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Abstract. Scientific workflows have gained great momentum in recent
years due to their critical roles in e-Science and cyberinfrastructure ap-
plications. However, some tasks of a scientific workflow might fail during
execution. A domain scientist might require a region of a scientific work-
flow to be “atomic”. Data provenance, which determines the source data
that are used to produce a data item, is also essential to scientific work-
flows. In this paper, we propose: (i) an architecture for scientific workflow
management systems that supports both provenance and atomicity; (ii)
a dataflow-oriented atomicity model that supports the notions of commit
and abort; and (iii) a dataflow-oriented provenance model that, in addi-
tion to supporting existing provenance graphs and queries, also supports
queries related to atomicity and failure.

1 Introduction

Scientific workflow systems are increasingly used to execute scientific data man-
agement and analysis in many disciplines, such as biology, medicine, chemistry,
physics, and astronomy. In contrast to traditional business workflows, which are
task-centric and control-flow oriented, scientific workflows are data-centric and
dataflow oriented. More specifically, in a business workflow model, the design of
a workflow focuses on how execution control flows from one task to another (se-
quential, parallel, conditional, loop, or event-condition-action triggers), forming
various “control-flows”. In a scientific workflow model, the design of a work-
flow focuses on how the input data are streamlined into various data analysis
steps using data channels to produce various intermediate data and final data
products, forming various “dataflows”.

Atomicity is an important transactional property, which requires that a trans-
action either runs in completion or has no partial effect (all-or-nothing). In sci-
entific workflows, some task might fail during execution due to either the failure
of the task itself or inappropriate input to a task. Despite the failure of tasks, a
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domain scientist might require a region of a scientific workflow to be “atomic”
in the sense that either the execution of all the tasks in that region run to com-
pletion or none of them has any effect at all. However, traditional techniques
for atomicity in transaction processing systems are inappropriate for complex
long-running processes in distributed and heterogeneous environments. Com-
pensation is generally considered as a proper way to handle rollback in business
workflows [6], as it can eliminate effects of already committed transactions. The
atomicity techniques based on compensation in business workflows [8,5] are not
suitable for scientific workflows. They often require the explicit definitions of
transaction boundaries which are obscured in our case due to the data depen-
dency introduced by pipelined execution of workflows. Moreover, since scientific
workflows are often computation-intensive, traditional rollback techniques are
inefficient because the intermediate results of aborted transactions, which might
be reusable in the future, are discarded.

Data provenance is closely related to the data lineage problem [3] studied
in the database community, which determines the source data that are used to
produce a data item. However, in scientific workflows, datasets are not neces-
sarily contained in a relational or XML database and data processing cannot
necessarily be accomplished by a database query. Therefore, existing approaches
to the data lineage problem are not sufficient for solving the data provenance
problem in scientific workflows. Moreover, although several provenance models
(such as [2]) have been proposed for scientific workflows, none of them supports
the notion of atomicity.

This paper proposes a novel dataflow-oriented atomicity and provenance sys-
tem for scientific workflows. To the best of our knowledge, our system is the
first one that supports both atomicity and provenance. It captures dataflows in
scientific workflows, where data communications between tasks are modeled as
enqueue and dequeue operations of a recoverable queue [1]. Transaction bound-
aries are not necessarily defined, instead, data dependencies are tracked and
logged. Our system consists of two subsystems: atomicity management subsys-
tem, which performs commit and abort, and provenance subsystem, which infers
data dependencies and processes queries. The former is contained in the workflow
engine; the latter can be outside. Although our system is based on the Kepler
scientific workflow management system [9], our approach is general and can be
extended to other systems.

2 Background

2.1 The Kepler Scientific Workflow Management System

The Kepler system [9] is an open source application to provide generic solu-
tions to scientific workflows. In Kepler, a workflow consists of a set of “nodes”
(called actors), which represent components or tasks, and a set of “edges” (called
dataflow connections), which connect actors. Actors have input ports and output
ports that provide the communication interfaces to other actors. Actors com-
municate by passing data tokens (called token for short) between their ports.



246 L. Wang et al.

Each token is unique in the whole workflow. A unique feature of Kepler is that
the overall execution and component interactions are coordinated by a sepa-
rate component called director instead of implicitly defined in actors. Kepler
provides a variety of directors that implement different computation models. In
the process network model, each actor is an independent process or thread, and
each dataflow connection is an asynchronous and unidirectional channel with
unbounded buffers. Such scientific workflows execute in a pipelined fashion; our
atomicity and provenance System is based on such a pipelined workflow model.

2.2 A Scientific Workflow in Biology

We implemented a scientific workflow in Kepler for a biological simulation project
which analyzes the response of male worms to pheromone. The movement of a
male worm is affected by chemical stimuli produced by female worms. Fig. 1
shows the workflow in Kepler. The actors SampleFactory,EnvironmentFactory,
and ModelFactory provide parameters for simulations of male worms, environ-
ment, and their interactions, respectively. The actor Simulation repeatedly
calculates the movement of worms over a time interval and the dispersion of
the chemical. The actor ImageDisplay is used to show the result. The actor
StatisticalAnalysis analyzes the simulations.

Fig. 1. A biological simulation scientific workflow in Kepler

3 The Atomicity Management Subsystem

We first define a formal model for scientific workflows adapted from the Kepler
system [9] introduced in Section 2.1.

This paper makes some assumptions about the scientific workflows that we an-
alyze. First, each actor is “white”, i.e., data dependencies between input tokens
and output tokens are observable. Second, message-send-response relationships
between actors and services are known. Third, each retriable Web service is mod-
eled as a local actor (this is how it is done by Kepler), which calls the remote
Web service on behalf of the user. Thus, the execution of all tasks are performed
in a local machine except the execution of Web or Grid Services.

A workflow W = 〈A, E〉 consists of a set A of actors, and a set E of dataflow
connections. Each actor a ∈ A has a set of associated data ports, each of which
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is either an input or output port. A dataflow connection bridges a set of output
ports with a set of input ports.

3.1 Round and Data Dependency

In our atomicity model, a workflow execution invokes a series of actors to run.
Each actor maintains a state which stores intermediate results computed from
previous input tokens. A state indicates some data dependencies between the
output tokens and the input tokens.

For example, Fig. 2 shows how the actors in Fig. 1 consume and produce
tokens, and the data dependencies between tokens (which is shown in Fig. 2(d)).
In Fig. 2(a), actor SF (i.e., SampleFactory) consumes tokens f1 (number of
males) and f2 (parameters for males), then produces token s1 (a sample of
males). When SF calls reset(), its state is flushed. Then SF consumes tokens
f3 (number of females) and f4 (parameters for females), and produces token
s2 (a sample of females). Actors EnvironmentFactory and ModelFactory work
similarly, which are not shown. In Fig. 2(b), actor S (i.e., Simulation) consumes
s1, s2, e1 (a set of environment parameters) and m1 (interaction model), saves
s1 and s2 into its state, then produces a1 (a result). Next, S consumes e2 then
produces a2. Before the next simulation starts, reset() is called to flush the
state. In Fig. 2(c), actor A (i.e., StatisticalAnalysis) produces an analysis
result for each simulation. In the meanwhile, it saves the intermediate results in
its state and finally performs a full analysis based on its state. This procedure
continues after reset() is called.
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Fig. 2. Actors and data dependencies between tokens

A round on an actor is the whole events that happen between two consecutive
(i.e., no other reset events in the middle) reset events. Each round has a unique
identifier in the workflow. Thus, an invocation of a workflow contains a series
of actor invocations; each invocation of an actor contains one or more rounds.
Round is decided by each actor itself. When an actor calls reset(), it tells the
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workflow engine that the current round has completed. The call of reset() is
a non-blocking operation. A reset event terminates the current round of data
dependencies, and starts a new round of data dependencies. For each output
token in a round, we assume that the actor can tell what input tokens that it
depends on. Note that these dependent tokens might be some of the input tokens
read so far (not the whole), as shown in Fig. 2(b), a2 does not depend on e1.
For a round a.r on an actor a, let input(a.r) and output(a.r) denote its input
and output tokens, respectively.

For two tokens t1 and t2, if t2 is computed from t1, we call t2 depends on
t1, denoted t1 → t2. For two rounds a.r and a′.r′, if ∃t.(t ∈ output(a.r) ∧ t ∈
input(a′.r′)∧a �= a′), i.e., a′.r′ consumes the tokens produced by a.r, we call a′.r′

depends on a.r, denoted a.r ⇒ a′.r′. Data dependencies are transitive: for token
dependencies, if t1 → t2 and t2 → t3, then t1 → t3; for round dependencies,
if a.r ⇒ a′.r′, a′.r′ ⇒ a′′.r′′, and a �= a′′, then a.r ⇒ a′′.r′′. Note that we do
not allow cyclic transitive data dependencies on rounds. It is assumed that the
workflows do not contain cyclic dataflows.

Let depd-ancestors(a.r) = {a′.r′|a′.r′ ⇒ a.r} (i.e., all rounds that a round a.r
depends on) and depd-descendents(a.r) = {a′.r′|a.r ⇒ a′.r′} (i.e., all rounds that
depend on a round a.r). They can be easily computed from the log introduced
in Section 4.

3.2 Commit and Abort

Formally, we define the atomicity of a round as follows: the execution of a round
a.r is atomic if either it and all the rounds that depend on a.r run to completion
or none of them has any effect. Thus, users do not need to explicitly define trans-
action boundaries as in business workflows and database systems. Atomicities
in the whole workflow are ensured automatically by our atomicity management
subsystem. Although the atomicity granularity is based on one “round” of exe-
cution of a task in this paper, the technique can be readily extended for various
granularities.

For two rounds a.r and a′.r′, and a.r ⇒ a′.r′, if a′.r′ consumes only some early
output tokens of a.r, a′.r′ might finish by calling reset() even when a.r is still
running. Thus, “reset” does not mean “commit” of the round, because we have
to rollback both a.r and a′.r′ if a.r fails. A round a.r commits if a.r has been reset
and every round in depd-ancestors(a.r) has committed. If depd-ancestors(a.r) is
empty, a.r commits once it is reset. Intuitively, a reset event indicates the ending
of the current round and the starting of the next round, and a commit event
makes the results of the round be observable to the users. The left column of Fig.
3 shows how the atomicity management subsystem commits a round a.r. When
a round a.r calls reset(), the atomicity management subsystem writes a reset
event in a log, then repeatedly checks the log to see whether all rounds that a.r
depends on have committed. If the commit condition is satisfied, it commits a.r
by writing a commit event in the log.

In our system, each dataflow connection is modeled and implemented as an
extended recoverable queue adapted from [1]. An extended recoverable queue
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Commit algorithm for a round a.r
while (a.r has not been reset) continue;
while (true)

boolean toCommit = true;
for all a′.r′ ∈ depd-ancestors(a.r)

if (a′.r′ has not committed)
toCommit = false;

if (toCommit)
commit(a.r);
return;

Abort algorithm for a round a.r
if (a.r has already committed)

print(“cannot abort.”);
return;

Stop the execution of a.r if running;
while (true)

boolean toAbort = true;
for all a′.r′ ∈ depd-descendents(a.r)

if (a′.r′ has not aborted)
toAbort = false;

if (toAbort)
for all t ∈ output(a.r)

getRecoveryQueue(t).¬enq(t);
for all t ∈ input(a.r)

getRecoveryQueue(t).¬deq(t);
abort(a.r);
return;

Fig. 3. Commit algorithm and abort algorithm for a round a.r

is a reliable and fault-tolerant queue which supports the following operations:
enqueue pushes a token at the head; dequeue removes a token from the end
and returns the token; ¬enq undoes the operation of enqueue, i.e., deletes an
enqueued token; ¬deq undoes the operation of dequeue, i.e., recovers a token
that has been dequeued. After a round commits, its associated enqueue and
dequeue operations cannot be undone.

When the atomicity management subsystem detects crashing of a round a.r,
it will send failure messages to all actors that execute rounds in depd-descendents
(a.r) to abort the corresponding rounds, which are not necessarily the on-going
rounds. A round a.r aborts if all rounds in depd-descendents(a.r) have aborted.
The abort of a round will delete all output tokens, then recover all input tokens.
Note that the “failure” event occurs only on the actor where a.r runs, and
“abort” events occur on each actor in depd-descendents(a.r) and a.r itself. The
right column of Fig. 3 shows how the atomicity management subsystem aborts
a round a.r. The atomicity management subsystem first checks whether a.r has
already committed, if not, tells the actor to stop the execution of a.r if it is still
running. Then, repeatedly check the log to see whether all rounds that depend
on a.r have aborted. During the abortion, the atomicity management subsystem
looks up the log to find the corresponding recoverable queue for a given token t
(i.e., by calling getRecoveryQueue(t)); then it commands the recoverable queue
to undo the previous operations. Finally, it writes an abort event in the log.

One optimization for the abort algorithm is: if both a.r and a′.r′ are going
to abort and a.r ⇒ a′.r′, during aborting a′.r′, we do not need to recover the
tokens that are the output of a.r and input of a′.r′ because they will be deleted
again during aborting a.r.

4 The Event Log

Our atomicity & provenance system records the following events for supporting
atomicity: enqueue (enq) a token; the counter-operation of enq, i.e., ¬enq; de-
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queue (deq) a token; the counter-operation of deq, i.e., ¬deq; reset (rst) a state;
failure of an actor; commit (cmt) a round; and abort (abt) a round. These events
are stored in a sequential event log. Each row in an event log contains: event
identifer; time stamp; workflow identifier; round identifier (which contains actor
identifier); queue identifer, if the event is an enq, deq, ¬enq, or ¬deq operation;
event type, which is one of event types listed above; token identifier, if the event
is related with a token (such as enqueue or dequeue); and dependent tokens,
which denote all source tokens used for producing the current token, if the event
produces a token.

evt tm wf rnd que type tok depdToks
01 - - S.r q1 deq s1 -
02 - - S.r q1 deq s2 -
03 - - S.r q2 deq e1 -
04 - - S.r q3 deq m1 -
05 - - S.r q4 enq a1 {s1, s2, e1, m1}
06 - - A.r q4 deq a1 -
07 - - S.r - fail - -
08 - - A.r q4 ¬deq a1 -
09 - - A.r - abt - -
10 - - S.r q4 ¬enq a1 -
11 - - S.r q3 ¬deq m1 -
12 - - S.r q2 ¬deq e1 -
13 - - S.r q1 ¬deq s2 -
14 - - S.r q1 ¬deq s1 -
15 - - S.r - abt - -

evt tm wf rnd que type tok depdToks
01 - - S.r q1 deq s1 -
02 - - S.r q1 deq s2 -
03 - - S.r q2 deq e1 -
04 - - S.r q3 deq m1 -
05 - - S.r q4 enq a1 {s1, s2, e1, m1}
06 - - A.r q4 deq a1 -
07 - - A.r q5 enq r1 {a1}
08 - - S.r q2 deq e2 -
09 - - S.r q4 enq a2 {s1, s2, e2, m1}
10 - - S.r - rst - -
11 - - A.r q4 deq a2 -
12 - - S.r - cmt - -
13 - - A.r q5 enq r2 {a2}
14 ... ... ... ... ... ... ...
15 - - A.r q5 enq r′ {a1, ..., a100}
16 - - A.r - rst - -
17 - - A.r - cmt - -

Fig. 4. A log for an execution of the workflow in Fig. 2

Fig. 4 shows a part of the log file for a run of the workflow in Fig. 2. The left
column shows an aborted workflow run. Round S.r first dequeues s1, s2, e1, and
m1 from queues q1, q1, q2, and q3, respectively. S.r then enqueues a1 (which is
produced by S based on s1, s2, e1, and m1) into q4. After round A.r dequeues
a1 from q4, S.r crashes. Thus, we first abort A.r by recovering a1, then abort
S.r by deleting a1 and recovering m1, e1, s2, and s1. The right column shows a
successful run, where A.r does not commit until S.r commits.

5 The Provenance Subsystem

Based on the event log, we can build token dependency graph, object dependency
graph, round dependency graph as in [2], and token usage graph, which are repre-
sented as directed acyclic graphs (DAG). The event log produced by our system
contains all information of the event log in [2]. Therefore, our system can sup-
port all provenance queries listed in [2]. In addition, our system can support
the atomicity and failure related queries, which are illustrated in the following
examples.

– What actors ever aborted rounds?
q1 := {a|e ∈ log(τ) ∧ type(e) = abort ∧ actor(e) = a},
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where the expression e ∈ log(τ) selects an event from the log τ , the expres-
sion type(e) = abort checks that the event is an abort, and the expression
actor(e) = a obtains the actor that executes the event.

– When a round a.r runs, what actors simultaneously execute the
rounds that depend on a.r?
q2(a.r) := {a′.r′|e ∈ log(τ) ∧ a′.r′ ∈ depd-descendents(a.r) ∧ round(e) =
a′.r′ ∧ time(e) < reset-time(a.r)}, where reset-time(a.r) denotes the time
when a.r is reset, which is easily obtained based on the log.

6 Related Work

In recent years, scientific workflows have gained great momentum due to their
roles in e-Science and cyberinfrastructure applications. There are a plethora of
scientific workflows covering a wide range of scientific disciplines. A survey of
various approaches for building and executing workflows on the Grid has been
presented by Yu and Buyyaby [12].

Bowers et al. [2] propose the Read-Write-State-Reset (RWS) provenance
model for pipelined scientific workflows within the Kepler framework [9]. The
RWS model assumes that each output token depends on all tokens input so far
in the current round, whereas our model refines this by assuming actors can tell
what input tokens each output token depends on.

Although several provenance models [7,11,2,4,10] have been proposed for sci-
entific workflows, there has been no work on the provenance system that supports
the notion of atomicity.

Finally, although atomicity is a well studied topic in the context of databases
in transaction processing and business workflows, there has been no work on
atomicity in the context of “dataflows” and “pipelined execution” in scientific
workflows. The read committed assumption that existing atomicity techniques
are based on does not hold in pipelined scientific workflows, where both task
parallelism and pipelined parallelism are present.

7 Conclusions and Future Work

We have proposed an architecture for scientific workflow management systems
that supports both provenance and atomicity. We have shown that, while our
atomicity system can support the notion of atomicity, currently at the round
level that does not contain cyclic transitive data dependencies, our provenance
system has added value to existing provenance systems as we support atomicity
and failure related queries.

In the future, we will extend current atomicity and provenance models to
various granularities of atomicity and for different models of computations. We
will also investigate the atomicity problem for multilevel, distributed, parallel,
and heterogeneous scientific workflows.
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