analyses and temporal prediction. Although these models require more
assumptions than purely statistical approaches, they allow for the integration of
dynamical variables essential for forecasting and for natural automatic
uncertainty quantification and anomaly detection.

The approach developed here will build on the current syndromic surveillance
efforts [1,2,3,4], by integrating them with epidemiological predictive modeling,
which has a long and successful tradition in support of public health [5,6,7]. While
much remains to be done, we hope that these kind of methodologies will enable
a shift towards more quantitative active surveillance and primary prevention, re-
sulting in more powerful strategies for monitoring infectious diseases. The inte-
gration of these efforts into sustainable solutions that strengthen public health
worldwide remains the most important challenge and, simultaneously, the great-
est new opportunity to international public health and policy organizations, re-
quiring new levels of transparency, efficiency and cooperation among scientists,
governments, the private sector and non-governmental organizations.
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