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Abstract. A novel quantum evolutionary algorithm based on immune
operator (MQEA) is proposed. The algorithm can find out optimal solu-
tion by the mechanism in which antibody can be clone selected, immune
cell can accomplish cross-mutation and Self-adaptive mutation, memory
cells can be produced and similar antibodies can be suppressed. It not
only can maintain quite nicely the population diversity than the classical
evolutionary algorithm, but also can help to accelerate the convergence
speed. The technique for improving the performance of MQEA has been
described and its superiority is shown by some simulation experiments
in this paper.
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1 Introduction

Evolutionary algorithms have received a lot of attention regarding their potential
as global optimization techniques for complex optimization problems. Research
on merging evolutionary algorithms with quantum computing[1] has been de-
veloped since the end of the 90’s, this research can be divided in two different
groups: one that focus on developing new algorithms[2]; and another which fo-
cus on developing quantum-inspired evolutionary algorithms with binary and
real representations [3] which can be executed on classical computers.

Han proposed the quantum-inspired evolutionary algorithm (QEA)[3], he ap-
plied the QEA to some optimization problems and the performance of the QEA
is better than classical evolutionary algorithms in many fields [4]. Although
quantum evolutionary algorithms are considered powerful in terms of global op-
timization, they still have several drawbacks regarding local search (i) lack of
local search ability, and (ii) premature convergence.

In recent years, the study on the novel algorithms based on biological im-
mune mechanisms has become an active research field. A number of researchers
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have experimented with biological immunity-based optimization approaches to
overcome these particular drawbacks implicit in evolutionary algorithms.

In this paper, a quantum evolutionary algorithm based on the adaptive im-
mune operator (MQEA) is proposed. MQEA can find out optimal solution by
the mechanism in which antibody can be clone selected, immune cell can accom-
plish cross-mutation and Self-adaptive mutation, memory cells can be produced
and similar antibodies can be suppressed. We describe technique for improving
the performance of MQEA and its superiority is shown by some simulation ex-
periments. In order to evaluate MQEA, a set of standard test functions were
used and its performance is compared with that of QEA. Specifically, Section 2
then proposes a novel quantum evolutionary algorithm based on the adaptive
immune operator. The following section then analyzes and presents performance
results. In Section 4 the performance of MQEA is evaluated by some well-known
test functions.

2 Modified Quantum Evolutionary Algorithm Based on
Immune Operator

Conventional Quantum Evolutionary Algorithm (CQEA) [3], [4] is efficacious,
in which the probability amplitude of Q-bit was used for the first time to encode
the chromosome and the quantum rotation gate was used to implement the
evolving of population. Quantum evolutionary algorithm has the advantage of
using a small population size and the relatively smaller iterations number to have
acceptable solution, but they still have several drawbacks such as premature
convergence.

2.1 Immune Systems Mechanism Analysis

Immune Algorithms (IAs) are evolutionary algorithms [5],[6], [8] based on phys-
iological immune systems. Physiological immune systems have mechanisms [8]
that enable cells to exhibit and recognize foreign substances. The mechanisms
work by first recognizing foreign substances known as antigens, the immune
systems then generate a set of antibodies to interact with the antigens, these
antibodies interact with the antigens to produce diverse results. The mecha-
nisms are able to recognize which antibodies are better at interacting with the
antigens and produce those antibodies as memory cells in the next generation
of antibodies. Those mechanisms are able to distinguish which antibodies are
overly dominant. They suppress the growth of these dominant antibodies so as
to diversify the types of antibodies that are tested against the antigens in the
exploring and exploiting different results.

Physiological immune systems have affinity maturation mechanism and the
immune selection mechanism [7]. Affinity maturation conduces to immune sys-
tem self-regulates the production of antibodies and diverse antibodies, these
higher-affinity matured cells are then selected to enter the pool of memory cells.
The merits of IA are as follows:
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– IA operates on the memory cell, which guarantees fast convergence toward
the global optimum.

– IA has an affinity maturation routine, which guarantees the diversity of the
immune system.

– The immune response can enhance or suppress the production of antibodies.

2.2 Quantum Evolutionary Algorithm Based on Immune Operator

The flowchart of quantum evolutionary algorithm based on immune operator
(MQEA):

MQEA()
{ t=0;
Initialize Q(0) ;
Make P(0) by observing the states of Q(0) ;
Evaluate P(0) ;
Store the optimal solutions among P(0) ;
While (not termination - condition) do

{ t=t+1;
Update Q(t-1) using Q-gates U(t-1);
Make P(t) by observing the states of Q (t);
Evaluate P(t);
Store the optimal solutions among P(t);
Implement the immune operator for Q (t), P (t):

{
Clonal proliferation;
Self-adaptively cross-mutate each cell;
Suppress similar antibody;
Select antibody with higher affinity as memory cells;

}
}

}

Quantum gate (Q-gate) U(t) is a variable operator of QEA, it can be chosen
according to the problem. A common rotation gate used in QEA is as follows
[4]:

U(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

where θ represent the rotation angle, Q(t) = (q1
t , q2

t ...qn
t )

In the step ”make P (0) by observing the states of Q(0)”, generates binary
solutions in P (0) by observing the states of Q(0), where P (0) = {x1

0, x
2
0, ..., x

n
0}

at generation t = 0. One binary solution, xj
0, is a binary string of m, which is

formed by selecting either 0 or 1 for each bit by using the probability, either
|αj

0i|2 or |βj
0i|2 of qj

0, respectively. In the while loop, qj
t individuals in Q(t) are

updated by applying Q-gates U(t) defined as a variation operator of QEA, binary
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solutions in P (t) are formed by observing the states of Q(t)as the aforementioned
method and each binary solution is evaluated for the fitness value. It should be
noted that xj

t in P (t) can be formed by multiple observations of qj
t in Q(t).

2.3 Immune Operator

The clonal selection and affinity maturation principles are used to explain how
the immune system improves its capability of recognizing and eliminating patho-
gens. Clonal selection states that antigen can selectively react to the antibodies, if
the antibody matches the antigen sufficiently well, its B cell becomes stimulated
and can produce related clones. The cells with higher affinity to the invading
pathogen differentiate into memory cells, This whole process of mutation plus
selection is known as affinity maturation. Inspired by the above clonal selection
and affinity maturation principles, the cross-mutation operator could be viewed
as a self-adaptive mutation operator. Self-adaptive mutation plays the key role
in MQEA, generally, cells with low affinity are mutated at a higher rate, whereas
cells with high affinity will have a lower mutation rate. This mechanism offers
the ability to escape from local optima on an affinity landscape.

Cross-mutation operator can act as follow: give a randomly position j of the
chromosome

q =
(

α1|α2|...αj |...αm

β1|β2|...βj |...βm

)

if |βj |2 < p(p is mutation rate), let(αj , βj) transfer to (βj , αj), we can have low
affinity cells with higher mutation rate ph, whereas high affinity cells with lower
mutation rate pl, pl < ph. The immune system self-regulates the production of
antibodies and diverse antibodies. In order to maintain diversity, the similar
antibody whose fitness value is larger is suppressed and a new antibody is gen-
erated randomly. If the difference of fitness between two antibodies is less than
the suppression threshold, these two antibodies are called similar ones.

3 Performance Estimation of Algorithm

3.1 Algorithm Convergence

Theorem 1. Population sequence of quantum evolutionary algorithm based on
immune operator (MQEA) {A(n), n ≥ 0} are finite stochastic Markov chain.

We assume that S is the feasible solutions space and f∗ is the optimal solutions
of S, let A∗ = {A|max(f(A)) = f∗, ∀A ∈ S}

Definition 1. {A(n), n ≥ 0} are stochastic states, S0 ∈ S, S0 is the initial
solution , If

lim
k→∞

P{A(k) ∈ A∗|A(0) = S0} = 1,

Then the {A(n), n ≥ 0}is called convergence with probability one[9].
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Let Pk denote P{A(k) ∈ A∗|A(0) = S0},then Pk =
∑

i∈A∗
P{A(k) = i|A(0) = S0}.

Let Pi(k) denote P{A(k) = i|A(0) = S0}, then

Pk =
∑
i∈A∗

Pi(k) (1)

Let Pij(k) = P{A(k) = j|A(0) = i}. Under elitist approach (the best individual
survives with probability one), we have two special equations [9]:
When i ∈ A∗, j �∈ A∗,

Pij(k) = 0 (2)

When i ∈ A∗, j ∈ A∗,
Pij(k) = 1 (3)

Theorem 2. MQEA is convergence with probability one.

Proof. From the above Eq. (1). Pk =
∑

i∈A∗
Pi(k).

From
∑

j∈A∗
Pij(1) +

∑
j �∈A∗

Pij(1) = 1 , thus Pk =
∑

i∈A∗
Pi(k)

=
∑

i∈A∗
Pi(k)(

∑
j∈A∗

Pij(1) +
∑

j �∈A∗
Pij(1))

=
∑

i∈A∗

∑
j∈A∗

Pi(k)Pij(1) +
∑

i∈A∗

∑
j �∈A∗

Pi(k)Pij(1)

From above Eq. (2).
∑

i∈A∗

∑
j �∈A∗

Pi(k)Pij(1) = 0,

so Pk =
∑

i∈A∗

∑
j∈A∗

Pi(k)Pij(1).

{A(n), n ≥ 0} of MQEA is finite stochastic Markov chain (By Theorem 1).
Thus Pk+1 =

∑
i∈A∗

∑
j∈A∗

Pi(k)Pij(1) +
∑

i�∈A∗

∑
j∈A∗

Pi(k)Pij(1),

so Pk+1 = Pk +
∑

i�∈A∗

∑
j∈A∗

Pi(k)Pij(1) > Pk,

thus 1 ≥ Pk+1 > Pk > Pk−1 > ... > 0,
therefore

lim
k→∞

Pk = 1

By definition 1, MQEA is convergence with probability one. ��

3.2 Guidelines of Parameter Selection

The MQEA is a very compact and fast adaptive search algorithm based on the
adaptive immune operator taking a but delicate balance between explorations,
i.e., global search, and exploitation, i.e., local search. A major factor contribut-
ing to evolution is mutation, which can be caused by spontaneous misreading of
bases . The cross-mutation operator could be viewed as a self-adaptive mutation
operator. Self-adaptive mutation plays the key role in MQEA, because of the
different mutation rates, thus diversity of MQEA is maintained in a population
as generations proceed. Generally, cells with low affinity receptors are mutated
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at a higher rate (ph), whereas cells with high affinity receptors will have a lower
mutation rate (pl). This mechanism offers the ability to escape from local op-
tima on an affinity landscape. To explore the role of mutation on the quality
of the memory cells evolved, we modified the mutation routine so that the rate
of mutation is dictated by the cells affinity value. Specifically, the higher the
normalized affinity value, the smaller the rate of mutation allowed. The rate of
mutation for a given cell is as follows:

ps = 1.0 − |fitness of given cell|
|maxfitness of population| (4)

Mutation operator is then a really Self-adaptive, this, in a sense allows for
tight exploration of the space around high quality cells, but allows lower quality
cells more freedom to exploit widely. in this way, both local refinement and
diversification through exploration or exploition are achieved.

Considering time efficiency, we also can divide the population into several
groups( g1, g2...gr) according to cells fitness, fitness of cell in group gi is bigger
than that of cell in gj(i < j) , each group gi has one mutation rate pmi.

pmi = 1.0 − |maxfitness of group gi|
|maxfitness of population| (5)

so pm1 < pm2 < ... < pmr. Generally,the parameter r is set at 3 or 4. The
experiment results of stochastic simulation are given to show how the selection
of the parameter value influences the convergence of the population in MQEA.

4 Experimental Study

In this section, MQEA is applied to the optimization of well-known test functions
and its performance is compared with that of QEA algorithm. Guidelines of
parameter selection are evaluated by experiment results of stochastic simulation.
The test examples used in this study are listed below:

f2(x1, x2) = 100(x2
1 − x2)2 + (1 − x1)2, −2 ≤ xi ≤ 2 (6)

f1(x1, x2) = −20 ∗ e
−0.2∗

�
x2
1+x2

2
2 − e

cos(2πx1)+cos(2πx2)
2 + 20 + e (7)

f2(Rosenbrock function): Rosenbrocks valley is a classic optimization function.
The global optimum is inside a long, narrow, parabolic shaped flat valley. To
find the valley is trivial, however convergence to the global optimum is difficult
and hence this problem has been repeatedly used to assess the performance
of optimization algorithms. The results for the case of Rosenbrocks function
with three variables, averaged over 20 trials, are shown in Fig.1.,where solid line
denotes MQEA and dot line denotes QEA. Comparison of the results indicates
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Fig. 1. 25 populations, 180 generations, average 20 trials

that MQEA offers a significant improvement in the results compared to the
conventional QEA. In Fig.1., for 25 populations, the optimization value was
obtained with QEA after 70 generations, whereas the hybrid method MQEA was
able to obtain after 25 generations. This certainty of convergence of the MQEA
may be attributed to its ability to maintain the diversity of its population. As
a result, fresh feasible antibodies are constantly introduced, yielding a broader
exploration of the search space and preventing saturation of the population with
identical antibodies. In fact, the IAs superior performance may be attributed to
its ability to generate many good antibodies, a larger pool of feasible solutions
enhances the probability of finding the optimum solution.

f1(Ackley function): It is multimodal function with many local minima, one
of them is global minimum, fmin = f(0, 0) = 0. It was used to evaluate how the
selection of the parameter value influences the convergence of the population
in MQEA by using an adaptive immune operator. The result for the case of
Ackley function, averaged over 20 trials, are shown in Tabel 1. Comparison of the
result indicates that adaptive immune operator can keep the individual diversity
and control the convergence speed. For 20 populations, the optimization value
was obtained with MQEA-1(adaptive mutation rate, r = 3, pm1 = 0, pm2 =
0.1, pm3 = 0.2) after 40 generations, whereas MQEA-2(fixed mutation rate, p =
0.1) was able to obtain after 125 generations.

Table 1. Comparison of the performance of MQEA by the selection of the parameter
value

MQEA adaptive mutation rate(r = 3) fixed mutation rate
parameter value pm1 = 0, pm2 = 0.1, pm3 = 0.2 p = 0.1

iterations number to have solution 40 125



Studying the Performance of Quantum Evolutionary Algorithm 1075

5 Conclusions

In this study, a novel quantum evolutionary algorithm based on immune opera-
tor has been presented by using an immune algorithm to imitate the features of
a biological immune system. The balance between exploration and exploitation
of solutions within a search space are realized through the integration of clonal
proliferation, clonal selection, memory antibodies, and the adaptive immune re-
sponse associated with several diversification schemes, the efficiency of quantum
evolutionary algorithm is enhanced by using the immune operator. By combin-
ing the two methods, the advantages of both methods are exploited to produce a
hybrid optimization method which is both robust and fast, the immune operator
is used to improve the convergence of the quantum evolutionary algorithm in
search for global optimum. we estimate the performance of algorithm, we also
describe technique for improving the performance of MQEA. The efficiency of
the approach has been illustrated by applying to a number of test cases. The
results show that integration of the adaptive immune algorithm in the quantum
evolutionary algorithm procedure can yield significant improvements in both
the convergence rate and solution quality. The further work is exploiting more
reasonable parameter used in evolutionary model.
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