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Abstract. The task of providing an optimal analysis of the state of
the atmosphere requires the development of dynamic data-driven sys-
tems (DDDAS) that efficiently integrate the observational data and the
models. Data assimilation, the dynamic incorporation of additional data
into an executing application, is an essential DDDAS concept with wide
applicability. In this paper we discuss practical aspects of nonlinear en-
semble Kalman data assimilation applied to atmospheric chemical trans-
port models. We highlight the challenges encountered in this approach
such as filter divergence and spurious corrections, and propose solutions
to overcome them, such as background covariance inflation and filter
localization. The predictability is further improved by including model
parameters in the assimilation process. Results for a large scale simula-
tion of air pollution in North-East United States illustrate the potential
of nonlinear ensemble techniques to assimilate chemical observations.

1 Introduction

Our ability to anticipate and manage changes in atmospheric pollutant con-
centrations relies on an accurate representation of the chemical state of the
atmosphere. As our fundamental understanding of atmospheric chemistry ad-
vances, novel data assimilation tools are needed to integrate observational data
and models together to provide the best estimate of the evolving chemical state
of the atmosphere. The ability to dynamically incorporate additional data into
an executing application is a fundamental DDDAS concept (http://www.cise.
nsf.gov/dddas.) We refer to this process as data assimilation. Data assimilation
has proved vital for meteorological forecasting.
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In this paper we focus on the particular challenges that arise in the application
of nonlinear ensemble filter data assimilation to atmospheric chemical transport
models (CTMs). Atmospheric CTMs solve the mass-balance equations for con-
centrations of trace species to determine the fate of pollutants in the atmosphere
[16]. The CTM operator, M, will be denoted compactly as

ci = Mti−1→ti

(
ci−1, ui−1, cin

i−1, Qi−1
)
, (1)

where c represents the modeled species concentration, cin the inflow numerical
boundary conditions, u the wind fields, Q the surface emission rates, and the
subscript denotes the time index. In our numerical experiments, we use the Sulfur
Transport Eulerian Model (STEM) [16], a state-of-the-art atmospheric CTM.

Kalman filters [12] provide a stochastic approach to the data assimilation
problem. The filtering theory is described in Jazwinski [10] and the applications
to atmospheric modeling in [13]. The computational burden associated with
the filtering process has prevented the implementation of the full Kalman filter
for large-scale models. Ensemble Kalman filters (EnKF) [2,5] may be used to
facilitate the practical implementation as shown by van Loon et al. [18]. There
are two major difficulties that arise in EnKF data assimilation applied to CTMs:
(1) CTMs have stiff components [15] that cause the filter to diverge [7] due to the
lack of ensemble spread and (2) the ensemble size is typically small in order to
be computationally tractable and this leads to filter spurious corrections due to
sampling errors. Kalman filter data assimilation has been discussed for DDDAS
in another context by Jun and Bernstein [11].

This paper addresses the following issues: (1) Background covariance inflation
is investigated in order to avoid filter divergence, (2) localization is used to pre-
vent spurious filter corrections caused by small ensembles, and (3) parameters
are assimilated together with the model states in order to reduce the model errors
and improve the forecast. The paper is organized as follows. Section 2 presents
the ensemble Kalman data assimilation technique, Section 3 illustrates the use
of the tools in a data assimilation test, and Section 4 summarizes our results.

2 Ensemble Kalman Filter Data Assimilation

Consider a nonlinear model ci = Mt0→ti(c0) that advances the state from the
initial time t0 to future times ti (i ≥ 1). The model state ci at ti (i ≥ 0) is
an approximation of “true” state of the system ct

i at ti (more exactly ct
i is the

system state projected onto the model space space). Observations yi are available
at times ti and are corrupted by measurement and representativeness errors εi

(assumed Gaussian with mean zero and covariance Ri), yi = Hi

(
ct
i

)
+ εi. Here

Hi is an operator that maps the model state to observations.
The data assimilation problem is to find an optimal estimate of the state using

both the information from the model (ci) and from the observations (yi).
The (ensemble) Kalman filter estimates the true state ct using the information

from the current best estimate cf (the “forecast” or the background state) and
the observations y. The optimal estimate ca (the “analysis” state) is obtained as



1020 A. Sandu et al.

a linear combination of the forecast and observations that minimize the variance
of the analysis (P a)

ca = cf + P fHT
(
HP fHT + R

)−1 (
y − H(cf )

)
= cf + K

(
y − H(cf )

)
. (2)

The forecast covariance P f is estimated from an ensemble of runs (which pro-
duces an ensemble of E model states cf (e), e = 1, · · · , E). The analysis formula
(2) is applied to each member to obtain an analyzed ensemble. The model ad-
vances the solution from ti−1 to ti, then the filter formula is used to incorporate
the observations at ti. The filter can be described as

cf
i (e) = M

(
ca
i−1(e)

)
, ca

i (e) = cf
i (e) + Ki

(
yi − Hi

(
cf
i (e)

))
. (3)

The results presented in this paper are obtained with the practical EnKF im-
plementation discussed by Evensen [5].

2.1 The Localization of EnKF (LEnKF)

The practical Kalman filter implementation employs a small ensemble of Monte
Carlo simulations in order to approximate the background covariance (P f ). In
its initial formulation, EnKF may suffer from spurious correlations caused by
sub-sampling errors in the background covariance estimates. This allows for
observations to incorrectly impact remote model states. The filter localization
introduces a restriction on the correction magnitude based on its remoteness.

One way to impose localization in EnKF is to apply a decorrelation function
ρ, that decreases with distance, to the background covariance. Following [8], the
EnKF relation (2) with some simplifying assumptions becomes

ca
i = cf

i + ρ(Dc) ◦ P f
i HT

i

(
ρ(Dy) ◦

(
Hi P f

i HT
i

)
+ Ri

)−1
(
yi − Hi(c

f
i )

)
, (4)

where D{c,y} are distance matrices with positive elements (di,j ≥ 0), and 0 ≤
ρ(di,j) ≤ 1, ρ(0) = 1, ∀i, j. The decorrelation function ρ is applied to the distance
matrix and produces a decorrelation matrix (decreasing with the distance). The
operation ‘◦’ denotes the Schur product that applies elementwise ρ(D) to the
projected covariance matrices P f HT and H P f HT , respectively. Here, Dy is
calculated as the distance among the observation sites, and Dc contains the
distance from each state variable to each observation site.

We considered a Gaussian distribution for the decorrelation function, ρ. Since
our model generally has an anisotropic horizontal–vertical flow, we consider the
two correlation components (and factors, δ) separately:

ρ
(
Dh, Dv

)
= exp

[
−

(
Dh/δh

)2 − (Dv/δv)2
]
, (5)

where Dh, Dv, δh, δv are the horizontal and vertical components. The horizontal
correlation-distance relationship is determined through the NMC method [14].
The horizontal NMC determined correlations were fitted with a Gaussian distri-
bution, δh = 270 km. The vertical correlation was chosen as δv = 5 grid points.
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2.2 Preventing Filter Divergence

The “textbook application” of EnKF [5] may lead to filter divergence [7]: EnKF
shows a decreasing ability to correct ensemble states toward the observations.
This is due to an underestimation of the model error covariance magnitude
during the integration. The filter becomes “too confident” in the model and
“ignores” the observations in the analysis process. The solution is to increase
the covariance of the ensemble and therefore decrease the filter’s confidence in
the model. The following are several ways to “inflate” the ensemble covariance.

The first method is the additive inflation [4], where the model errors are simu-
lated by adding uncorrelated noise (denoted by η) to the model (η−) or analysis
(η+) results. This increases the diagonal entries of the ensemble covariance. Since
the correlation of the model errors is to a large extent unknown, white noise is
typically chosen. With the notation (3), cf

i (e) = M
(
ca
i−1(e) + η−(e)

)
+ η+(e).

The second method is the multiplicative inflation [1], where each member’s de-
viation from the ensemble mean is multiplied by a constant (γ > 1). This in-
creases each entry of the ensemble covariance by that constant squared (γ2).
The ensemble can be inflated before (γ{−}) or after (γ{+}) filtering: c

{f/a}
i (e) ←

〈
c
{f/a}
i

〉
+ γ{−/+}, where 〈·〉 denotes the ensemble average.

A third possibility for covariance inflation is through perturbations applied
to key model parameters, and we refer to it as model-specific inflation. This
approach focuses on sources of uncertainty that are specific to each model (for
instance in CTMs: boundary conditions, emissions, and meteorological fields).
With the notation (3) and considering p as a set of model parameters, the model-
specific inflation can be written as cf

i (e) = M
(
ca
i−1(e), αi−1(e) pi−1

)
, where α(e)

are random perturbation factors of the model parameters.

2.3 Inflation Localization

The traditional approach to covariance inflation increases the spread of the en-
semble equally throughout the computational domain. In the LEnKF framework,
the corrections are restricted to a region that is rich in observations. These states
are corrected and their variance is reduced, while the remote states (i.e., the
states that are relatively far from the observations’ locations) maintain their
initial variation which is potentially reduced only by the model evolution. The
spread of the ensemble at the remote states may be increased to unreasonably
large values through successive inflation steps. And thus, the covariance inflation
needs to be restricted in order to avoid the over-inflation of the remote states.

A sensible inflation restriction can be based on the localization operator, ρ(D),
which is applied in the same way as for the covariance localization. The localized
multiplicative inflation factor, γ�, is given by

γ� (i, j, k) = max {ρ (Dc (i, j, k))} (γ − 1) + 1 , (6)

where γ is the (non-localized) multiplicative inflation factor and i, j, k refer to
the spatial coordinates. In this way, the localized inflation increases the ensemble
spread only in the information-rich regions where filter divergence can occur.
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3 Numerical Results

The test case is a real-life simulation of air pollution in North–Eastern U.S. in
July 2004 as shown in Figure 1.a (the dash-dotted line delimits the domain).
The observations used for data assimilation are the ground-level ozone (O3)
measurements taken during the ICARTT [9,17] campaign in 2004 (which also
includes the initial concentrations, meteorological fields, boundary values, and
emission rates). Figure 1.a shows the location of the ground stations (340 in
total) that measured ozone concentrations and an ozonesonde (not used in the
assimilation process). The computational domain covers 1500 × 1320 × 20 Km
with a horizontal resolution of 60 × 60 Km and a variable vertical resolution.
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Fig. 1. Ground measuring stations in
support of the ICARTT campaign
(340 in total) and the ozonesonde (S)
launch location

The simulations are started at 0 GMT
July 20th with a four hour initialization
step ([-4,0] hours). The “best guess” of the
state of the atmosphere at 0 GMT July 20th

is used to initialize the deterministic so-
lution. The ensemble members are formed
by adding a set of unbiased perturbations
to the best guess, and then evolving each
member to 4 GMT July 20th. The pertur-
bation is formed according to an AR model
[3] making it flow dependent. The 24 hours
assimilation window starts at 4 GMT July
20th (denoted by [1,24] hours). Observa-
tions are available at each integer hour in
this window, i.e., at 1, 2, . . ., 24 hours (Fig-
ure 1.a). EnKF adjusts the concentration
fields of 66 “control” chemical species in each grid point of the domain every
hour using (2). The ensemble size was chosen to be 50 members (a typical size
in NWP). A 24 hour forecast window is also considered to start at 4 GMT July
21st (denoted by [24,48] hours).

The performance of each data assimilation experiment is measured by the R2

correlation factor (correlation2) between the observation and the model solution.
The R2 correlation results between the observations and model values for all the
numerical experiments are shown in Table 1. The deterministic (best guess)
solution yields an R2 of 0.24 in the analysis and 0.28 in the forecast windows.
In Table 1 we also show the results for a 4D-Var experiment.

Figure 2.a shows the O3 concentration measured at a Washington DC station
and predicted by the EnKF and LEnKF with model-specific inflation. Figure 2.b
shows the ozone concentration profile measured by the ozonesonde for the EnKF
and LEnKF with additive inflation. Two effects are clear for the “textbook”
EnKF. The filter diverges after about 12 hours (2.a), and spurious corrections
are made at higher altitudes (2.b), as the distance from the observation (ground)
sites increases. The vertical profile in Figure 2.b shows great improvement in the
analyzed solution of LEnKF. The results in Table 1 confirm the benefits of
localization by dramatically improving the analysis and forecast fit.
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Table 1. The R2 measure of model-observations match in the assimilation and forecast
windows for EnKF, 4D-Var, and LEnKF. (Multiplicative inflation: γ− ≤ 4, γ+ ≤ 4;
Model-specific inflation: 10% emissions, 10% boundaries, 3% wind).

Method & Details R2 R2

analysis forecast
Deterministic solution, no assimilation 0.24 0.28
EnKF, “textbook application” 0.38 0.30
4D-Var - 50 iterations 0.52 0.29
LEnKF, model-specific inflation 0.88 0.32
LEnKF, multiplicative inflation 0.82 0.32
LEnKF, additive inflation 0.92 0.31
LEnKF with parameter assimilation, and
multiplicative localized inflation

0.89 0.41
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(c) EnKF “Textbook application” (d) LEnKF Multiplicative inflation

Fig. 2. Ozone concentration (a) measured at a Washington DC station (ICARTT ID:
510590030) and predicted by EnKF (“textbook”) and LEnKF with model-specific in-
flation, and (b) measured by the ozonesonde for EnKF and LEnKF. Ground level ozone
concentration field (c,d) at 14 EDT in the forecast window measured by the ICARTT
stations (shown in color coded filled circles) and predicted EnKF and LEnKF.
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3.1 Joint State and Parameter Assimilation

In regional CTMs the influence of the initial conditions is rapidly diminishing
with time, and the concentration fields are “driven” by emissions and by lateral
boundary conditions. Since both of them are generally poorly known, it is of con-
siderable interest to improve their values using information from observations.
In this setting we have to solve a joint state-parameter assimilation problem [6].

The emission rates and lateral boundary conditions are multiplied by specific
correction coefficients, α. These correction coefficients are appended to the model
state. The LEnKF data assimilation is then carried out with the augmented
model state. With the notation (1), LEnKF is applied to

[
cf
i α

{1,2}
i

]T

=
[
Mti−1→ti

(
ca
i−1, ui−1, α

{1}
i−1 cin

i−1, α
{2}
i−1 Qi−1

)
αi−1

]T

.

For α, we consider a different correction for each species and each gridpoint. The
initial ensemble of correction factors is an independent set of normal variables
and the localization is done in the same way as in the state-only case.

The R2 after LEnKF data assimilation for combined state and emission correc-
tion coefficients (presented in Table 1) show improvements in both the forecast
and the analysis windows. Figures 2.(c,d) show the ground level ozone field con-
centration at 14 EDT in the forecast window measured by the ICARTT stations,
EnKF with state corrections and LEnKF with joint state-parameter corrections.
In the LEnKF case under consideration the addition of the correction parame-
ters to the assimilation process improves the assimilated solution (especially on
the inflow boundary (West)).

4 Conclusions

This paper discusses some of the challenges associated with the application of
nonlinear ensemble filtering data assimilation to atmospheric CTMs. Three as-
pects are analyzed in this study: filter divergence - CTMs tend to dampen pertur-
bations; spurious corrections - small ensemble size cause wrong increments, and
model parametrization errors - without correcting model errors in the analysis,
correcting the state only does not help in improving the forecast accuracy.

Experiments showed that the filter diverges quickly. The influence of the ini-
tial conditions fades in time as the fields are largely determined by emissions and
by lateral boundary conditions. Consequently, the initial spread of the ensemble
is diminished in time. Moreover, stiff systems (like chemistry) are stable - small
perturbations are damped out quickly in time. In order to prevent filter diver-
gence, the spread of the ensemble needs to be explicitly increased. We
investigated three approaches to ensemble covariance inflation among which
model-specific inflation is the most intuitive. The “localization” of EnKF is
needed in order to avoid the spurious corrections noticed in the “textbook” ap-
plication. The correlation distances are approximated using the NMC method.
Furthermore, covariance localization prevents over-inflation of the states that are
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remote from observation. LEnKF increased both the accuracy of the analysis and
forecast at the observation sites and at distant locations (from the observations).

Since the solution of a regional CTM is largely influenced by uncertain lateral
boundary conditions and by uncertain emissions it is of great importance to
adjust these parameters through data assimilation. The assimilation of emissions
and boundary conditions visibly improves the quality of the analysis.
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