
Cryptanalysis of Group-Based Key Agreement
Protocols Using Subgroup Distance Functions

Dima Ruinskiy, Adi Shamir, and Boaz Tsaban

The Weizmann Institute of Science, Rehovot, Israel

Abstract. We introduce a new approach for cryptanalysis of key agree-
ment protocols based on noncommutative groups. Our approach uses
functions that estimate the distance of a group element to a given sub-
group. We test it against the Shpilrain-Ushakov protocol, which is based
on Thompson’s group F , and show that it can break about half the keys
within a few seconds on a single PC.

Keywords: Key agreement, Cryptanalysis, Thompson’s group, Shpilrain-
Ushakov, Subgroup distance function.

1 Introduction

Key agreement protocols have been the subject of extensive studies in the past
30 years. Their main task is to allow two parties (in the sequel, Alice and Bob)
to agree on a common secret key over an insecure communication channel. The
best known example of such a protocol is the Diffie-Hellman protocol, which
uses a (commutative) cyclic group. Over the last few years, there was a lot of
interest in key agreement protocols based on noncommutative groups, and much
research was dedicated to analyzing these proposals and suggesting alternative
ones (see, e.g., [1,4,5,6,7,8,10,11,12], and references therein).

A possible approach for attacking such systems is the length-based cryptanal-
ysis, which was outlined in [6]. This approach relies on the existence of a good
length function on the underlying group, i.e., a function �(g) that tends to grow
as the number of generators multiplied to obtain g grows. Examples of groups
known to have such length functions are the braid group BN [2] and Thompson’s
group F [3]. For these groups, several practical realizations of length-based at-
tacks were demonstrated [4,5,9]. These attacks can achieve good success rates,
but usually only when we allow the algorithm to explore many suboptimal par-
tial solutions, which greatly increases both the time and space complexities (see
[5] for more details).

We introduce a novel approach to cryptanalysis of such key agreement pro-
tocols, which relies on the notion of subgroup distance functions, i.e., functions
that estimate, for an element g ∈ G and a subgroup H ≤ G, the distance from
g to H . The motivation for these distance-based attacks is the fact that several
families of public key agreement protocols suggest predefined pairs of subgroups
of the main group to be used for key generation, and their security depends on

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 61–75, 2007.
c© International Association for Cryptologic Research 2007

62 D. Ruinskiy, A. Shamir, and B. Tsaban

the ability of the adversary to generate any elements in these subgroups, which
are in some way equivalent to the originals (see [9,11]). We construct the the-
oretical framework for distance-based attacks and demonstrate its applicability
using the Shpilrain-Ushakov protocol in Thompson’s group F [12] as an example.
Although it has recently been shown by Matucci [8] that the implementation of
the proposed protocol in F can be broken deterministically using a specialized
attack based on the structural properties of the group, it is still an interesting
test case for more generic attacks, such as the one proposed here.

The paper is organized as follows: in Section 2 we present the protocol in its
general form. We then introduce in Section 3 the notion of subgroup distance
function and a general attack scheme based on it. Section 4 describes the set-
ting for the protocol in Thompson’s group F . In Section 5 we introduce several
subgroup distance functions in F . Section 6 describes our experimental crypt-
analytic results.

2 The Shpilrain-Ushakov Key Agreement Protocol

The protocol below was suggested by Shpilrain and Ushakov in [12]. The authors
suggested to use Thompson’s group F for its implementation. Before we focus
on that example, we’ll discuss the general case.

(0) Alice and Bob agree (publicly) on a group G and subgroups A, B ≤ G, such
that ab = ba for each a ∈ A and each b ∈ B.

1. A public word z ∈ G is selected.
2. Alice selects privately at random elements a1 ∈ A and b1 ∈ B, computes

u1 = a1zb1, and sends u1 to Bob.
3. Bob selects privately at random elements a2 ∈ A and b2 ∈ B, computes

u2 = b2za2, and sends u2 to Alice.
4. Alice computes KA = a1u2b1 = a1b2za2b1, whereas Bob computes KB =

b2u1a2 = b2a1zb1a2.

As a1b2 = b2a1 and a2b1 = b1a2, KA = KB = K and so the parties share the
same group element, from which a secret key can be derived.

2.1 Breaking the Protocol

The goal of the adversary is to obtain the secret group element K from the
publicly known elements u1, u2 and z. For this it suffices to solve the following
problem:

Definition 1 (Decomposition problem). Given z ∈ G and u = azb where
a ∈ A and b ∈ B, find some elements ã ∈ A and b̃ ∈ B, such that ãzb̃ = azb.

Indeed, assume that the attacker, given u1 = a1zb1, finds ã1 ∈ A and b̃1 ∈ B,
such that ã1zb̃1 = a1zb1. Then, because u2 = b2za2 is known, the attacker can
compute

ã1u2b̃1 = ã1b2za2b̃1 = b2ã1zb̃1a2 = b2u1a2 = KB .

Cryptanalysis of Group-Based Key Agreement Protocols 63

Alternatively, the attacker can break the protocol by finding a valid decomposi-
tion of u2 = b2za2.

For any given ã ∈ A we can compute its complement b̃ = z−1ã−1u =
z−1ã−1(azb), which guarantees that ãzb̃ = azb. The pair ã, b̃ is a solution to
this problem if, and only if, b̃ ∈ B. A similar comment applies if we start with
b̃ ∈ B. This involves being able to solve the group membership problem, i.e., to
determine whether b̃ ∈ B (or ã ∈ A in the second case).

It should be stressed that solving the decomposition problem is sufficient,
but not necessary in order to cryptanalyze the system. All that is required in
practice is finding some pair ã, b̃ that succeeds in decrypting the information
passed between Alice and Bob. Any pair ã ∈ A and b̃ ∈ B will work, but there
can be other pairs, which are just as good. This observation can be useful in
cases where the group membership problem is difficult or in groups where the
centralizers of individual elements are considerably larger than the centralizers
of the subgroups (which is not the case in F , see [9]). For simplicity, in the sequel
we will restrict ourselves to solutions where ã ∈ A and b̃ ∈ B.

3 Subgroup Distance Functions

Definition 2 (Subgroup distance function). Let G be a group, H ≤ G a
subgroup. A function dH : G → R

+ is a subgroup distance function if it satisfies
the following two axioms:

1. Validity: dH(h) = 0 for all h ∈ H.
2. Non-triviality: dH(g) > 0 for all g �∈ H.

It is an invariant subgroup distance function if it also satisfies:

(3) Invariance: dH(gh) = dH(hg) = dH(g) for all g ∈ G and h ∈ H.

Clearly, if it is possible to evaluate a subgroup distance function dH on all ele-
ments of G, then the membership decision problem for H is solvable: g ∈ H ⇐⇒
dH(g) = 0. Conversely, if one can solve the membership decision problem, a triv-
ial distance function can be derived from it, e.g., dH(g) = 1 − χH(g), where χH

is the characteristic function of H .
Obviously, this trivial distance function is not a good example. For the sub-

group distance function to be useful, it has to somehow measure how close a
given element g is to H , that is, if dH(g1) < dH(g2), then g1 is closer to H
than g2. This concept of “closeness” can be hard to define, and even harder
to evaluate. The notion of what’s considered a good distance function may
vary, depending on the subgroups and on the presentation. In the sequel we
will discuss concrete examples of subgroup distance function in Thompson’s
group F .

Assuming the existence of such functions, consider the following algorithm for
solving the decomposition problem:

64 D. Ruinskiy, A. Shamir, and B. Tsaban

Algorithm 1 (Subgroup distance attack)
We are given words z, xzy ∈ G, where x ∈ X and y ∈ Y , X, Y are commuting
subgroups of G and SX , SY are their respective (finite) generating sets. The goal
it to find some x̃ ∈ X and ỹ ∈ Y , such that xzy = x̃zỹ. The algorithm runs at
most a predefined number of iterations N .

1. Let x̃ ← 1.
2. For each gi ∈ S±1

X compute xi = x̃gi, its complement yi = z−1x−1
i xzy and

evaluate dY (yi). If dY (yi) = 0, let x̃ = xi, ỹ = yi and halt.
3. Let j be the index of the minimum dY (yi) (if several such j are possible,

choose one arbitrarily).
4. If the maximal number of iterations N has been reached, terminate. Other-

wise, let x̃ ← xj and return to step 2.

Observe that if the algorithm halts in step 2, then the pair x̃, ỹ is a solution of
the decomposition problem.

Algorithm 1 is very similar to the length-based attacks described in [4,9]. The
difference is that it uses the subgroup distance function, instead of the length
function to evaluate the quality of candidates. As such, any extensions applicable
to the length-based algorithms (such as memory, lookahead, etc.) can be used
with the distance-based attack as well. Refer to [5,9] for more information.

3.1 Attacking the Shpilrain-Ushakov Protocol

The adversary is given the common word z and the public elements u1, u2. These
can be translated into four equations in the group:

u1 = a1zb1
u2 = b2za2

u−1
1 = b−1

1 z−1a−1
1

u−1
2 = a−1

2 z−1b−1
2

(1)

Algorithm 1 (with or without possible extensions) can be applied to each of
the four equations separately, thus attacking each of the four private elements
a1, a2, b

−1
1 , b−1

2 . A single success out of the four attempts is sufficient to break
the cryptosystem (see Section 2.1).

4 Thompson’s Group

Thompson’s group F is the infinite noncommutative group defined by the fol-
lowing generators and relations:

F = 〈 x0, x1, x2, . . . | x−1
i xkxi = xk+1 (k > i) 〉 (2)

Remark 1. From Equation (2) it’s evident that the elements x0, x1 and their
inverses generate the entire group, because x±1

k = x1−k
0 x±1

1 xk−1
0 for every k ≥ 2.

Cryptanalysis of Group-Based Key Agreement Protocols 65

Definition 3. A basic generator x±1
i of F is called a letter. A generator xi is

a positive letter. An inverse x−1
i is a negative letter. A word in F is a sequence

of letters. We define |w| as the length of the word w , i.e., the number of letters
in it.

Definition 4. A word w ∈ F is said to be in normal form, if

w = xi1 · · · xirx
−1
jt

· · · x−1
j1

(3)

and the following two conditions hold:

(NF1) i1 ≤ · · · ≤ ir and j1 ≤ · · · ≤ jt

(NF2) If both xi, x
−1
i occur in w, then at least one of xi+1, x

−1
i+1 occurs too.

A word is said to be in seminormal form if only (NF1) holds.

While a seminormal form is not necessarily unique, a normal form is, i.e., two
words represent the same group element if and only if they have the same normal
form [3]. The following rewriting rules can be used to convert any word to its
seminormal form [12]:

For all non-negative integers i < k:

(R1) xkxi → xixk+1

(R2) x−1
k xi → xix

−1
k+1

(R3) x−1
i xk → xk+1x

−1
i

(R4) x−1
i x−1

k → x−1
k+1x

−1
i

For all non-negative integers i:

(R5) x−1
i xi → 1

The seminormal form can be subsequently converted to a normal form by
searching for pairs of indices violating (NF2), starting from the boundary be-
tween the positive and negative parts, and applying the inverses of rewriting
rules (R1) and (R4) to eliminate these pairs [12]:

Suppose that (xia , x−1
jb

) is a pair of letters violating (NF2) and that a and
b are maximal with this property (i.e., there exists no violating pair (xik

, x−1
jl

)
with k > a and l > b). Then ia = jb and all indices in xia+1 · · · xirx

−1
jt

· · ·x−1
jb+1

are higher than ia + 1 (by definition of (NF2)). Applying the inverse of (R1) to
xia and the inverse of (R4) to x−1

jb
we get:

w = xi1 · · · xia (xia+1 · · · xirx
−1
jt

· · · x−1
jb+1

)
︸ ︷︷ ︸

c

x−1
jb

· · · xj1

→ xi1 · · · xia+1−1 · · · xir−1 (xiax−1
jb

)
︸ ︷︷ ︸

cancel

x−1
jt−1 · · · x−1

jb+1−1 · · · xj1

→ xi1 · · · xia−1 (xia+1−1 · · · xir−1x
−1
jt−1 · · ·x−1

jb+1−1)
︸ ︷︷ ︸

c′

xjb−1 · · · xj1

66 D. Ruinskiy, A. Shamir, and B. Tsaban

The violating pair (xia , x−1
jb

) is cancelled and the subword c′ obtained from c
by index shifting contains no violating pairs (by the assumption of maximality
on (a, b)). Thus, we can continue searching for bad pairs, starting from a−1 and
b − 1 down. Thus we are guaranteed to find and remove all the violating pairs
and reach the normal form.

Definition 5 (Normal form length). For w ∈ F , whose normal form is ŵ,
define the normal form length as �NF(w) = |ŵ|.

The following lemma shows the effect multiplication by a single letter has on the
normal form of the word. This result will be useful in the following sections.

Lemma 1. Let w ∈ F and x = x±1
t be a basic generator of F in the presentation

(2). Then �NF(xw) = �NF(w)±1 (and due to symmetry, �NF(wx) = �NF(w)±1).

Proof. We’ll concentrate on the product xw (obviously, the case of wx is similar)
and observe what happens to the normal form of w when it’s multiplied on the left
by the letter x. Without loss of generality, w = xi1 · · · xik

x−1
jl

· · · x−1
j1

is in normal
form. Denote the positive and negative parts of w by wp and wn respectively.

Assume that x = xt is a positive letter. Then bw is converted to a seminormal
form by moving x into its proper location, while updating its index, using repeated
applications of (R1). Assuming m applications of (R1) are necessary, the result
is of the form:

bw = xi1 · · · ximxt+mxim+1 · · ·xik
x−1

jl
· · · x−1

j1
,

where im < t + m − 1 and im+1 ≥ t + m.

Remark 2. Observe that it is not possible that im = t+m−1, because in order
to apply (R1): xt+m−1xim → ximxt+m, one must have im < t + m − 1.

Example 1. w = x3x7x11x
−1
9 x−1

4 , b = x8. bw = x8 · x3x7x11x
−1
9 x−1

4 is con-
verted to bw = x3x7x10x11x

−1
9 x−1

4 , by 2 applications of (R1).

Obviously, bw is a seminormal form and |bw| = |w| + 1. If bw is in normal
form (as in the above example), we’re done. The only situation where it’s not
in normal form, is if it contains pairs violating (NF2). Since xt+m is the only
letter introduced, the only violating pair can be (xt+m, x−1

t+m). This may occur,
if w contained x−1

t+m, but neither xt+m, nor x±1
t+m+1.

Example 2. w = x3x7x11x
−1
9 x−1

4 , b = x7. bw = x7 · x3x7x11x
−1
9 x−1

4 is con-
verted to bw = x3x7x9x11x

−1
9 x−1

4 . In this case (x9, x
−1
9) violates (NF2). The

inverse of (R1) is applied to rewrite x9x11 → x10x9, and x9x
−1
9 are canceled out,

yielding the (normal) word ̂bw = x3x7x10x
−1
4 .

Whenever a situation occurs as described above, the pair (xt+m, x−1
t+m) is can-

celled, according to the procedure described in Section 4. This causes all indices
above t + m to be decreased by 1. The resulting word is

̂bw = xi1 · · ·ximxim+1−1 · · ·xik−1x
−1
jl−1 · · ·x−1

jn+1−1x
−1
jn

· · · x−1
j1

,

Cryptanalysis of Group-Based Key Agreement Protocols 67

where im < t + m − 1, im+1 ≥ t + m + 2, jn ≤ t + m and jn+1 ≥ t + m + 2.
We have |̂bw| = |w| − 1 and, in fact, ̂bw is in normal form. Indeed, once the
pair (xt+m, x−1

t+m) is cancelled, the only new pair violating (NF2) that can be
introduced is (xt+m−1, x

−1
t+m−1), but this is not possible, because xt+m−1 does not

appear in ̂bw, due to Remark 2. This completes the proof for positive letters.
Now, consider the case where x = x−1

t , a negative letter. bw is converted to a
seminormal form by moving x−1

t to the right, while updating its index, using the
different rewriting rules. There are two possible outcomes:

(1) After m applications of (R2) the resulting word is

bw = xi1 · · · ximx−1
t+mxim+1 · · ·xik

x−1
jl

· · · x−1
j1

,

where im+1 = t+m, and so the pair is cancelled by applying (R5). Now, because
im < t+m−1, the elimination of the pair (xt+m, x−1

t+m) does not introduce pairs
that violate (NF2), and so bw is in normal form and has |bw| = |w| − 1.

Example 3. w = x3x7x
−1
9 x−1

4 , b = x−1
6 . bw = x−1

6 x3x7x
−1
9 x−1

4 is converted to
x3x

−1
7 x7x−1

9 and the pair of inverses is cancelled out to obtain x−1
4 → x3x

−1
9 x−1

4 .

(2) x−1
t is moved to its proper place among the negative letters, updating its

index if necessary. This is completed through m applications of (R2), followed
by k − m applications of (R3) and finally, l − n applications of (R4), to obtain

bw = xi1 · · ·ximx−1
t+mxim+1+1 · · ·xik+1x

−1
jl+1 · · ·x−1

jn+1+1x
−1
t+mx−1

jn
· · ·x−1

j1
,

where im < t + m − 1, im+1 > t + m, jn+1 > t + m and jn ≤ t + m. Because
the letter xt+m is not present in bw (otherwise the previously described situa-
tion would occur), the newly introduced letter x−1

t+m cannot violate (NF2), and
therefore bw is in fact in normal form and |bw| = |w| + 1.

Example 4. w = x3x7x
−1
9 x−1

4 , b = x−1
5 . bw = x−1

5 x3x7x
−1
9 x−1

4 is rewritten as:
x−1

6 x7x
−1
9 x−1

4 → x3x8x
−1
6 x−1

9 x−1
4 → x3x8x

−1
10 x−1

6 x−1
4 .

This completes the proof for negative letters.
�

4.1 The Shpilrain-Ushakov Protocol in Thompson’s Group

For a natural number s ≥ 2 let SA = {x0x
−1
1 , . . . , x0x

−1
s }, SB = {xs+1, . . . , x2s}

and SW = {x0, . . . , xs+2}. SW generates F (see Remark 1). Denote by As and
Bs the subgroups of F generated by SA and SB, respectively.

All of the following facts are shown in [12]: As is exactly the set of elements
whose normal form is

xi1 · · · ximx−1
jm

· · · x−1
j1

,

i.e, has positive and negative parts of the same length m, and additionally sat-
isfies ik − k < s and jk − k < s for every k = 1, . . . , m. Bs is the set of all
elements of F whose normal form consists only of letters with indices ≥ s + 1.
Additionally, As and Bs commute elementwise, which makes them usable for
implementing the protocol in Section 2.

68 D. Ruinskiy, A. Shamir, and B. Tsaban

Key generation. Let s ≥ 2 and L be positive integers. The words a1, a2 ∈ As,
b1, b2 ∈ Bs, and w ∈ F are all chosen of normal form length L, as follows: Let
X be A, B, or W . Start with the empty word, and multiply it on the right by a
generator (or inverse) selected uniformly at random from the set SX . Continue
this procedure until the normal form of the word has length L.

For practical and (hopefully) secure implementation of the protocol, it is sug-
gested in [12] to use s ∈ {3, 4, . . . , 8} and L ∈ {256, 258, . . . , 320}.

5 Subgroup Distance Functions in Thompson’s Group

In this section we’ll suggest several natural distance functions from the subgroups
As, Bs ≤ F defined in Section 4.1. These distance functions can be used to
implement the attack outlined by Algorithm 1.

5.1 Distance Functions from Bs

For w ∈ F define Pi(w) and Ni(w) as the number of occurrences of xi and x−1
i

in the normal form ŵ of w.

Definition 6 (Distance from Bs). Let s ≤ 2 be an integer. For w ∈ F the
distance from Bs is defined as

dBs(w) =
s

∑

i=0

(Pi(w) + Ni(w))

Claim 1. dBs is a distance function.

Proof. This is immediate, since an element is in Bs if and only if its normal
form does not contain generators with indices below s + 1 (see Section 4.1). �

Claim 2. dBs is an invariant distance function.

Proof. It is enough to consider only the generators of Bs. Indeed, if multiplication
by a single generator of Bs does not change the distance of a word w, neither
does multiplication by a sequence of these generators.

Let w ∈ F . Let b = x±1
s+α, where α > 0. By Lemma 1, we know that b is either

moved to its proper position (and �NF(bw) = �NF(w) + 1) or it is cancelled with
its inverse, either by (R5) or as part of a pair violating (NF2), in which case
�NF(bw) = �NF(w)−1. The index of b is initially above s, and may only increase
when the rewriting rules are applied. Therefore, if b is cancelled at some point,
the index of its inverse is also above s. Furthermore, when pairs of elements are
rewritten, the lower-indexed element is not affected, so any letters with indices
≤ s will not be affected by moving b. Finally, if b is cancelled out due to violating
(NF2), the process again only affects letters with indices higher than b’s (see the
proof of Lemma 1). In all cases, the generators with indices ≤ s are not affected
at all, and so dBs(bw) = dBs(w).

�

Cryptanalysis of Group-Based Key Agreement Protocols 69

One can intuitively feel that dBs is a natural distance function, because it counts
the number of “bad” letters in w (letters that do not belong to the subgroup
Bs). Indeed, if w is in normal form, w = wpwcwn, where wp and wn are the
“bad” positive and negative subwords, respectively, then dBs(w) = |wp| + |wn|
and w−1

p ww−1
n ∈ B.

We now introduce another natural function that measures distance from Bs.

Definition 7 (Weighted distance from Bs). Let s ≤ 2 be an integer. For
w ∈ F the weighted distance from Bs is defined as

dBs(w) =
s

∑

i=0

(s + 1 − i) (Pi(ŵ) + Ni(ŵ))

dBs does not only count the “bad” letters, but assigns a score for each letter,
depending on how far below s + 1 it is (in particular, dBs(w) ≤ dBs(w) for all
w ∈ F . The following claim is straightforward.

Claim 3. dBs is an invariant distance function.

Proof. The proof of Claim 2 shows that multiplication by b does not alter any
letters below s+1 in w. Therefore, the weight of each such letter is also preserved.

�

5.2 Distance Functions from As

We will now describe a number of natural distance functions from the subgroup
As. Recall (Section 4.1) that As is the set of all elements in F , whose normal
form is of the type xi1 · · · ximx−1

jm
· · ·x−1

j1
, i.e, has positive and negative parts of

the same length m, and additionally satisfies ik − k < s and jk − k < s for every
k = 1, . . . , m.

Definition 8 (Distance from As). Let s ≥ 2 be an integer. Let w ∈ F ,
such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. The distance from As is

defined as

dAs(w) = |{k : ik − k ≥ s}| + |{l : jl − l ≥ s}| + |p − n|
dAs(w) is the number of “bad” letters in ŵ, i.e., letters that violate the As

property, plus the difference between the lengths of the positive or negative
parts. dAs is clearly a distance function. However, it is not invariant, as shown
by the following example:

Similarly we can define a weighted distance function from As, which not only
counts the number of bad letters, but gives a score to each such letter, based on
the difference ik − k (or jk − k).

Definition 9 (Weighted distance from As). Let s ≥ 2 be an integer. Let
w ∈ F , such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. The weighted

distance from As is defined as

dAs(w) =
ik−k≥s

∑

k=1...p

(ik − k − s + 1) +
jk−k≥s

∑

k=1...n

(jk − k − s + 1) + |p − n|

70 D. Ruinskiy, A. Shamir, and B. Tsaban

For each bad letter xik
or x−1

jk
, dAs adds a positive integer. As such, it’s a

distance function, which is again not invariant (the example above works here
too).

A somewhat different approach to defining distance from As arises from the
observation that the number of bad letters can be less important than the maxi-
mum value of the differences ik−k and jk−k across the word, which measures the
size of the violation. The difference between the two distance functions roughly
corresponds to the difference between the L1 and L∞ norms.

Let ŵ = xi1 · · · xipx−1
jn

· · · x−1
j1

. Suppose that for some integer k we have ik−k−
s+1 = mp > 0 and that mp is the maximum for all ik. By multiplying the word
by x

mp

0 we shift the position for all the original positive letters of w by mp, and so
all of the positive letters, including the first m x0’s have ik − k < s. Similarly, if
mn is the maximum violation in the negative subword, multiplication by x−mn

0 on
the right eliminates all violations among negative letters. However, this still does
not mean that the word is in As, because the positive and negative lengths may
differ. Let ŵ′ be the normal form obtained from ŵ through multiplication by x

mp

0
and x−mn

0 on the left and right, respectively. Let lp and ln be the corresponding
lengths of the positive and negative parts of ŵ′. If lp−ln > 0, then ŵ′xln−lp

0 ∈ As.
If lp − ln < 0, then x

ln−lp
0 ŵ′ ∈ As. Altogether, any word can be changed to a

word in As through multiplication by mp + mn + |lp + ln| indices (when lp and
ln are evaluated after multiplying by x

mp

0 and x−mn
0).

This observation suggests the following distance function:

Definition 10 (Maximum-based distance from As). Let s ≥ 2 be an inte-
ger. Let w ∈ F , such that its normal form is ŵ = xi1 · · · xipx−1

jn
· · · x−1

j1
. Let

mp = max ({0} ∪ {ik − k − s + 1 : k = 1 . . . p})

and
mn = max ({0} ∪ {jk − k − s + 1 : k = 1 . . . n}) .

The maximum-based distance from As is defined as

dm
As

(w) = mp + mn + |(p + mp) − (n + mn)|

For every w ∈ As mp, mn and |p−n| are 0 by definition, while for every w �∈ As

at least one of them has to be positive, so the dm
As

is a distance function. It
turns out that, unlike the two previously defined distance functions, dm

As
is also

invariant.

Claim 4. dm
As

is an invariant distance function.

Proof. As with Claim 2, it’s sufficient to prove that multiplication by a single
generator of As does not change the distance from any word w to As. We will
consider multiplications on the left by generators and their inverses. The multi-
plication on the right follows symmetrically.

Let w = xi1 · · · xipx−1
jn

· · · x−1
j1

, without loss of generality, in normal form.
Consider the generator x0x

−1
t , where 1 ≤ t ≤ s. Define w′ as the normal form

Cryptanalysis of Group-Based Key Agreement Protocols 71

of x0x
−1
t w. For the parameters p, n, mp, mn of w, denote by p′, n′, m′

p, m
′
n their

corresponding values in w′.
From Lemma 1 it follows that each of the letters x−1

t and x0 can either be
cancelled out with the appropriate inverse, decreasing the length by 1, or placed
in its appropriate location, increasing the length by 1. There is a total of 4 possible
options:

(1) x−1
t is cancelled out, but x0 is not: w′ = x0xi1 · · · ximxim+2 · · ·

xipx−1
jn

· · · x−1
j1

, where x−1
t+m is cancelled out with xim+1 after m applications

of (R2). It follows that p′ = p, n′ = n and m′
n = mn (because the negative

letters are unaffected). Observe also that there can be no bad letters among
the first m: indeed, (R2) is applied m times, for each k = 1 . . .m rewriting
x−1

t+k−1xik
→ xik

x−1
t+k, so necessarily ik < t + k − 1 for all k, or equivalently,

ik − k < t − 1 < s. The multiplication by x0 on the left only increases their
relative positions, thus decreasing ik − k. Now, any possible bad letters above im
are unchanged, and neither is their relative position, so m′

p = mp and overall
dm

As
(w′) = dm

As
(w).

(2) Both x−1
t and x0 are cancelled out: w′ = xi1−1 · · · xim−1xim+2−1 · · ·

xip−1x
−1
jn−1 · · · x−1

jq+1−1x
1−q
0 . Here p′ = p−1, n′ = n−1 and m′

n = mn because all
negative letters x−1

jk
with jk > 0 had both their indices and their relative positions

decreased by 1. The same thing applies to positive letters above im, which are the
only positive letters that may be bad. So again, m′

p = mp and dm
As

(w′) = dm
As

(w).
(3) Neither x−1

t , nor x0 are cancelled out: w′ = x0xi1 · · · ximxim+1+1 · · ·
xip+1x

−1
jn+1 · · ·x−1

jq+1+1x
−1
t+mx−1

jq
· · ·x−1

j1
. Here p′ = p + 1 and n′ = n + 1. Due

to the former observation, bad positive letters may only exist beyond the first m.
All these letters had their indices ik and their relative positions k increased by
1, so the difference is preserved and m′

p = mp. Among the negative letters, only
the letters whose indices increased, also had their relative position increased, so
jk −k is preserved for all the original letters of w. Hence, m′

n ≥ mn and the only
situation when it may actually increase is when the new maximum is attained at
the new letter, i.e., m′

n = (t + m) − (q + 1) − s + 1 > mn. Because t ≤ s, m ≤ p
and q ≤ n, we have m′

n ≤ p − q, from which it follows that

(p′ + m′
p) − (n′ + m′

n) = (p′ − n′) + (m′
p − m′

n) = (p + 1) − (n + 1) + mp − m′
n ≥

≥ mp + (p − n) − (p − q) = mp + q − n ≥ 0

Assuming m′
n > mn, it’s obvious that

(p − n) + (mp − mn) > (p′ − n′) + (m′
p − m′

n) ≥ 0 ,

and so if mn increases, |(p + mp) − (n + mn)| decreases by the same amount,
and overall dm

As
(w′) = dm

As
(w).

(4) x−1
t is not cancelled out, but x0 is: w′ = xi1−1 · · · xim−1xim+1 · · ·

xipx−1
jn

· · · x−1
jq+1

x−1
t+m−1x−1

jq−1 · · · x−1
jr+1−1x

1−r
0 , where p′ = p, n′ = n, m′

p = mp

(because the first m positive letters, whose indices have changed, contained no bad

72 D. Ruinskiy, A. Shamir, and B. Tsaban

letters), and m′
n again may only increase, if it’s attained at x−1

t+m−1. Repeating
the same calculations shows that dm

As
(w′) = dm

As
(w) in this case too.

Now consider the inverse xtx
−1
0 and denote w′ = xtx

−1
0 w. The four possible

outcomes are:

(1) x−1
0 is cancelled out, but xt is not: x−1

0 can only be cancelled out if i1 = 0,
and the resulting word is: w′ = xi2 · · ·ximxt+m−1xim+1 · · ·xipx−1

jn
· · · x−1

j1
. Here

p′ = p, n′ = n, m′
n = mn (negative part is not affected) and m′

p = mp because
the letters xi2 to xim cannot be bad and the relative position of other positive
letters has not changed.

(2) Both x−1
0 and xt are cancelled out: Assuming xt is cancelled out

(due to violation of (NF2)) with x−1
jq

, w′ = xi2 · · · ximxim+1−1 · · · xip−1

x−1
jn−1 · · · x−1

jq+1−1x
−1
jq−1

· · · x−1
j1

. Here p′ = p − 1, n′ = n − 1, m′
p = mp, because

xi2 to xim cannot be bad and the relative position of other positive letters has
not changed, and m′

n = mn, because the letters whose positions shifted also had
their indices decreased.

(3) Neither x−1
0 , nor xt are cancelled out. w′ = xi1+2 · · · xim+2xt+m

xim+1+1 · · · xip+1x
−1
jn+1 · · · x−1

jq+1x
−q
0 . Here p′ = p + 1, n′ = n + 1, m′

p = mp,
because indices above im grew by 1, as did their positions, and indices i1, . . . , im
cannot be bad, and also m′

n = mn, because all letters whose indices increased (jq

and above) shifted in position accordingly.
(4) x−1

0 is not cancelled out, but xt is: w′ = xi1+2 · · · xim+2xim+1 · · · xip

x−1
jn

· · · x−1
jq+1

x−1
jq−1+1 · · · x−1

jr+1x
−r
0 , the cancelled pair being (xt+m, x−1

jq
), where

jq = t + m. In this case, any positive letters that can be bad kept their indices
and positions, the negative letters jr+1, . . . , jq−1 had their indices and positions
shifted, while the letters jq+1, . . . , jn kept their indices and positions. So m′

p = mp

and m′
n = mn and obviously p′ = p and n′ = n.

We see that in all the possible cases, dm
As

(w′) = dm
As

(w). This completes the
proof. �

6 Experimental Results

To test the applicability of the subgroup distance functions to cryptanalysis,
we tested Algorithm 1 against the Shpilrain-Ushakov protocol in the settings of
Thompson’s group. Initially, each of the five distance functions presented in the
previous section was tested separately: we generated a public element azb and
tried to recover a single private element a or b from it. For the recovery of a,
the functions dBs and dBs were used to assess the quality of the complements.
Similarly, for the recovery of b, we tried dAs , dAs and dm

As
.

For each distance function, the experiment was run at least 1000 times, each
time with new, randomly generated keys, with the minimum recommended pa-
rameters of s = 3, L = 256. The bound N = 2L was chosen on the number
of iterations, since preliminary experiments have shown that the success rates
do not increase beyond that. The results are summarized in Table 1. It can be
seen that the distance functions dBs and dm

As
noticeably outperform the other

Cryptanalysis of Group-Based Key Agreement Protocols 73

Table 1. Success rates for the different subgroup distance functions

dBs dBs dAs dAs dm
As

Recovery probability 11.7% 3.4% 3.7% 3.4% 23.3%

distance functions, in recovering a and b, respectively. The fact that dm
As

clearly
outperforms its counterparts suggests that the notion of invariance may be useful
for assessing the suitability of a given distance function.

Preliminary experiments have shown that, regardless of the settings, the suc-
cess probability of finding a1 given a1zb1 is similar to that of finding a−1

2 given
a−1
2 z−1b−1

2 . A similar assertion holds for b2 and b−1
1 . Therefore, in order to es-

timate the overall success rate against an actual instance of the cryptosystem,
it’s sufficient to try to recover one of the four a’s and b’s. If we denote by pa and
pb the probability of successfully recovering a and b, respectively, and assume
that all probabilities are independent, then, the expected total success rate is
roughly 1 − (1 − pa)2(1 − pb)2 (because each instance of the protocol contains
two elements of type a and two of type b).

When the success rates of the two best distance functions, dBs for a and
dm

As
for b, are combined, the expected overall success probability, according to

the above, is between 50% and 54%, which was experimentally verified. Note
that this attack is very efficient, since it involves no backtracking, no lookahead,
and no analysis of suboptimal partial results: it tries to peel off the generators
by a greedy algorithm, which considers only locally optimal steps. Attacking
each key required only a few seconds on a single PC, and it is very surprising
that such a simple attack succeeds about half the time. These results are much
better than those achieved by length-based attacks of similar complexity on this
cryptosystem (see [9]).

It is interesting to note that possible extensions of the attack, such as mem-
orizing many suboptimal partial solutions or using significant lookahead (which
require much higher time and space complexities) have different effects on length-
based and distance-based attacks. While it was shown in [9] that these extensions
greatly improve the success rates of the length-based attack, experiments with
the distance-based attack, with similar values of the memory and lookahead pa-
rameters, showed almost no improvement. However, the situation may be very
different for other cryptosystems and other subgroup distance functions.

To further test the performance of the distance functions, several experiments
were run with different values of the parameters (s, L). We used the combina-

Table 2. Success rates for different combinations of (s, L)

L = 128 L = 256 L = 320 L = 512 L = 640 L = 960
s = 3 51.7% 47.9% 55.5% 51.2% 50.4% 52.6%
s = 5 46.0% 47.1% 48.4% 51.1% 48.2% 48.3%
s = 8 36.2% 42.8% 41.3% 46.5% 42.4% 50.3%

74 D. Ruinskiy, A. Shamir, and B. Tsaban

tion of dBs and dm
As

, which was established as the best in the former experiment.
Table 2 shows the overall success probability, for L ∈ {128, 256, 320, 512, 640, 960}
and s ∈ {3, 5, 8}. The success rates stay remarkably consistent across different
lengths for a given s, and even increasing s does not cause a significant drop.
The time complexity of the attack grows linearly with s and roughly quadrat-
ically with L, with most of the time being spent on computing normal forms
of elements in the group. For the largest parameters presented here, the attack
still required under a minute in most cases. This suggests that for the Shpilrain-
Ushakov cryptosystem the distance-based attack remains a viable threat, even
when the security parameters s and L are increased beyond the original recom-
mendations.

7 Conclusion

We introduced a novel form of heuristic attacks on public key cryptosystems that
are based on combinatorial group theory, using functions that estimate the dis-
tance of group elements to a given subgroup. Our results demonstrate that these
distance-based attacks can achieve significantly better success rates than previ-
ously suggested length-based attacks of similar complexity, and thus they are a
potential threat to any cryptosystem based on equations in a noncommutative
group, which takes its elements from specific subgroups. It will be interesting to
test this approach for other groups and other protocols.

References

1. I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptog-
raphy, Mathematical Research Letters 6 (1999), 287–291.

2. E. Artin, Theory of Braids, Annals of Mathematics 48 (1947), 127–136.
3. J.W. Cannon, W.J. Floyd and W.R. Parry, Introductory notes on Richard Thomp-

son’s groups, L’Enseignement Mathematique (2) 42 (1996), 215–256.
4. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, and U. Vishne, Length-based conju-

gacy search in the Braid group, Contemporary Mathematics 418 (2006), 75–87.
5. D. Garber, S. Kaplan, M. Teicher, B. Tsaban, and U. Vishne, Probabilistic solutions

of equations in the braid group, Advances in Applied Mathematics 35 (2005), 323–
334.

6. J. Hughes and A. Tannenbaum, Length-based attacks for certain group based en-
cryption rewriting systems, Workshop SECI02 Sécurité de la Communication sur
Internet (2002).

7. K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J. Kang and C. Park, New Public-
Key Cryptosystem Using Braid Groups, Lecture Notes in Computer Science 1880
(2000), 166–183.

8. F. Matucci, The Shpilrain-Ushakov Protocol for Thompson’s Group F is always
breakable, e-print arxiv.org/math/0607184 (2006).

9. D. Ruinskiy, A. Shamir and B. Tsaban, Length-based cryptanalysis: The case of
Thompson’s group, e-print arxiv.org/cs/0607079 (2006).

Cryptanalysis of Group-Based Key Agreement Protocols 75

10. V. Shpilrain, Assessing security of some group based cryptosystems, Contemporary
Mathematics 360 (2004), 167–177.

11. V. Shpilrain and A. Ushakov, The conjugacy search problem in public key cryptog-
raphy: unnecessary and insufficient, Applicable Algebra in Engineering, Commu-
nication and Computing 17 (2006), 291–302.

12. V. Shpilrain and A. Ushakov, Thompson’s group and public key cryptography,
ACNS 2005, Lecture Notes in Computer Science 3531 (2005), 151–164.

	Introduction
	The Shpilrain-Ushakov Key Agreement Protocol
	Breaking the Protocol

	Subgroup Distance Functions
	Attacking the Shpilrain-Ushakov Protocol

	Thompson's Group
	The Shpilrain-Ushakov Protocol in Thompson's Group

	Subgroup Distance Functions in Thompson's Group
	Distance Functions from B_s
	Distance Functions from A_s

	Experimental Results
	Conclusion

