
Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 253–256, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Workflow Management for P2P
Environments Using Agents

Wallace A. Pinheiro1,3, Adriana S. Vivacqua1, Ricardo Barros1,

Amanda S. de Mattos1, Nathalia M. Cianni1, Pedro C.L. Monteiro Jr.1,
Rafael N. De Martino1, Vinícius Marques1, Geraldo Xexéo1,2, and Jano M. de Souza1,2

1 COPPE/UFRJ, Graduate School of Engineering
2 DCC-IM, Dept. of Computer Science, Institute of Mathematics

Federal University of Rio de Janeiro, Brazil
PO Box 68.511 - ZIP code: 21945-970 – Rio de Janeiro, RJ – Brazil

3 IME, Military Institute of Engineering
Pr. General Tibúrcio, 80 - ZIP code: 22290-270 - Rio de Janeiro, RJ – Brazil

{awallace, avivacqua, rbarros, amandasm, nathalia, calisto,
rmartino, vgmarques, xexeo, jano}@cos.ufrj.br

Abstract. Traditional workflow systems don’t handle dynamic scenarios well,
as they are centralized and pre-defined at the start of the project. In this paper,
we present a P2P framework to support dynamic workflows, which uses
contracts to deal with unexpected changes in the flow of activities. DynaFlow is
an agent based framework, where agents take action when exceptions occur.
DynaFlow could provide adequate support for E-Science experiments mapped
into workflows instances, with tasks operating in distributed environments and
diverse types of computational resources and data.

Keywords: P2P Systems, Dynamic Workflows, Workflow Flexibility, Agents.

1 Introduction

In-silico experiments are scientific processes in which structured activities can be
designed to address questions that arise in scientific problem-solving [1]. These
experiments can be mapped to scientific workflows that automate these processes,
managing various interconnected tools and large scale data in multiple data formats,
distinct environments, algorithms, applications and services. E-Science areas can
benefit from workflow technologies, data parallelism and distributed environments to
minimize execution time and enable collaboration, regardless of locations.

In these environments, problems such as node failure or unexpected participant
changes have to be managed on the fly, creating a need for more flexibility.
Furthermore, lengthy processes may have to be executed and any changes during
workflow execution need to be handled so as not to lose work already done.

In order to support dynamic workflows, management tools should deal with two
types of flexibility: a priori and a posteriori. The first one focuses on flexible behavior
specification in order to achieve a behavior more precise and less restrictive in terms

254 W.A. Pinheiro et al.

of flow advance. The second one enables changes in the specification. In this case, it
must be defined when and in what states these changes should be allowed, to
guarantee consistency of the experiment throughout its life cycle.

Centralized coordination causes problems such as vulnerability, loss of flexibility
and no guarantee of availability. The adoption of peer-to-peer (P2P) technology
enables the construction of a system that decentralizes workflow control and
management [2], adopting a low coupling structure with no central data repository, to
increase workflow flexibility. Some example of E-Science workflows systems are
Taverna [3], Kepler [4] and GridOneD [5].

The goal of our research is to analyze the main problems inherent to the definition
and execution of dynamic workflows in environments characterized by flexibility and
distribution. We adopt a P2P agent based environment, because they are
decentralized, heterogeneous and dynamic. Besides, they enable spontaneous group
formation by physically dispersed participants, leading to added flexibility in
workflows. This paper is organized as follows: the next section presents the
DynaFlow architecture and is followed by a brief discussion.

2 DynaFlow: Agents to Handle Workflows

DynaFlow is a peer-to-peer, agent based, framework to support dynamic workflows,
which uses contracts to deal with unexpected changes in the flow of activities. Each
peer can assume the role of workflow publisher or executor. The publisher peer will
be responsible for the definition and publication of activities to the neighboring peers,
and the executor peers are the peers that volunteer to execute at least one of the
available activities. Each peer is supported by a group of agents that handles contracts
and task assignment and execution, to enable dynamic adjustment of the system.

2.1 System Architecture

DynaFlow defines two applications built on top of the COPPEER framework [6], one
Publisher and one Executor, each running on one peer. The following agents are
implemented to control the workflow:

• Publisher – is the agent responsible for publishing workflows activities. This
agent is started when a workflow has to be published or republished

• ActivityListener – is constantly waiting for new published activities. When it
receives an activity that demands the same competence manifested by the
executor, it inserts this activity on an activity list.

• Negotiation – the goal of this agent is to move contracts from executor to
publisher and vice-versa.

• ContractReceiver – this agent receives contract proposals send by the Executor
for the time established by the Chronometer Agent.

• Chronometer – controls system timeouts.
• ContractAnalyser – analyses contract proposals sent from the Executors. This

agent can use several strategies to select which Executor will undertake an
activity. For example, it can consider the minimum of time and cost.

 Dynamic Workflow Management for P2P Environments Using Agents 255

• ApprovedContractListener – this agent receives approved contracts from the
Publisher. It creates a list with the approved contracts. The Executor uses this list
to confirm a contract to the Publisher.

• ConfirmedContractReceiver – this agent receives confirmed contracts (send by
the Executor) and sends them to the Foreman Agent.

• Foreman – manages the execution orders. It sends the orders to Executors in the
correct sequence and, when an activity depends of other activity, it waits the
conclusion of its predecessor.

• ExecutionOrderListener – receives execution orders and shows to the Executor.

The publisher defines the activities, their structure and flow manually. From there
on, all remaining actions will be executed autonomously by agents: contract receipt
and analysis, activity republication, task result receipt, activity execution order
definition, and so on. At the executor side, agents will receive available activities,
approved contracts and execution orders. There are also agents to send notifications to
the publisher. These notifications can propose, confirm or finalize a contract.

2.2 Contract

DynaFlow uses contracts to establish rewards and punishments that can be converted
into a measure of reputation. These can be used to handle issues such as change in
activity specification or incomplete execution. In this case, upon fulfillment of a
contract, a peer increases its reliability degree, while a peer that breaks a contract has
its reliability reduced. Table 1 shows typical contract terms.

Table 1. Contract Terms

Contract Terms
Publisher Reputation Grade and Executor Reputation Grade
Number of Evaluations (received by the publisher and executor)
Approval Limit Date (for the publisher to accept the contract proposal made by the executor)
Execution Order Limit Date (for the publisher to order the task execution)
Signature Date
Execution Period (after this, the executor pays a delay punishment)
Execution Period Extension (after this, the contract is rescinded)
Task Cost (processing time, trustworthiness, etc)
Period of Result Availability (after this, the executor can discard the result)
Subtasks Delivery (flag that indicates if the subtasks will be delivered after concluded)
Task Description, Subtask Descriptions and Subtask Weights to the Task
Status Check Period (for the executor)
Delay Punishment Value (processing time, trustworthiness, etc)
Rescission Conditions and Punishment Value (processing time, trustworthiness, etc)

Reputation can be a fundamental factor to decide whether a peer is trustworthy or
not. Reputation systems provide a summarized (perhaps imperfect) history of another
peer's transactions. Users use this information to decide to what extent they should
trust an unknown peer before they themselves have interacted with it [7]. The initial

256 W.A. Pinheiro et al.

calculation of a peer’s reputation is based on criteria adopted by schools to evaluate
students: calculating the arithmetic mean of grades received by their evaluators.

Thus, each executor peer, after it has participated of a workflow, is evaluated and
receives a grade for its participation. A new average will be calculated whenever a
new grade is received. The publisher peer receives a grade calculated from the grades
given by the executors. Historical grades (grades given and received) are stored by the
executor as well by the publisher, and are composed by the workflow identification
and the peer grade.

3 Discussion and Future Work

The possibility of task assignment and renegotiation provides new opportunities for
handling events in E-science workflows. Revising a workflow after execution has
begun is important for dynamic workflow control.

More efficient structures to handle the contract and its negotiation need to be
defined. A good definition of the relevant contract metadata (e.g., time to execution,
reliability of results, time to provision of results, etc.) enables appropriate task
distribution and workflow adjustment. The definition of rules to handle events is also
very important: if a result comes in that is not what was expected, how should the rest
of the workflow be handled? Should the process be aborted? Can alternative results be
obtained? Can these results be verified by other sources? Should the experiment be
rerun? These actions will depend on the situation, but need to be addressed.

References

1. Singh, M. P.; Vouk, M. A.: Scientific Workflows: Scientific Computing Meets
Transactional Workflows. Proceedings of the NSF Workshop on Workflow and Process
Automation in Information Systems: State-of-the-Art and Future Directions, Univ. Georgia,
Athens, GA, USA; 1996, pp.SUPL28-34.

2. Fakasa, G.J.; Karakostasb, B., 2004. A peer to peer (P2P) architecture for dynamic
workflow management. In Information and Software Technology, Vol. 46, No. 6, pp.
423-431.

3. Goble, C., Wroe, C., Stevens, R., and the myGrid consortium, “The myGrid Project: Ser-
vices, Architecture and Demonstrator”, Proceedings UK e-Science All Hands Meeting 2003
Editors - Simon J Cox, p. 595-603, 2003.

4. Kepler , Kepler: Distribueted Kepler Visited July 27, 2006 http://www.kepler-
project.org/Wiki.jsp?page=DistributedKepler

5. Taylor, I , Shields, M. , Philip, R. 2002, GridOneD: Peer to Peer visualization using Triana:
A Galaxy formation Test Case In UK eScience All Hands Meeting, September 2-4.

6. Miranda, M.; Xexeo, G. B.; Souza, J. M, 2006. Building Tools for Emergent Design with
COPPER. Proceedings of 10th International Conference on Computer Supported
Cooperative Work in Design, Nanjing, v. I. p. 550-555.

7. Marti, S., 2005. Trust And Reputation In Peer-To-Peer Networks. A dissertation submitted
to the Department of Computer Science and the Committee on Graduate Studies of Stanford
University.

	Introduction
	DynaFlow: Agents to Handle Workflows
	System Architecture
	Contract

	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

