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Abstract. Generating likely invariants using dynamic analyses is becoming an
increasingly effective technique in software checking methodologies. This paper
presents Deryaft, a novel algorithm for generating likely representation invariants
of structurally complex data. Given a small set of concrete structures, Deryaft
analyzes their key characteristics to formulate local and global properties that
the structures exhibit. For effective formulation of structural invariants, Deryaft
focuses on graph properties, including reachability, and views the program heap
as an edge-labeled graph.

Deryaft outputs a Java predicate that represents the invariants; the predicate
takes an input structure and returns true if and only if it satisfies the invariants.
The invariants generated by Deryaft directly enable automation of various exist-
ing frameworks, such as the Korat test generation framework and the Juzi data
structure repair framework, which otherwise require the user to provide the in-
variants. Experimental results with the Deryaft prototype show that it feasibly
generates invariants for a range of subject structures, including libraries as well
as a stand-alone application.

1 Introduction

Checking programs that manipulate dynamically-allocated, structurally complex data
is notoriously hard. Existing dynamic and static analyses [19, 4, 8, 20, 2, 10] that check
non-trivial properties of such programs impose a substantial burden on the users, e.g.,
by requiring the users to provide invariants, such as loop or representation invariants,
or to provide complete executable implementations as well as specifications.

We present Deryaft, a novel framework for generating representation invariants of
structurally complex data given a (small) set of structures. The generated invariants
serve various purposes. Foremost, they formally characterize properties of the given
structures. More importantly, they facilitate the use of various analyses. To illustrate,
consider test generation using a constraint solver, such as Korat [4], which requires
the user to provide detailed invariants. Deryaft enables using just a handful of small
structures to allow these solvers to efficiently enumerate a large number of tests and
to systematically test code. The generated invariants can similarly be used directly in
other tools, such as ESC/Java [8], that are based on the Java Modeling Language [17],
which uses Java expressions, or simply be used as assertions for runtime checking, e.g.,
to check if a public method establishes the class invariant. The invariants even enable
non-conventional assertion-based analyses, such as repair of structurally complex data,
e.g., using the Juzi framework [15].
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Given a set of structures, Deryaft inspects them to formulate a set of hypotheses
on the underlying structural as well as data constraints that are likely to hold. Next, it
checks which hypotheses actually hold for the structures. Finally, it translates the valid
hypotheses into a Java predicate that represents the structural invariants of the given
structures. The predicate takes an input structure, traverses it, and returns true if and
only if the input satisfies the invariants.

Deryaft views the program heap as an edge-labeled graph whose nodes represent ob-
jects and whose edges represent fields [14] and focuses on generating graphs properties,
which include reachability. To make invariant generation feasible, Deryaft incorporates
a number of heuristics, which allow it to hone on relevant properties. For non-linear
structures, Deryaft also conjectures properties about lengths of paths from the root, and
completeness of acyclic structures. Thus, it conjectures local as well as global proper-
ties. In addition to properties of structure, Deryaft also conjectures properties among
data values in the structures. For example, it conjectures whether the key in a node
is larger than all the keys in the node’s left sub-tree, or whether the value of a field
represents a function of the number of nodes in the structure.

The undecidability of the problem that Deryaft addresses necessitates that its con-
straint generation, in general, cannot be sound and complete [7]. The generated con-
straints are sound with respect to the set of given structures. Of course, unseen struc-
tures may or may not satisfy them. Deryaft’s generation is not complete: it may not
generate all possible constraints that hold for the given set of structures. We provide a
simple API for allowing users to systematically extend the pool of invariants Deryaft
hypothesizes.

Even though Deryaft requires a small set of structures to be given, if a method that
constructs structures is given instead, Deryaft can use the method in place of the struc-
tures. For example, consider a method that adds an element to a binary search tree.
Exhaustive enumeration of small sequences of additions of say up to three arbitrarily
selected elements, starting with an empty tree, automatically provides a set of valid bi-
nary search trees (assuming the implementation of add is correct) that Deryaft requires.

Deryaft’s approach has the potential to change how programmers work. Test-first
programming [3] already advocates writing tests before implementations. Having writ-
ten a small test suite, the user can rely on Deryaft to generate an invariant that represents
a whole class of valid structures; Korat can use this invariant to enumerate a high quality
test suite; Juzi can use the same invariant to provide data structure repair. Thus, Deryaft
facilitates both systematic testing at compile-time as well as error recovery at runtime.

We make the following contributions:

–Algorithm. Deryaft is a novel algorithm for generating representation invariants of
structurally complex data from a given small set of structures;

–Java predicates. Deryaft generates invariants as Java predicates that can directly
be used in other applications, e.g., for test generation and error recovery;

–Experiments. We present experiments using our prototype to show the feasibility
of generating invariants for a variety of data structures, including libraries as well
as a stand-alone application.
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2 Example

We present an example to illustrate Deryaft’s generation of the representation invariant
of acyclic singly-linked lists. Consider the following class declaration:
public class SinglyLinkedList {

private Node header; // first list node
private int size; // number of nodes in the list

private static class Node {
int elem;
Node next;

}
}

A list has a header node, which represents the first node of the list, and caches the
number of nodes it contains in the size field. Each node has an integer element elem
and a next field, which points to the next node in the list.

Assume that the class SinglyLinkedList implements acyclic lists, i.e., there are
no directed cycles in the graph reachable from the header node of any valid list. Fig-
ure 1 shows a set of three lists, one each with zero, one and three nodes, which are all
acyclic. Given a set of these lists, i.e., a reference to a HashSet containing the three list
objects shown, Deryaft generates the representation invariant shown in Figure 2.

The method repOk performs two traversals over the structure represented by this.
First, repOk checks that the structure is acyclic along the next field. Second, it checks
that the structure has the correct value for the size field. The acyclicity checks that
there is a unique path from header to every reachable node, while the check for size
simply computes the total number of reachable nodes and verifies that number.

To illustrate how Deryaft automates existing analyses, consider enumeration of test
inputs using the Korat framework, which requires the user to provide a repOk and a
bound on input size. To illustrate, given the repOk generated by Deryaft, and a bound
of 5 nodes with integer elements ranging from 1 to 5, Korat takes 1.9 seconds to generate
all 3905 nonisomorphic lists with up to 5 nodes. Using the inputs that Korat enumerates,
any given implementation of the list methods can be tested systematically.

Notice that neither the generation of repOk nor the enumeration of test inputs re-
quired an a priori implementation of any method of the class SinglyLinkedList. In-
deed once such methods are written, they can be checked using a variety of frameworks

size: 0 size: 3

1 −1 1
next next

header

size: 1

0

header

N0 N1 N2 N3

Fig. 1. Three acyclic singly-linked lists, one each containing zero, one, and three nodes, as indi-
cated by the value of the size field. Small hollow squares represent the list objects. The labeled
arrows represent the fields header and next. N0, N1, N2, and N3 represent the identities of
node objects. The nodes also contain the integer elements, which for the given three lists range
over the set {-1, 0, 1}.
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public boolean repOk() {
if (!acyclicCore(header)) return false;
if (!sizeOk(size, header)) return false;
return true;

}

private boolean acyclicCore(Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.next != null) {

if (!visited.add(current.next)) {
//re-visiting a previously visited node
return false;

}
worklist.addFirst(current.next);

}
}
return true;

}

private boolean sizeOk(int s, Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.next != null) {

if (visited.add(current.next)) {
worklist.addFirst(current.next);

}
}

}
return (s == visited.size());

}

Fig. 2. Invariant generated by Deryaft. The method repOk represents the structural invariants of
the given set of list structures. The method acyclicCore uses a standard work-list based graph
traversal algorithm to visit all nodes reachable from n via the field next and returns true if and
only if the structure is free of cycles. The method sizeOk performs a similar traversal to checks
that the number of nodes reachable from n equals s.

that make use of the representation invariants, which traditionally have been provided
by the user but can now be generated using Deryaft.

In case a partial implementation of the class SinglyLinkedList is available,
Deryaft is able to utilize that. For example, assume that we have an implementation
of the instance method add:

void add(int i) { ... }

which adds the given integer i at the head of the list this. Given add, it is trivial to
automatically synthesize a driver program that repeatedly invokes add to enumerate all
lists within a small bound, e.g., with up to 3 nodes, using the integer elements {-1, 0,
1}. These lists then serve as the set of input structures for Deryaft.
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3 Deryaft

This section describes Deryaft. We first describe an abstract view of the program heap.
Next, we define core and derived sets. Then, we characterize the invariants that Deryaft
can generate. Finally, we describe how its algorithm works and illustrate it.

3.1 Program Heap as an Edge-Labeled Graph

We take a relational view [14] of the program heap: we view the heap of a Java program
as an edge-labeled directed graph whose nodes represent objects and whose edges rep-
resent fields. The presence of an edge labeled f from node o to v says that the f field of
the object o points to the object v (or is null) or has the primitive value v. Mathemati-
cally, we treat this graph as a set (the set of nodes) and a collection of relations, one for
each field. We partition the set of nodes according to the declared classes and partition
the set of edges according to the declared fields; we represent null as a special node.
A particular program state is represented by an assignment of values to these sets and
relations. Since we model the heap at the concrete level, there is a straightforward iso-
morphism between program states and assignments of values to the underlying sets and
relations.

To illustrate, recall the class declaration for SinglyLinkedList from Section 2.
The basic model of heap for this example consists of three sets, each corresponding to
a declared class or primitive type:
SinglyLinkedList
Node
int

and four relations, each corresponding to a declared field:
header: SinglyLinkedList x Node
size: SinglyLinkedList x int
elem: Node x int
next: Node x Node

The “size: 3” list from Figure 1 can be represented using the following assignment
of values to these sets and relations:
SinglyLinkedList = { L0 }
Node = { N1, N2, N3 }
int = { -1, 0, 1 }

header = { <L0, N0> }
size = { <L0, 3> }
elem = { <N1, 1>, <N2, -1>, <N3, 0> }
next = { <N1, N2>, <N2, N3>, <N3, null> }

Deryaft assumes (without loss of generality) that each structure in the given set has
a unique root pointer. Thus, the abstract view of a structure is a rooted edge-labeled
directed graph, and Deryaft focuses on generating properties of such graphs, including
properties that involve reachability, e.g., acyclicity.

3.2 Core and Derived Fields

Deryaft partitions the set of reference fields declared in the classes of objects in the
given structures into two sets: core and derived. For a given set, S, of structures, let F
be the set of all reference fields.
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Set coreFields(Set ss) {
// post: result is a set of core fields with respect to the
// structures in ss

Set cs = allClasses(ss);
Set fs = allReferenceFields(cs);
foreach (Field f in fs)

Set fs’ = fs - f;
boolean isCore = false;
foreach (Structure s in ss) {

if (reachable(s, fs’) != reachable(s, fs)) {
isCore = true;
break;

}
}
if (!isCore) fs = fs’;

}
return fs;

}

Fig. 3. Algorithm to compute a core set. The method allClasses returns the set of all classes
of objects in structures in ss. The method allReferenceFields returns the set of all ref-
erence fields declared in classes in cs. The method reachable returns a set of objects reachable
from the root of s via traversals only along the fields in the given set.

Definition 1. A subset C ⊆ F is a core set with respect to S if for all structures s ∈ S,
the set of nodes reachable from the root r of s along the fields in C is the same as the
set of nodes reachable from r along the fields in F .

In other words, a core set preserves reachability in terms of the set of nodes. Indeed, the
set of all fields is itself a core set. We aim to identify a minimal core set, i.e., a core set
with the least number of fields.

To illustrate, the set containing both the reference fields header and next in the
example from Section 2 is a minimal core set with respect to the given set of lists.

Definition 2. For a core set C, the set of fields F − C is a derived set.

Since elem in Section 2 is a field of a primitive type, the SinglyLinkedList example
has no fields that are derived.

Our partitioning of reference fields is inspired by the notion of a back-bone in certain
data structures [19].

Algorithm. The set of core fields can be computed by taking each reference field in
turn and checking whether removing all the edges corresponding to the field from the
graph changes the set of nodes reachable from root. Figure 3 gives the pseudo-code of
an algorithm to compute core fields.

3.3 Properties of Interest

We consider global as well as local properties of rooted edge-labeled directed graphs,
which are likely representatives of structurally complex data. The properties are divided
into various categories as follows.

Global: reachability. Reachability properties include the shape of the structure reach-
able from root along some set of reference fields. The shapes can be acyclic (i.e., there
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is a unique path from the root to every node), directed-acyclic (i.e., there are no directed
cycles in the graph), circular (i.e., all the graph nodes of a certain type are linked in a
cycle), or arbitrary. Note that any acyclic graph is also directed-acyclic.

To illustrate, the property acyclic(header, {next}), i.e, the structure reachable
from header along the field next is acyclic, holds for all the lists shown in Figure 1.

Global: primitive fields. In reasoning about graphs, the notion of a cardinality of a
set of nodes occurs naturally. We consider properties relating values of integer fields
and cardinalities of sets of reachable objects. For example, the property equals(size,
reachable(header, next).cardinality()) checks whether size is the cardinality of
the set of objects reachable from header following zero or more traversals of next.

Global: path lengths. For non-linear structures, such as trees, we consider properties
that relate lengths of different paths from root. For example, the property balanced rep-
resents that no simple path from the root differs in length from another simple path by
more than one. For binary trees, this property represents a height-balanced tree.

Local: reference fields. In edge-labeled graphs that are not acyclic (along the set of
all fields), local properties that relate different types of edges are likely. To illustrate,
consider a graph where if an edge connects a node n of type N to a node m of type M ,
there is a corresponding edge that connects m to n. We term such properties two-cycles.
For a doubly-linked list, next and previous form a two-cycle.

Another local property on reference fields is whether a particular node always has an
edge of a particular type from it to null.

Local: primitive fields. Another category of local properties pertains to primitive val-
ues. For example, in a binary tree, the value in a node might be greater than the values
in the node’s children. We consider local properties that relate a node’s value to it’s
successors along reference fields.

3.4 Algorithm

Given a set of structures, Deryaft traverses the structures to formulate a set of hypothe-
ses. Next, it checks which of the hypotheses actually hold for the given structures.
Finally, it translates the valid hypotheses into a Java predicate that represents the struc-
tural invariants of the given structures, i.e., it generates a method that takes an input
structure, traverses it, and returns true if and only if the input satisfies the invariants.

To make invariant generation feasible, a key heuristic that Deryaft incorporates to fo-
cus on relevant properties is: hypothesize properties about reachability, such as acyclic-
ity or circularity, only for the fields in the core set; and hypothesize local properties that
relate derived fields and core fields, e.g., whether a derived field forms two-cycles with
some core fields.

Figure 4 presents the Deryaft algorithm using Java-like pseudo-code. To minimize the
number of properties that are checked on the given structures, the checkProperties
does not check a property p if a property q that contradicts p is already known to be true,
e.g., if acyclic holds then circular (for the same set of fields) is not checked.
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String deryaft(Set structs) {
// post: result is a string representation of a Java method
// that represents the structural invariants of the
// given structures

Set classes = allClasses(structs);
Set fields = allFields(structs);
Set core = coreFields(fields);
Set derived = derivedFields(fields, core);
Set relevantGlobal =

globalProperties(structs, core, classes);
Set relevantLocal =

localProperties(structs, derived, classes);
Set propertiesThatHold =

checkProperties(relevantGlobal, structs);
propertiesThatHold.addAll(

checkProperties(relevantLocal, structs));
simplify(propertiesThatHold);
return generateInvariants(propertiesThatHold);

}

Fig. 4. The Deryaft algorithm. The methods allClasses and allFields respectively re-
turn a set of all classes and a set of all fields from the given set of structures. The method
coreFields (derivedFields) returns the set of core (derived) fields. The methods
globalProperties (localProperties) compute sets of relevant global (local) prop-
erties. The method checkProperties returns a subset of given properties, which hold
for all given structures. The method simplify removes redundant constraints. The method
generateInvariants generates a Java predicate that corresponds to the given properties.

To minimize the number of checks in the generated repOk, the simplify method
removes redundant properties from set of properties that actually hold, e.g., if a graph
is acyclic, there is no need to generate a check for directed-acyclic.

In summary, the algorithm performs the following five key steps:

–Identification of core and derived fields;
–Formulation of global and local properties that are relevant;
–Computation of properties that actually hold;
–Minimization of properties; and
–Generation of Java code that represents properties.

3.5 Illustration: Binary Tree Representation of Heaps

To illustrate the variety of invariants that Deryaft can generate, we next present a case
study on generating invariants of the heap data structure, which is also called a priority
queue [5]. We consider a binary tree representation of heaps.

The following class declares a binary tree with parent pointers:
public class BinaryTree {

Node root; // first node in the tree
int size; // number of nodes in the tree

private static class Node {
Node left;
Node right;
Node parent;
int key;

}
}
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size: 0

1 00

size: 1

0 1 2

root root

size: 2

root

size: 3
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N4 N5N2
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Fig. 5. Four heaps represented using binary trees, one each containing zero, one, two and
three nodes, as indicated by the value of the size field. Small hollow squares represent the
BinaryTree objects. The labeled arrows represent the fields root, left, right. The dotted
arrows with hollow heads represent parent fields, which have not been labeled for clarity. N0,
. . . , N5 represent the identities of node objects. The nodes also contain the integer keys, which
for the given four heaps range over the set {0, 1, 2}.

Consider a binary tree representation of heap, which requires: acyclicity along left
and right; correctness of parent and size; heap property: the key of a node is greater
than any key in a left or right child; and nearly complete binary tree.

Consider the heaps represented in Figure 5. As an example execution of the algorithm
for computing the core fields (Figure 3), consider computing the set with respect to these
structures. The algorithm initially sets fs to {left, right, parent}, i.e., the set that
contains all the fields that represent homogeneous relations. Removing left from the
set changes reachability, e.g., in the case of the structure with three nodes and therefore
left is core; similarly right is core; however, removing parent does not effect the
reachability in any of the given structures and therefore parent is not core.

As an example execution of the deryaft algorithm (Figure 4), consider computing
the representation invariants for the given structures. The formulation of relevant global
properties gives:

–acyclic(root, {left, right})
–directed-acyclic(root, {left, right})
–circular(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–equals(size + 1, reachable(root, {left, right}).cardinality())
–height-difference(root, {left, right}, x)
–nearly-complete(root, {left, right})

The formulation of relevant local properties gives:

–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–{<, ≤, >, ≥}(root, {left})
–{<, ≤, >, ≥}(root, {right})
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public boolean repOk() {
if (!acyclicCore(root)) return false;
if (!sizeOk(size, root)) return false;
if (!nearlyComplete(root)) return false;
if (!parentNull(root)) return false;
if (!parentTwoCycleLeft(root)) return false;
if (!parentTwoCycleRight(root)) return false;
if (!greaterThanLeft(root)) return false;
if (!greaterThanRight(root)) return false;
return true;

}

private boolean parentNull(Node n) {
return (n.parent == null);

}

private boolean parentTwoCycleLeft(Node n) {
Set<Node> visited = new HashSet<Node>();
LinkedList<Node> worklist = new LinkedList<Node>();
if (n != null) {

worklist.addFirst(n);
visited.add(n);

}
while (!worklist.isEmpty()) {

Node current = worklist.removeFirst();
if (current.left != null) {

if (current.left.parent != current) return false;
if (visited.add(current.left)) {

worklist.addFirst(current.left);
}

}
if (current.right != null) {

if (visited.add(current.right)) {
worklist.addFirst(current.right);

}
}

}
return true;

}

Fig. 6. Code snippet of heap invariant generated by Deryaft

The computation of properties that actually hold gives:

–acyclic(root, {left, right})
–directed-acyclic(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–height-difference(root, {left,right}, 1)
–nearly-complete(root, {left, right})
–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–{>, ≥}(root, {left})
–{>, ≥}(root, {right})

Removal of redundant properties gives:

–acyclic(root, {left, right})
–equals(size, reachable(root, {left, right}).cardinality())
–nearly-complete(root, {left, right})
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–two-cycle(root, parent, left)
–two-cycle(root, parent, right)
–is-null(root, parent)
–greater-than(root, {left})
–greater-than(root, {right})

Deryaft’s code generation takes these resulting properties and generates Java code,
which performs appropriate traversals to check the properties. Figure 6 gives a code
snippet of Deryaft’s output. The method repOk represents the structural invariants of
the given heaps. It invokes several helper methods to perform several traversals on
the input structure to determine the structure’s validity. The method acyclicCore re-
turns true if and only if the input structure is free of cycles along the fields left and
right. The method parentNull checks that the parent of n is null. The method
parentTwoCycleLeft checks that for each node n, if n has a left child m, m’s par-
ent is n, i.e., parent and left form a two-cycle; parentTwoCycleRight checks that
for each node n, if n has a right child m, m’s parent is n. The method sizeOk checks
the number of nodes reachable from n equals s. The method greaterThanLeft

checks that for any node n, if n has a left child m, n’s key is greater than m’s key;
the method greaterThanRight checks that for any node n, if n has a right child m,
n’s key is greater than m’s key.

4 Experiments

This section describes Deryaft’s generation of structural invariants for seven subjects,
which include some structures library classes as well as a standalone application. For
each subject, we constructed by hand five small representative structures and gave them
as inputs to Deryaft. For all subjects, Deryaft correctly generated all the standard data
structure invariants. The subjects were as follows.

Singly-linked acyclic list. A list object has a header node; each list node has a
next field. Integrity constraint is acyclicity along next.

Ordered list. An ordered list is a singly-linked acyclic list, whose nodes have integer
elements. Integrity constraints are acyclicity and an (ascending or descending) ordering
on the elements.

Doubly-linked circular list. A list object has a header node; each list node has a
next and a previous field. Integrity constraints are circularity along next and the
transpose relation between next and previous. This subject is based on the library
class java.util.LinkedList.

Binary search tree. A binary search tree object has a root node; each node has a
left and a right child node, a parent, and an integer key. Integrity constraints are
acyclicity along left and right, correctness of parent as well as correct ordering of
keys: for each node, its key is larger than any of the keys in the left sub-tree and smaller
than any of the keys in the right-sub tree.

AVL tree. An AVL tree [5] is a height-balanced binary search tree. Integrity con-
straints are the binary search tree constraints as well as the height-balance constraint.

Heap array. Heap arrays provide an array-based implementation of the binary heap
data structure that is also commonly known as a priority queue. A heap has a capacity
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that is the length of the underlying array and a size that is the number of elements
currently in the heap. For a heap element at index i, its left child is at index 2∗ i+1 and
the right child is at index 2 ∗ i + 2. Integrity constraints are size <= capacity and
the heap satisfies the max-heap (respectively min-heap) property: an element is larger
(respectively smaller) than both its children.

Intentional name. The Intentional Naming System [1] (INS) is a service location
system that allows client applications to specify what they are looking for without hav-
ing to know where it may be situated in a dynamic network. A key data structure in
INS is an intentional name—a hierarchical arrangement of attribute-value pairs that
describe service properties. Clients use these names to locate services, while services
use them as advertisements.

An intentional name can be implemented using the class AVPair that has two
String fields attribute and value and a Vector<AVPair> field children. Struc-
tural integrity constraints for AVPair are: (1) attribute and value of the root are null;
(2) the children of a node have unique attributes; and (3) the structure is acyclic along
the children field.

5 Discussion

This section discusses current limitations of Deryaft and future work.

Limitations. Constraint generation using a given set of structures has two limitations.
One, the set may not be representative of the class of desired structures. Two, not all
relevant properties can feasibly be identified, e.g., conjecturing all possible relations
among integer fields is infeasible even using simple arithmetic operators. Deryaft’s cur-
rent generation algorithm therefore, focuses on structural properties which involve ref-
erence fields, which can naturally be viewed as edges in a graph, and simple constraints
on primitive data. In future, we plan to explore more complex relations among primitive
as well as reference fields.

Our Deryaft implementation is under construction. The prototype at this stage can
handle a class of structures similar to the ones illustrated in this paper.

Optimization of Repeated Traversals. The repOk code that Deryaft outputs typically
performs several traversals over a given structure. While an optimization of these tra-
versals might not produce a noticeable speed-up in code generation due to the small
size of given structures, optimizations may be quite important in the context of where
the generated code is to be used. In fact, based on the usage context, very different
optimizations may be necessary.

Consider the case for structure enumeration using a constraint solver. It is well-
known that the performance of constraint solvers, such as propositional satisfiability
(SAT) solvers, depends crucially on the formulation of given invariants—the same holds
for Korat and the Alloy Analyzer [18]. In fact, repeated traversals which may seemingly
be slow, may actually elicit faster generation.

The case for assertion evaluation is usually different: generated code that minimizes
the number of traversals is likely to improve the time to check the assertion. Thus, it
is natural to extend Deryaft to incorporate information about the context to tune its
generation to the intended use.
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Introduction of New Invariants. It would be useful to build an extensible invariant
generation system, where new invariants that involve new operators can be plugged into
the invariant generator. This would enable not only focused generation on the particular
domain of interest, but also generation of a wider class of invariants. Such extensibility
requires a language for expressing invariants.

Integration with Other Software Analysis Frameworks. We have given an example
of how Korat can be used for input enumeration using invariants generated by Deryaft.
We plan to fully integrate Deryaft’s algorithm with various existing frameworks.

Static Analysis for Optimizing Generation. While in the presence of a partial imple-
mentation we may not require the user to provide a set of structures, we can use the
implementation in a different way as well: a static analysis of the code, say the method
that adds a node to a heap, can help formulate the likely invariants more accurately.

6 Related Work

Dynamic analyses Our work is inspired by the Daikon invariant detection engine [7],
which pioneered the notion of dynamically detecting likely program invariants in the
late 90s and has since been adapted by various other frameworks [12, 11]. Deryaft dif-
fers from Daikon in three key aspects. First, the model of data structures in Daikon uses
arrays to represent object fields. While this representation allows detecting invariants
of some data structures, it makes it awkward as to how to detect invariants that involve
intricate global properties, such as relating lengths of paths. Deryaft’s view of the heap
as an edge-labeled graph and focus on generic graph properties enables it to directly
capture a whole range of structurally complex data. Second, Deryaft employs specific
heuristics that optimize generation of invariants for data structures, e.g., the distinction
between core and derived fields allows it to preemptively disallow hypothesizing rela-
tions among certain fields. We believe this distinction, if adopted, can optimize Daikon’s
analysis too. Third, Deryaft generates invariants in Java, which can directly be plugged
into a variety of tools, such as the Korat testing framework [4] and the Juzi [15] repair
framework.

We have conducted some intial experiments to compare the output of Daikon with
Deryaft. Daikon does not seem to generate rich data structure invariants for the subjects
we have presented in this paper. For example, for the SinglyLinkedList class (Sec-
tion 2), using the lists shown in Figure 1, Daikon generates the following class invariant
for SinglyLinkedList:
/*@ invariant this.header.next.next != null; */
/*@ invariant this.header.next.elem == -1; */
/*@ invariant this.header.elem == 0 || this.header.elem == 1; */
/*@ invariant this.size == 0; */

and the following for Node:
/*@ invariant this.next == null; */
/*@ invariant this.elem == -1 || this.elem == 0 || this.elem == 1; */

Even using a larger test suite with 100 randomly generated lists using the API methods
of SinglyLinkedList, we were not able to generate more precise invariants with
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Daikon. We believe that Daikon experts can set its parameters so that it generates a
richer class of invariants.

In previous work [16], we developed aDeryaft, a tool for assisting Alloy [13] users
build their Alloy specifications. aDeryaft generates first-order logic formulas that repre-
sent structural invariants of a given set of Alloy instances. This paper extends both the
design and implementation of aDeryaft by (1) supporting all of Java data-types (includ-
ing arrays), which significantly differ from Alloy’s relational basis, (2) extending the
class of invariants supported and (3) evaluating using a wide class of subject structures,
including those from a stand-alone application.

Static analyses Researchers have explored invariant generation using static analyses for
over three decades. There is a wide body of research in the context of generating loop
invariants [9,6,23,21] using recurrence equations, abstract interpretation with widening,
matrix theory for Petri nets, constraint-based techniques etc. Most of these analyses are
limited to relations between primitive variables.

Shape analyses [10, 20, 19, 2] can handle structural constraints using abstract heap
representations, predicate abstraction etc. However, shape analyses typically do not con-
sider rich properties of data values in structures and mostly abstract away from the data.
Moreover, none of the existing shape analyses can feasibly check or detect rich struc-
tural invariants, such as height-balance for binary search trees, which involve complex
properties that relate paths.

Combined dynamic/static analyses Some recent approaches combine static and dy-
namic analyses for inferring API level specifications [22, 25].

Invariant generation has also been used in the context of model checkers to explain
the absence of counterexamples, while focusing on integer variables [24].

7 Conclusions

Dynamically detecting likely invariants, as pioneered by Daikon, is becoming
immensely popular. In this paper, we focused on generating representation invariants
of structurally complex data, given a small set of concrete structures. We presented
Deryaft, a novel invariant generation algorithm. Deryaft analyzes the key characteristics
of the given structures to formulate local and global properties that the structures have
in common. A key idea in Deryaft is to view the program heap as an edge-labeled graph,
and hence to focus on properties of graphs, including reachability. Deryaft partitions the
set of edges into core and derived sets and hypothesizes different classes of properties
for each set, thereby minimizing the number of hypotheses it needs to validate.

Deryaft generates a Java predicate that represents the properties of given structures,
i.e., it generates a method that takes an input structure, traverses it, and returns true if
and only if the input satisfies the properties. Even though Deryaft does not require an
implementation of any methods that manipulate the given structures, in the presence of
such an implementation, it can generate the invariants without a priori requiring a given
set of structures. The invariants generated by Deryaft enable automation of various
software analyses. We illustrated how the Korat framework can use these invariants to
enumerate inputs for Java programs and to check their correctness.
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