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Abstract. Separation logic is a recent extension of Hoare logic for rea-
soning about programs with references to shared mutable data struc-
tures. In this paper, we provide a new interpretation of the logic for a
programming language with higher types. Our interpretation is based on
Reynolds’s relational parametricity, and it provides a formal connection
between separation logic and data abstraction.

1 Introduction

Separation logic [16,11,6] is a Hoare-style program logic, and variants of it have
been applied to prove correct interesting pointer algorithms such as copying a
dag, disposing a graph, the Schorr-Waite graph algorithm, and Cheney’s copying
garbage collector. The main advantage of separation logic compared to ordinary
Hoare logic is that it facilitates local reasoning, formalized via the so-called frame
rule using a connective called separating conjunction. The development of sep-
aration logic initially focused on low-level languages with heaps and pointers,
although in recent work [12,7] it was shown how to extend separation logic first
to languages with a simple kind of procedures [12] and then to languages also
with higher-types [7]. Moreover, in [12] a second-order frame rule was proved
sound and in [7] a whole range of higher-order frame rules were proved sound
for a separation-logic type system.

In [12] and [7] it was explained how second and higher-order frame rules can be
used to reason about static imperative modules. The idea is roughly as follows.
Suppose that we prove a specification for a client c, depending on a module k,

{P1} k {Q1} � {P} c(k) {Q}.
The proof of the client depends only on the “abstract specification” of the module
k, which describes the external behavior of k. Suppose further that an actual
implementation m of the module satisfies

{P1 ∗R}m {Q1 ∗R}.
Here R is the internal resource invariant of the module m, describing the internal
heap storage used by the module m to implement the abstract specification. We
can then employ a frame rule on the specification for the client to get
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{P1 ∗R} k {Q1 ∗R} � {P ∗R} c(k) {Q ∗R},
and combine it with the specification for m to obtain

{P ∗R} c(m) {Q ∗R}.
A key advantage of this approach to modularity is that it facilitates so-called “ow-
nership transfer.” For example, if the module is a queue, then the ownership of cells
transfers from the client to module upon insertion into the queue. Moreover, the
discipline allows clients to maintain pointers into cells that have changed owner-
ship to the module. See [12] for examples and more explanations of these facts.

Note that the higher-order frame rules in essence provide implicit quantifi-
cation over internal resource invariants. In [4] it is shown how one can employ
a higher-order version of separation logic, with explicit quantification of asser-
tion predicates to reason about dynamic modularity (where there can be several
instances of the same abstract data type implemented by an imperative mod-
ule), see also [13]. The idea is to existentially quantify over the internal resource
invariants in a module, so that in the above example, c would depend on a
specification for k of the form

∃R.{P1 ∗R} k {Q1 ∗R}.
As emphasized in the papers mentioned above, note that, both in the case of im-
plicit quantification over internal resource invariants (higher-order frame rules)
and in the case of explicit quantification over internal resource invariants (ex-
istentials over assertion predicates), reasoning about a client does not depend
on the internal resource invariant of possible module implementations. Thus the
methodology allows us to formally reason about mutable abstract data types,
aka. imperative modules. However, the models in the papers mentioned above
do not allow us to make all the conclusions we would expect from reasoning
about mutable abstract data types. In particular, we would expect that clients
should behave parametrically in the internal resource invariants: When a client
is applied to two different implementations of a mutable abstract data type, it
should be the case that the client preserves relations between the internal re-
source invariants of the two implementations. This is analogous to Reynolds’s
style relational parametricity for abstract data types with quantification over
type variables [15].

In this paper we provide a new parametric model of separation logic, which
captures that clients behave parametrically in internal resource invariants of
mutable abstract data types. For the purposes of the present paper, we have
decided to focus on the implicit approach to quantification over internal resource
invariants via higher-order frame rules, since it is technically simpler than the
explicit approach.1 Our model validates a whole range of higher-order frame
1 The reason is that the implicit quantification of separation logic uses quantification

in a very disciplined way so that the usual reading of assertions as sets of heaps can
be maintained; if we use quantification without any restrictions, as in [2], it appears
that we cannot have the usual reading of assertions as sets of heaps because, then,
the rule of consequence is not sound.
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rules, as in [7], but here we achieve that for a more standard presentation of
separation logic and not only for a separation-logic type system as in [7].

Technically, it has proven to be a very non-trivial problem to define a paramet-
ric model for separation logic. We describe the challenges and give an overview
of the main ideas in our approach in the following section. In Section 3 we de-
scribe the programming and the assertion language we consider and in Section 4
we define our version of separation logic. In Section 5 we define the semantics
of our programming language in the category of FM-cpos and we define our
relational interpretation of separation logic in Section 6. Section 7 relates our
relational interpretation to the standard interpretation of separation logic, and
in Section 8 we present the abstraction theorem that our parametric model val-
idates. We briefly describe an example in Section 9 and finally we conclude and
discuss future work in Section 10. For reasons of space most proofs have been
omitted; they can be found in the full version of the paper.2

2 Challenges and Main Ideas

One of the main technical challenges in developing a relationally parametric
model of separation logic, even for a simple first-order language, is that the
standard models of separation logic allow the identity of locations to be ob-
served in the model. This means in particular that allocation of new heap cells
is not parametric because the identity of the location of the allocated cell can be
observed in the model. (We made this observation in earlier unpublished joint
work with Noah Torp-Smith, see [18, Ch. 6].)

This problem of non-parametric memory allocation has also been noticed
by recent work on data refinement for heap storage, which exploits semantic
ideas from separation logic [8,9]. However, the work on data refinement does not
provide a satisfactory solution. Either it avoids the problem by assuming that
clients do not allocate cells [8], or its solution has difficulties for handling higher-
order procedures and formalizing (observational) equivalences, not refinements,
between two implementations of a mutable abstract data type [9].

Our solution to this challenge is to define a more refined semantics of the
programming language using FM domain theory, in the style of Benton and
Leperchey [3], in which one can name locations but not observe the identity of
locations because of the built-in use of permutation of locations. Part of the trick
of loc. cit. is to define the semantics in a continuation-passing style so that one
can ensure that new locations are suitably fresh with respect to the remainder
of the computation. (See Section 5 for more details.) Benton and Leperchey
used the FM domain-theoretic model to reason about contextual equivalence
and here we extend the approach to give a semantics of separation logic in
a continuation-passing style. We relate this new interpretation to the standard
direct-style interpretation of separation logic via the so-called observation closure
(−)⊥⊥ of a relation, see Section 7.
2 The full version is available at the following URL:
http://www.dcs.qmul.ac.uk/~ hyang/paper/fossacs07-full.pdf
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The other main technical challenge in developing a relationally parametric
model of separation logic for reasoning about mutable abstract data types is to
devise a model which validates a wide range of higher-order frame rules. Our
solution to this challenge is to define an intuitionistic interpretation of the spec-
ification logic over a Kripke structure, whose ordering relation intuitively cap-
tures the framing-in of resources. Technically, the intuitionistic interpretation, in
particular the associated Kripke monotonicity, is used to validate a generalized
frame rule. Further, to show that the semantics of the logic does indeed satisfy
Kripke monotonicity for the base case of triples, we interpret triples using a
universal quantifier, which intuitively quantifies over resources that can possibly
be framed in. In the earlier non-parametric model of higher-order frame rules
for separation-logic typing in [7] we also made use of a Kripke structure. The
difference is that in the present work the elements of the Kripke structure are re-
lations on heaps rather than predicates on heaps because we build a relationally
parametric model.

3 Programs and Assertions

In this paper, we consider a higher-order language with immutable stack vari-
ables. The types and terms of the languages are defined as follows:

Types τ ::= com | ref → τ | τ→ τ Expressions E ::= i | nil
TermsM ::= x | λi.M |M E | λx: τ.M |MM | fixM | if (E=E)MM |M ;M

| let i=new in M | free(E) | let i=[E] in M | [E]:=E

The language separates expressions E from terms M . Expressions denote heap-
independent reference values, and they are bound to stack variables i, j. On the
other hand, terms denote possibly heap-dependent computations, and they are
bound to identifiers x, y. The syntax of the language ensures that expressions
always terminate, while terms can diverge. The types are used to classify terms
only. com denotes commands, ref → τ means functions that take an expression
parameter, and τ → τ ′ denotes functions that takes a term parameter. Note
that to support two different function types, the language includes two kinds
of abstraction and application, one for expression parameters and the other for
term parameters. We assume that term parameters are passed by name, and
expression parameters are passed by value.

To simplify the presentation, we take a simple storage model where each heap
cell has only one field for references. Command let i=new in M allocates such a
unary heap cell, binds the address of the cell to i, and runsM under this binding.
The content of this newly allocated cell at address i is read by let j = [i] in N
and updated by [i] := E. The cell i is deallocated by free(i).

The language uses typing judgments of the form Δ � E( : ref) and Δ |Γ �
M : τ , where Δ is a finite set of stack variables and Γ is a standard type envi-
ronment for identifiers x. The typing rules for expressions and terms are shown
in Figure 1.
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Δ, i � i Δ � nil

Δ | Γ, x : τ � x : τ

Δ, i | Γ �M : τ

Δ | Γ � λi.M : ref → τ

Δ | Γ �M : ref → τ Δ � E
Δ | Γ �M E : τ

Δ | Γ, x : τ �M : τ ′

Δ | Γ � λx : τ.M : τ → τ ′
Δ | Γ �M : τ ′ → τ Δ | Γ � N : τ ′

Δ | Γ �M N : τ

Δ | Γ �M : τ → τ

Δ | Γ � fix M : τ

Δ � E Δ � F Δ | Γ � M : com Δ | Γ � N : com

Δ | Γ � if (E=F ) M N : com

Δ |Γ � M : com Δ |Γ � N : com

Δ |Γ �M ;N : com

Δ, i |Γ �M : com

Δ |Γ � let i=new in M : com

Δ � E
Δ |Γ � free(E) : com

Δ, i | Γ �M : com Δ � E
Δ | Γ � let i=[E] in M : com

Δ � E Δ � F
Δ | Γ � E := F : com

Fig. 1. Typing Rules for Expressions and Terms

We use the standard assertions from separation logic to describe properties of
the heap:3 P ::= E = E | E ≤ E | E �→ E | emp | P ∗P | P∧P | ¬P | ∃i. P.
The points-to predicate E �→ E′ means that the current heap has only one cell
at address E and that the content of the cell is E′. The emp predicate denotes
the empty heap, and the separating conjunction P ∗ Q means that the current
heap can be split into two parts so that P holds for the one and Q holds for the
other. The other connectives have the usual meaning from classical logic. All the
missing connectives from classical logic are defined as usual.

Assertions only depend on stack variables i, j, not identifiers x, y. Thus as-
sertions are typed by a judgment Δ � P : Assertion. The typing rules for this
judgment are completely standard, and thus omitted from this paper.

4 Separation Logic

Our version of separation logic is the first-order intuitionistic logic extended
with Hoare triples and invariant extension. The formulas in the logic are called
specifications, and they are defined by the following grammar:

ϕ ::= {P}M{Q} | ϕ⊗ P | E = E | M = M
| ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀x: τ.ϕ | ∃x: τ.ϕ | ∀i.ϕ | ∃i.ϕ

The formula ϕ ⊗ P means the extension of ϕ by the invariant P . It can be
viewed as a syntactic transformation of ϕ that inserts P ∗− into the pre and post
conditions of all triples in ϕ. For instance, ({P}x{Q} ⇒ {P ′}M(x){Q′}) ⊗ P0

is equivalent to {P ∗ P0}x{Q ∗ P0} ⇒ {P ′ ∗ P0}M(x){Q′ ∗ P0}. We write Specs
for the set of all specifications.
3 We omit separating implication −∗ to simplify presentation.
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Proof Rules for Hoare Triples

(∀i.{P}M{Q}) ⇒ {∃i. P}M{∃i. Q} (where i �∈ fv(M))

({P}M{Q} ∨ {P ′}M{Q′}) ⇒ {P ∨ P ′}M{Q ∨Q′}
{P ∧ E=E}M{Q} ∧ {P ∧ E �=F}N{Q} ⇒ {P}if (E=F )M N{Q}

{P}M{P0} ∧ {P0}N{Q} ⇒ {P}M ;N{Q}
(∀i. {P ∗ i �→ nil}M{Q}) ⇒ {P}let i=new in M{Q} (where i�∈fv(P,Q))

(∀i. {P ∗ E �→ i}M{Q}) ⇒ {∃i. P ∗ E �→ i}let i=[E] in M{Q}
(where i�∈fv(Q))

{E �→ F}free(E){emp} {E �→ E′}[E] := F{E �→ F}
[[P ]]ρ ⊆ [[P ′]]ρ and [[Q′]]ρ ⊆ [[Q]]ρ for all ρ ∈ [[Δ]]

Δ | Γ � {P ′}M{Q′} ⇒ {P}M{Q}
Proof Rules for Invariant Extension −⊗ P

ϕ ⇒ ϕ⊗ P {P}C{P ′} ⊗Q ⇔ {P ∗Q}C{P ′ ∗Q}
(E = F ) ⊗Q ⇔ E = F (M = N) ⊗Q ⇔ (M = N)

(ϕ⊗ P ) ⊗Q ⇔ ϕ⊗ (P ∗Q) (ϕ⊕ ψ) ⊗ P ⇔ (ϕ⊗ P ) ⊕ (ψ ⊗ P )
(where ⊕ ∈ {⇒,∧,∨})

(κx: τ. ϕ) ⊗ P ⇔ κx: τ. ϕ⊗ P (κi. ϕ) ⊗ P ⇔ κi. ϕ⊗ P
(where κ ∈ {∀, ∃}) (where κ ∈ {∀, ∃} and i �∈ fv(P ))

Rule for Fixed-Point Induction

C ::= [ ] |λi.C |C E |λx: τ.C |CM | fixC |C;M γ ::= {P}C{Q} | γ∧γ | ∀x: τ.γ | ∀i.γ
(∀x. γ(x) ⇒ γ(M x)) ⇒ γ(fix M)

where γ(N) is a capture-avoiding insertion of N into the hole [−] in γ.

Fig. 2. Sample Proof Rules

Specifications are typed by the judgment Δ | Γ � ϕ : Specs, where we over-
loaded Specs to mean the type for specifications.

The logic includes all the usual proof rules from first-order intuitionistic logic
with equality, and a rule for fixed-point induction. In addition, it contains proof
rules from separation logic, and higher-order frame rules, expressed in terms of
rules for invariant introduction and distribution. Figure 2 shows some of these
additional rules and a rule for fixed-point induction. In the figure, we often omit
contexts Δ | Γ for specifications and also conditions about typing.

The rules for Hoare triples are the standard proof rules of separation logic
adapted to our language. Note that in the rule of consequence, we use the stan-
dard semantics of assertions P, P ′, Q,Q′, in order to express semantic impli-
cations between those assertions. The rules for invariant extension formalize
higher-order frame rules, extending the idea in [7]. The generalized higher-order
frame rule ϕ⇒ ϕ⊗P adds an invariant P to specification ϕ, and the other rules
distribute this added invariant all the way down to the triples. The last rule is for
fixed-point induction, and it relies on the restriction that a specification is of the
form γ(fix M). The grammar for γ guarantees that γ(x) defines an admissible
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predicate for x, thus ensuring the soundness of fixed-point induction. Moreover,
it also guarantees that γ(x) holds when M means ⊥, so allowing us to omit a
usual base case, “γ(⊥),” from the rule.

Note that the rules do not include the so-called conjunction rule:

({P}M{Q} ∧ {P ′}M{Q′}) ⇒ {P ∧ P ′}M{Q ∧Q′}

The omission of this rule is crucial, since our parametricity interpretation does
not validate the rule. We discuss the conjunction rule further in Section 10.

5 Semantics of Programming Language

Let Loc be a countably infinite set of locations. The programming language is
interpreted in the category of FM-cpos on Loc.

We remind the reader of the basics of FM domain theory. Call a bijection π
on Loc a permutation when π(l) �= l only for finitely many l, and let perm be
the set of all permutations. An FM-set is a pair of a set A and a function · of
type perm×A→ A, such that (1) id · a = a and π · (π′ · a) = (π ◦ π′) · a, and (2)
every a ∈ A is supported by some finite subset L of Loc, i.e.,

∀π ∈ perm. (∀l ∈ L. π(l) = l) =⇒ π · a = a.

It is known that every element a in an FM-set A has a smallest set L that
supports a. This smallest set is denoted supp(a). An FM function f from an
FM-set A to an FM-set B is a function from A to B such that f(π ·a) = π ·(f(a))
for all a, π.

An FM-poset is an FM-set A with a partial order � on A such that a �
b =⇒ π · a � π · b for all π, a, b. We say that a (ω-)chain {ai}i in FM-poset A is
finitely supported iff there is a finite subset L of Loc that supports all elements
in the chain. Finally, an FM-cpo is an FM-poset (A,�) for which every finitely-
supported chain {ai}i has a least upper bound, and an FM continuous function
f from an FM-cpo A to an FM-cpo B is an FM function from A to B that
preserves the least upper bounds of all finitely supported chains.

Types are interpreted as pointed FM-cpos, using the categorical structure of
the category of FM-cpos, see Figure 3. In the figure, we use the FM-cpo ref of ref-
erences defined by: ref

def
= Loc+{nil} with π ·v def

= if (v = nil) then nil else π(v).
The only nonstandard part is the semantics of the command type com, which
we define in the continuation passing style following [17,3]:

O
def
= {normal , err}⊥ (with π · o = o) Heap

def
= Loc ⇀fin ref

cont
def
= (Heap → O) [[com]]

def
= (Heap × cont → O).

Here A× B and A → B are cartesian product and exponential in the category
of FM-cpos. And A ⇀fin B is the FM-cpo of the finite partial functions from A
to B whose order and permutation action are defined below:
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ref
def
= Loc + {nil} [[ref → τ ]]

def
= ref → [[τ ]] [[τ → τ ′]]

def
= [[τ ]] → [[τ ′]]

[[com]]
def
= Heap × cont → O (where O = {normal , err}⊥ and cont = Heap → O)

[[Δ]]
def
=

∏
i∈Δ ref [[Γ ]]

def
=

∏
x:τ∈Γ [[τ ]].

Fig. 3. Interpretation of Types and Typing Contexts

[[Δ � E]] : [[Δ]] → ref [[Δ, i � i]]ρ def
= ρ(i) [[Δ � nil]]ρ

def
= nil

Fig. 4. Interpretation of Expressions

1. f � g
def⇐⇒ dom(f) = dom(g) and f(a) � g(a) for all a ∈ dom(f),

2. (π · f)(a)
def
= if (a ∈ π(dom(f))) then (π · ((f ◦ π−1)(a))) else undefined.

The first FM-cpo O specifies all possible observations, which are normal ter-
mination normal , erroneous termination err or divergence ⊥. The next FM-cpo
Heap denotes the set of heaps. It formalizes that a heap contains only finitely
many allocated cells and each cell in the heap contains a reference. The third
FM-cpo cont represents the set of continuations that consume heaps. Finally,
[[com]] is the set of cps-style commands. Those commands take a current heap h
and a continuation k, and compute an observation in O (often by computing a
final heap h′, and calling the given continuation k with h′).

Note that Heap has the usual heap disjointness predicate h#h′, which denotes
the disjointness of dom(h) and dom(h′), and the usual partial heap combining
operator •, which takes the union of (the graphs of) two disjoint heaps. The #
predicate and • operator fit well with FM domain theory, because they preserve
all permutations: h#h′ ⇐⇒ (π · h)#(π · h′) and π · (h • h′) = (π · h) •
(π · h′).

The semantics of typing contextsΔ andΓ is given by cartesian products: [[Δ]]
def
=

∏
i∈Δ ref and [[Γ ]]

def
=

∏
x:τ∈Γ [[τ ]]. The products here are taken over finite families,

so they give well-defined FM-cpos.4 We will use symbols ρ and η to denote envi-
ronments in [[Δ]] and [[Γ ]], respectively.

The semantics of expressions and terms is shown in Figures 4 and 5. It is stan-
dard, except for the case of allocation, where we make use of the underlying FM
domain theory: The interpretation picks a location that is fresh with respect to
currently known values (i.e., supp(h, η, ρ)) as well as those that will be used by
the continuation (i.e., supp(k)). The cps-style interpretation gives us an explicit
handle on which locations are used by the continuation, and the FM domain the-
ory ensures that supp(h, η, ρ, k) is finite (so a new location l can be chosen) and
that the choice of l does not matter, as long as l is not in supp(h, η, ρ, k). We bor-
rowed this interpretation from Benton and Leperchey [3].

4 An infinite product of FM-cpos is not necessarily an FM-cpo.
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[[Δ |Γ �M : τ ]] : [[Δ]] × [[Γ ]] → [[τ ]]

[[Δ |Γ, x: τ � x: τ ]]ρ,η
def
= η(x)

[[Δ |Γ � λi.M : ref → τ ]]ρ,η
def
= λv: ref . [[Δ, i |Γ �M : τ ]]ρ[i→v],η

[[Δ |Γ � M E: τ ]]ρ,η
def
= ([[Δ |Γ �M : ref → τ ]]ρ,η) [[E]]ρ

[[Δ |Γ � λx: τ ′.M : τ ′ → τ ]]ρ,η
def
= λm: [[τ ′]]. [[Δ |Γ, x: τ ′ � M : τ ]]ρ,η[x→m]

[[Δ |Γ �M N : τ ]]ρ,η
def
= ([[Δ |Γ �M : τ ′ → τ ]]ρ,η) [[Δ |Γ � N : τ ′]]ρ,η

[[Δ |Γ � fix M : τ ]]ρ,η
def
= leastfix [[Δ |Γ �M : τ → τ ]]ρ,η

[[Δ |Γ � if (E=F ) M N : com]]ρ,η
def
= if [[E]]ρ=[[F ]]ρ then [[Δ |Γ �M : com]]ρ,η

else [[Δ |Γ � N : com]]ρ,η

[[Δ |Γ � M ;N : com]]ρ,η(h, k)
def
= let k′ be λh′. [[Δ |Γ � N : com]]ρ,η(h′, k)

in [[Δ |Γ �M : com]]ρ,η(h, k′)

[[Δ |Γ � let i=new in M : com]]ρ,η(h, k)
def
= [[Δ, i |Γ �M : com]]ρ[i→l],η(h • [l→nil ], k)

(where l ∈ (Loc−supp(h, ρ, η, k)))

[[Δ |Γ � free(E): com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err

else (k(h′) for h′ s.t. h′ • [[[E]]ρ→h([[E]]ρ)] = h)

[[Δ |Γ � let i=[E] in M : com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err

else [[Δ, i |Γ �M : com]]ρ[i→h([[E]]ρ)],η(h, k)

[[Δ |Γ � [E]=F : com]]ρ,η(h, k)
def
= if [[E]]ρ �∈dom(h) then err else k(h[[[E]]ρ→[[F ]]ρ])

Fig. 5. Interpretation of Terms

6 Relational Interpretation of Separation Logic

We now present the main result of this paper, a relational interpretation of separa-
tion logic. In this interpretation, a specification means a relation on terms, rather
than a set of terms “satisfying” the specification. This relational reading formal-
izes the intuitive claim that proof rules in separation logic ensure parametricity
with respect to the heap.

Our interpretation has two important components that ensure parametricity.
The first is a Kripke structure R. The possible worlds of R are finitely supported
binary relations r on heaps,5 and the accessibility relation is the preorder defined
by the separating conjunction for relations:

h0[r ∗ s]h1
def⇔ there exist splittings n0 •m0 = h0 and n1 •m1 = h1 such that

n0[r]n1 and m0[s]m1,

r � r′
def⇔ there exists s such that r ∗ s = r′.

Intuitively, r � r′ means that r′ is a ∗-extension of r by some s. The Kripke struc-
tureR parameterizes our interpretation, and it guarantees that all the logical con-
nectives behave parametricallywrt. relations between internal resource invariants.
5 A relation r is finitely supported iff there is L ⊆fin Loc s.t. for every permutation π,

if π(l) = l for all l ∈ L, then ∀h0, h1. h0[r]h1 ⇐⇒ (π · h0)[r](π · h1).
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The second is semantic quadruples, which describe the relationship between two
commands. We use the semantic quadruples to interpret Hoare triples relationally.
Consider c0, c1 ∈ [[com]] and r, s ∈ R. For each subset D0 of an FM-cpo D, define
eq(D0) to be the partial identity relation on D that equates only the elements in
D0. A semantic quadruple [r](c0, c1)[s] holds iff

∀r′ ∈ R. ∀h0, h1 ∈ Heap. ∀k0, k1 ∈ cont .
(h0[r ∗ r′]h1 ∧ k0[s ∗ r′ → eq(G)]k1) =⇒ (c0(h0, k0)[eq(G)]c1(h1, k1)),

where G is the set O − {err} = {normal ,⊥} of good observations. The above
condition indirectly expresses that if the input heaps h0, h1 are r∗r′-related, then
the output heaps are related by s ∗ r′. Note that the definition quantifies over re-
lations r′ for new heaps, thus implementing relational parametricity. In Section 7,
we show how semantic quadruples are related to a more direct way of relating two
commands and we also show that the parametricity in the definition of semantic
quadruples implies the locality condition in separation logic [16].

The semantics of the logic is defined by the satisfaction relation |=Δ|Γ between
[[Δ]] × [[Γ ]]2 ×R and Specs, such that |=Δ|Γ satisfies Kripke monotonicity:

(ρ, η0, η1, r |=Δ|Γ ϕ) ∧ (r � r′) =⇒ (ρ, η1, η2, r′ |=Δ|Γ ϕ).

One way to understand the satisfaction relation is to assume two machines that
execute terms in the context of one specific module. Intuitively, the (ρ, η0, η1, r)
parameter of |= specifies the configurations of those machines: one machine uses
(ρ, η0) to bind free stack variables and identifiers of terms, and the other machine
uses (ρ, η1) for the same purposes; and the internal resource invariants of the mod-
ules in those machines are related by r. The judgment (ρ, η0, η1, r) means that if
two machines are configured by (ρ, η0, η1, r), then the meanings of the terms in
two machines are ϕ-related. Note that we allow different environments for the Γ
context only, not for theΔ context. This is because we are mainly concerned with
parametricity with respect to the heap and only Γ entities, notΔ entities, depend
on the heap.

Figure 6 shows the detailed interpretation of specifications. In the figure, we
make use of the standard semantics of assertions [16]. We now explain three cases
in the definition of |=.

The first case is implication. Our interpretation of implication exploits the spe-
cific notion of accessibility in R. It is equivalent to the standard Kripke semantics
of implication:

for all r′ ∈ R, if r � r′ and (ρ, η0, η1, r′) |= ϕ, then (ρ, η0, η1, r′) |= ψ,

because r � r′ iff r′ = r ∗ s for some s.
The second case is quantification. If a stack variable i is quantified, we consider

one semantic value, but if an identifier x is quantified, we consider two semantic
values. This is again to reflect that in our relational interpretation, we are mainly
concerned with heap-dependent entities. Thus, we only read quantifiers for heap-
dependent entities x relationally.
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For all environments ρ ∈ [[Δ]] and η0, η1 ∈ [[Γ ]] and all worlds r ∈ R,

(ρ, η0, η1, r) |= {P}M{Q} def⇐⇒ [eq([[P ]]ρ) ∗ r]([[M ]]ρ,η0 , [[M ]]ρ,η1 )[eq([[Q]]ρ) ∗ r]
(ρ, η0, η1, r) |= ϕ⊗ P

def⇐⇒ (ρ, η0, η1, r ∗ eq([[P ]]ρ)) |= ϕ

(ρ, η0, η1, r) |= E = F
def⇐⇒ [[E]]ρ = [[F ]]ρ

(ρ, η0, η1, r) |= M = N
def⇐⇒ [[M ]]ρ,η0 = [[N ]]ρ,η0 and [[M ]]ρ,η1 = [[N ]]ρ,η1

(ρ, η0, η1, r) |= ϕ⇒ ψ
def⇐⇒ for all s ∈ R, if (ρ, η0, η1, r ∗ s) |= ϕ,

then (ρ, η0, η1, r ∗ s) |= ψ

(ρ, η0, η1, r) |= ∀i. ϕ def⇐⇒ for all v ∈ ref , (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∃i. ϕ def⇐⇒ there exists v ∈ ref s.t. (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∀x: τ. ϕ def⇐⇒ for all m,n ∈ [[τ ]], (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ∃x: τ. ϕ def⇐⇒ there exist m,n ∈ [[τ ]] s.t. (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ϕ ∧ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ and (ρ, η0, η1, r) |= ψ

(ρ, η0, η1, r) |= ϕ ∨ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ or (ρ, η0, η1, r) |= ψ

Fig. 6. Relational Interpretation of Separation Logic

The last case is invariant extension ϕ ⊗ P . Mathematically, it says that if we
extend the r parameter by the partial equality for predicate P , specification ϕ
holds. Intuitively, this means that some heap cells not appearing in a specification
ϕ satisfy the invariant P .

A specification Δ | Γ � ϕ is valid iff (ρ, η0, η1, r) |= ϕ holds for all (ρ, η0, η1, r).
A proof rule is sound when it is a valid axiom or an inference rule that concludes
a valid specification from valid premises.

Theorem 1. All the proof rules in our logic are sound.

7 Properties of Semantic Quadruples

In this section, we prove two properties of semantic quadruples. The first clarifies
the connection between our new interpretation of Hoare triples and the standard
interpretation, and the second shows how our cps-style semantic quadruples are
related to a more direct way of relating two commands.

First, we consider the relation between semantic quadruples and Hoare triples.
Define an operator cps that cps-transforms a state transformer semantically:

cpsD : (Heap → (Heap + {err})⊥) → (Heap × cont → O)

cpsD(c)
def
= λ(h, k). if (c(h) �∈ {⊥, err}) then k(c(h)) else c(h).

Proposition 1. For all p, q ⊆ Heap and all c ∈ Heap → (Heap ×D + {err})⊥,
quadruple [eq(p)](cps(c), cps(c))[eq(q)] holds iff the below two conditions hold:
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1. for every h in p, either c(h) = ⊥ or c(h) ∈ q, hence c(h) cannot be err;
2. for every h in p and h1 such that h#h1,

(a) if c(h) = ⊥, then c(h • h1) = ⊥,
(b) if c(h) �= ⊥, then c(h) • h1 is defined and equal to c(h • h1).

Note that the first condition is the usual meaning of Hoare triples, and the second
the locality condition of commands in separation logic restricted to heaps in p [16].
Since the locality condition merely expresses the parametricity of commands with
respect to new heaps, the proposition indicates that our interpretation of triples
is the usual one enhanced by an additional parametricity requirement.

Next, we relate our cps-style notion of semantic quadruples to the direct-style
alternative. The notion underlying this relationship is the observation closure, de-
noted (−)⊥⊥. For each FM-cpoD and relation r ⊆ D×D, we define two relations,
r⊥ on [D → O ] and r⊥⊥ on D, as follows:

k1[r⊥]k2
def⇐⇒ ∀d1, d2 ∈ D. (d1[r]d2 =⇒ k1(d1)[eq(G)]k2(d2)),

d1[r⊥⊥]d2
def⇐⇒ ∀k1, k2 ∈ [D → O ]. (k1[r⊥]k2 =⇒ k1(d1)[eq(G)]k2(d2)).

Operator (−)⊥ dualizes a relation on D to one on observations on D, and (−)⊥⊥

closes a given relation r under observations.

Proposition 2. Let r, s be relations inR, and let c1, c2 be functions of typeHeap→
(Heap + {err})⊥. A quadruple [r](cps(c1), cps(c2))[s] holds, iff

∀(r′, h1, h2). h1[r ∗ r′]h2 =⇒ (c1(h1)=c2(h2)=⊥ ∨ c1(h1)[(s ∗ r′)⊥⊥]c2(h2)).

This proposition shows that our semantic quadruples are close to what one might
expect at first for relating two commands parametrically. The only difference is
that our quadruple always closes the post-relation s ∗ r′ under observations.

8 Abstraction Theorem

The abstraction theorem below formalizes that well-specified programs (specified
in separation logic with implicit quantification over internal resource invariants
by frame rules) behave relationally parametrically in internal resource invariants.
The easiest way to understand this intuition may be from the corollary following
the theorem.

Some readers might feel that it is too much to call the abstraction theorem a
“theorem” since it really is a trivial corollary of the soundness theorem — but that
is just as it should be: the semantics was defined to achieve that.

Theorem 2 (Abstraction Theorem). If Δ | Γ � ϕ is provable in the logic,
then for all (ρ, η0, η1, r) ∈ [[Δ]] × [[Γ ]]2 ×R, we have that (ρ, η0, η1, r) |= ϕ.

Proof. By Theorem 1, we get that Δ | Γ � ϕ is valid, which is just what the
conclusion expresses. ��
Corollary 1. Suppose that Δ | x: com � {P1}x{Q1} ⇒ {P}M{Q} is provable
in the logic. Then for all (ρ, c0, c1, r), if [eq([[P1]]ρ) ∗ r](c0, c1)[eq([[Q1]]ρ) ∗ r] holds,
then [eq([[P ]]ρ) ∗ r]([[M ]][x→c0], [[M ]][x→c1])[eq([[Q]]ρ) ∗ r] holds as well.



Relational Parametricity and Separation Logic 105

put1 ≡ (λi. let j = [i] in (free(i); [k] := j) get1 ≡ (λi. let j = [k] in [i] := j)

{i �→ j ∗ k �→ -}put1(i){k �→ -} {i �→ - ∗ k �→ -}get1(i){i �→ - ∗ k �→ -}
put2 ≡ (λi. let k′=[k] in (free(k′); [k]:=i)) get2 ≡ (λi. let k′=[k] in let j=[k′] in [i]:=j)

{i �→ j ∗ ∃k′.k �→ k′ ∗ k′ �→ -}put2(i){∃k′.k �→ k′ ∗ k′ �→ -}
{i �→ - ∗ ∃k′.k �→ k′ ∗ k′ �→ -}get2(i){i �→ - ∗ ∃k′.k �→ k′ ∗ k′ �→ -}

c ≡ (let i′′=new in [i′′]:=i′; put(i′′); get(i′))
Δ | Γ � (∀i.{P1}put(i){Q1} ∧ {P2}get(i){Q2}) ⇒ {i′ �→ -}c{i′ �→ -}

(where Δ = {i′, k} and Γ = {put: ref → com, get: ref → com})

Fig. 7. Two Implementations of a Buffer and a Simple Client

Intuitively, x corresponds to a module with a single operation, and M a client of
the module. This corollary says that if we prove a property of the clientM , assum-
ing only an abstract external specification {P1}x{Q1} of the module, the client
cannot tell apart two different implementations c0, c1 of the module, as long as
c0, c1 have identical external behavior. The four instances of eq in the proposition
formalize that the external behaviors of c0, c1 are identical and that the client M
behaves the same externally regardless of whether it is used with c0 or c1. The
relation r is a simulation relation for internal resource invariants of c0 and c1.

Proof. Define environments η0, η1 and heap sets p, p1, q, q1 as follows:

η0 = [x→c0], η1 = [x→c1], and (p1, q1, p, q) = ([[P1]]ρ, [[Q1]]ρ, [[P ]]ρ, [[Q]]ρ).

By Theorem 2, we have, for any r, that (ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}.
From this, we derive the conclusion of the proposition:

(ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}
=⇒ (∀s ∈ R. (ρ, η0, η1, r ∗ s) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r ∗ s) |= {P}M{Q})
=⇒ ((ρ, η0, η1, r) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r) |= {P}M{Q})
=⇒ ([eq(p1) ∗ r](c0, c1)[eq(q1) ∗ r] =⇒ [eq(p) ∗ r]([[M ]]η0 , [[M ]]η1)[eq(q) ∗ r]). ��

9 Example

For reasons of space we only include one very simple example (but at least it does
involve ownership transfer).

We will consider a mutable abstract data type that is a buffer of size one. It
has operations put and get. Intuitively, put(i) stores the value found at i in the
buffer and get(i) retrieves the value stored in the buffer and stores it at i. Let
P1 ≡ i �→ j, and Q1 ≡ emp, and P2 ≡ i �→ -, and Q2 ≡ i �→ -, where - denotes
existentially quantified variables. We assume the following abstract specifications
of this mutable abstract data type: {P1}put(i){Q1} and {P2}get(i){Q2}.

Figure 7 shows two implementations of the buffer and a client. The figure also
includes the concrete specifications for the implementation and a specification for
the buffer. Note that the first implementation just uses one cell for the buffer and
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that the implementation follows the intuitive description given above. The second
implementation uses two cells for the buffer. The additional cell is used to hold the
cell pointed to by i itself. Note that this additional cell is transferred from the caller
of put2(i), i.e., a client of the buffer. Finally, the specification of the client describes
the safety property of c, assuming the abstract specification for the buffer.

Pick ρ ∈ [[{i′, k}]], and define f1, f2, g1, g2, c1, c2 as follows:

fi
def
= [[puti]]ρ,[], gi

def
= [[geti]]ρ,[], ci

def
= [[c]]ρ,[put→fi,get→gi].

Now, by the Abstraction Theorem, we get that, for all r,
(∀v ∈ ref . [eq([[P1]]ρ[i→v]) ∗ r](f1(v), f2(v))[eq([[Q1]]ρ[i→v]) ∗ r] ∧

[eq([[P2]]ρ[i→v]) ∗ r](g1(v), g2(v))[eq([[Q2]]ρ[i→v]) ∗ r]
)

⇒ [eq([[i′ �→ -, -]]ρ) ∗ r](c1, c2)[eq([[i′ �→ -, -]]ρ) ∗ r].
(1)

We now sketch a consequence of this result; for brevity we allow ourselves to be a
bit informal. Fix location k and let r be the following simulation relation between
the two implementations: r = {(h1, h2) | ∃j. h1 = [k→j] ∧ ∃k′. h2 = [k→k′] •
[k′→j]}. Then one can verify that the antecedent of the implication in (1) holds,
and thus conclude that [eq([[i′ �→ -]]ρ) ∗ r](c1, c2)[eq([[i′ �→ -]]ρ) ∗ r] holds. Take
(h1, h2) ∈ eq([[i′ �→ -]]ρ) ∗ r, and denote the result of running c1 on h1 by h′1,
and the result of running c2 on h2 by h′2. We then conclude that h′1 will be of the
form h′11 • h′12 and that h′2 will be of the form h′21 • h′22 with (h′12, h′22) ∈ r and
with (h′11, h

′
21) ∈ eq([[i′ �→ -]]ρ).

Thus the relation between the internal resource invariants is maintained and,
for the visible part, c1 and c2 both produce the same heap with exactly one cell.

10 Conclusion and Future Work

We have succeeded in defining the first relationally parametric model of separation
logic. The model captures the informal idea that well-specified clients of mutable
abstract data types should behave parametrically in the internal resource invari-
ants of the abstract data type.

We see our work as a first step towards devising a logic for reasoning about mu-
table abstract data types, similar in spirit to Abadi and Plotkin’s logic for para-
metricity [14,5]. To this end, we also expect to make use of the ideas of relational
separation logic in [19] for reasoning about relations between different programs
syntactically. The logic should include a link between separation logic and rela-
tional separation logic so that one could get a syntactic representation of the se-
mantic Abstraction Theorem and its corollary presented above.

One can also think of our work as akin to the O’Hearn-Reynolds model for ideal-
ized algol based on translation into a relationally parametric polymorphic linear
lambda calculus [10]. In loc. cit. O’Hearn and Reynolds show how to provide a
better model of stack variables for idealized algol by making a formal connection
to parametricity. Here we provide a better model for the more unwieldy world of
heap storage by making a formal connection to parametricity.
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As mentioned in Section 4, the conjunction rule is not sound in our model. This
is a consequence of our cps-style interpretation. We don’t know whether it is pos-
sible to develop a parametric model in which the conjunction rule is sound.

Future work further includes developing a parametric model for the higher-
order version of separation logic with explicit quantification over internal resource
invariants. Finally, we hope that ideas similar to those presented here can be used
to develop parametric models for other recent approaches to mutable abstract
data types (e.g., [1]).
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