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Abstract. We show a new protocol for blind signatures in which secu-
rity is preserved even under arbitrarily-many concurrent executions. The
protocol can be based on standard cryptographic assumptions and is the
first to be proven secure in a concurrent setting (under any assumptions)
without random oracles or a trusted setup assumption such as a com-
mon reference string. Along the way, we also introduce new definitions
of security for blind signature schemes.

1 Introduction

Blind signature schemes, introduced by Chaum [11], are a fascinating primitive
that (roughly speaking) enable a user to interact with a signer and obtain a
signature on a message m without revealing anything about m to the signer.
Blind signature schemes are a crucial component of many systems in which
certain values need to be certified, yet anonymity should be ensured: classical
examples include e-cash (where a bank signs ‘e-coins’ that are withdrawn by
customers) and e-voting (where an authority signs public keys for voters to use
when they later cast their votes).

Definitions of security for blind signature schemes were first proposed by
Pointcheval and Stern [29], though many refinements and extensions of their
original definitions have since been suggested. At a high level, all existing def-
initions impose two basic requirements: blindness (or anonymity) and unforge-
ability. Blindness formalizes the notion that a malicious signer should be unable
to ‘link’ any message/signature pair with a particular execution of the signing
protocol. Unforgeability for blind signatures is the analogue of the notion of un-
forgeability for standard signature schemes: informally, a malicious user should
be unable to output a valid signature on any message other than those whose
signatures were explicitly requested from the signer. A subtlety in the case of
blind signatures is that a malicious user’s execution of the protocol with the
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signer may not result in any well-defined message whose signature is being re-
quested. Because of this, the formal definition requires that for any polynomial
� and any user executing the protocol � times with the signer, the user should
be unable to output � + 1 valid signatures on � + 1 distinct messages.

When defining blindness and unforgeability it is necessary to distinguish
whether security requires different executions of the protocol to be carried out
sequentially (i.e., waiting for one execution to finish before beginning the next),
or whether security holds even when multiple executions are performed concur-
rently (i.e., in an arbitrarily-interleaved manner). (One can also consider the
intermediate case in which executions are run in parallel.) Concurrency in the
context of blindness has received little attention, both because the ‘standard’
definition of blindness considers only two executions of the protocol and also,
perhaps, because many known constructions of blind signature schemes achieve
perfect blindness. In contrast, handling concurrency in the context of unforge-
ability has received much attention (surveyed below), and it is not hard to see
that — assuming there exist blind signature schemes at all — there exist schemes
that are unforgeable in the sequential setting but not in a concurrent setting.

1.1 Previous Constructions

Chaum [11] proposed a candidate blind signature scheme without any proof
of security (though his scheme was later proven secure in the random oracle
model under a somewhat non-standard cryptographic assumption [5]). Since
then, numerous works have aimed to design secure schemes. We review these
here, with particular attention to the type of unforgeability proved.

Schemes in the random oracle model. Initial constructions of blind signa-
ture schemes were in the random oracle model [6], and, in fact, until relatively
recently all efficient constructions relied on random oracles. Pointcheval and
Stern [28] showed the first secure blind signature schemes, though they prove
unforgeability (in the parallel setting) only for a user who requests logarithmi-
cally-many signatures. This was improved in later work by Pointcheval [27], who
showed schemes that are unforgeable (in a restricted variant of the parallel set-
ting) for polynomially-many signatures. Abe [1] gave a protocol with improved
round complexity, and also proved unforgeability in the concurrent setting. Bel-
lare, et al. [5] and Boldyreva [8] present 2-round blind signature schemes; note
that 2-round protocols (which consist of a single message from the user and a
response by the signer) are automatically secure in a concurrent setting.

Schemes in the standard model. Relatively early, it was suggested [12] that
blind signatures might be constructed using protocols for generic secure 2-party
computation. Juels, Luby, and Ostrovsky [19] point out that the näıve way of im-
plementing this approach does not work, but show how to adapt and extend this
idea so as to achieve a secure solution. Although they claim security in the con-
current setting, no details of the proof in this case are provided; as best as we can
tell, their solution is secure in the sequential setting only. Indeed, security of their
protocol in the concurrent setting seems to require a concurrently-secure protocol
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for 2-party computation, but constructing such protocols without random oracles
or setup assumptions is currently a major open question. The work of [4] could be
used here, but then security would require sub-exponential hardness assumptions
(something avoided in our work).

Camenisch, et al. [9] show the first efficient protocol secure in the standard
model, proven unforgeable only for the case of sequential attacks.

Lindell [23] has shown the impossibility of concurrently-secure blind signatures
if simulation-based definitions of security are used.1 In an effort to overcome the
limitations of the above protocols, as well as Lindell’s impossibility result, much
recent work has focused on proving security for blind signature schemes in the
concurrent setting by assuming a common reference string [26,21,16]. However,
although Lindell’s impossibility result was used as justification for relying on a
common reference string in these works, Lindell’s results do not apply if game-
based security definitions (rather than simulation-based security definitions) are
used. Indeed, this serves as the starting point for our work.2

1.2 Our Contributions

As hinted at earlier, the standard definition of blindness considers only the inter-
action of a malicious signer with two users; furthermore, the definition does not
seem to reasonably extend for the case of multiple users (the issue is how to deal
with a signer who may abort some sessions). We propose a new definition here
which extends seamlessly to the multi-user setting, and (in retrospect) seems to
capture better the security requirements of a blind signature scheme.

As our main contribution, we present the first concurrently-secure blind sig-
nature scheme that does not rely on random oracles or any setup assumptions
such as a common reference string. In order to ‘bypass’ the impossibility result
of Lindell [23], we prove security using game-based definitions that have anyway
been standard in almost all prior work in this area. Our protocol relies on stan-
dard cryptographic assumptions (e.g., trapdoor permutations and the decisional
Diffie-Hellman assumption), and we prove security with respect to game-based
definitions that are stronger than others that have appeared in the literature.

Besides being interesting in its own right, our construction serves as yet
another illustration that known impossibility results for concurrently-secure 2-
party computation [23,24] might be overcome for specific functionalities of in-
terest by considering relaxed (yet still meaningful) definitions of security. In
this sense, our work exemplifies what we see as a viable alternative to the ap-
proaches to concurrently-secure computation taken by, e.g., [10,23,31,3,20,4,25],
who focus on staying within the simulation paradigm (in part, because they are
striving for a generic result) but are thus forced to impose additional assump-
tions (e.g., a common reference string [10] or a bound on network delay [20]) or
to settle for alternate definitional relaxations (e.g., bounded concurrency [23] or
super-polynomial-time simulation [4]).
1 Technically, he only rules out black-box proofs of security.
2 We do not formally define what it means for a definition to be ‘simulation-based’ or

‘game-based,’ but instead appeal to the reader’s intuition regarding such matters.
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1.3 Outline

In Section 2 we discuss definitions of security for blind signature schemes, and
present a new set of definitions that are stronger than any to have previously
appeared in the literature. We also propose, for the first time, a definition of
blindness for the case of a signer interacting with an arbitrary number of users.

We then build up to our main result in stages: in Section 3.1 we describe the
recent blind signature scheme of Fischlin [16] which is used as a building block
in our work, and then in Section 3.2 we construct a blind signature scheme
that can be proven concurrently-secure using complexity leveraging.3 Our main
result (which does not rely on complexity leveraging) appears in Section 4, along
with proof sketches of the blindness and unforgeability properties. Due to space
limitations, complete proofs are omitted but will appear in the full version.

2 Definitions

A standard signature scheme is a tuple of ppt algorithms (Gen, Sign, Vrfy), where
the key generation algorithm Gen takes as input a security parameter 1k and out-
puts a pair of keys (pk, sk) with the security parameter implicit in both; the sign-
ing algorithm Sign takes as input a message m and a secret key sk and outputs a
signature σ; and the verification algorithm Vrfy takes as input a public key pk, a
message m, and a candidate signature σ and outputs a decision bit. Correctness
requires that if (pk, sk) is output by Gen(1k) then Vrfypk(m, Signsk(m)) = 1 for
all m. We use the standard definition of existential unforgeability under adaptive
chosen-message attacks [18].

We assume signature schemes that are length-regular : i.e., there exists a
polynomial p(·) such that if (pk, sk) are output by Gen(1k) then for any m
in the message space (1) Signsk(m) ∈ {0, 1}p(|m|) and (2) Vrfypk(m, σ) = 0
if σ �∈ {0, 1}p(|m|). We will not write this explicitly in the rest of the
paper.

We now define a blind signature scheme.

Definition 1. A blind signature scheme consists of ppt algorithms Gen, Vrfy
along with interactive ppt algorithms S, U such that:

• Gen, on input 1k, outputs a key pair (PK, SK) with k implicit in both.
• The joint execution of S, holding input SK, and U , holding inputs PK, m,
results in an output σ for U , assuming neither S nor U abort. We write this
as σ ← 〈SSK, UPK(m)〉. If U aborts, its output is ⊥ (which is never a valid
signature) and we assume that it notifies S.

• Vrfy, on input PK, m, σ, outputs a decision bit.
Correctness requires that for all (PK, SK) output by Gen(1k) and all m, if σ ←
〈SSK, UPK(m)〉 then VrfyPK(m, σ) = 1.
3 Roughly speaking, this means we assume primitives A and B such that A cannot be

broken in polynomial time but can be broken in time T (k) for some super-polynomial
function T , while B cannot be broken in time T (k).
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We now define unforgeability and blindness. In both definitions, the adversary
maintains state throughout its execution.

Definition 2. Blind signature scheme (Gen, S, U , Vrfy) is unforgeable if for any
polynomial �, the success probability of any ppt algorithm Û in the following
game is negligible:

• Gen(1k) outputs keys (PK, SK), and Û is given PK.
• Û(PK) interacts concurrently with � = �(k) instances S1

SK, . . . , S�
SK.

• Û outputs (m1, σ1, . . . , m�+1, σ�+1).
Û succeeds if the {mi} are distinct and VrfyPK(mi, σi) = 1 for all i.

We next turn to defining blindness. We begin with a (strong) variant of the
standard definition of blindness, which only considers the execution of the signer
with two users. This is followed by some discussion of how the definition might
be extended for the case of multiple users.

Definition 3. Blind signature scheme (Gen, S, U , Vrfy) satisfies blindness if the
advantage of any ppt algorithm Ŝ in the following game is negligible:

1. Ŝ(1k) outputs an arbitrary public key PK along with equal-length messages
m0, m1.

2. A random bit b is chosen, and Ŝ interacts concurrently with Ub
def= UPK(mb)

and Ub̄
def= UPK(mb̄). When Ub, Ub̄ have completed their execution, σ0, σ1 are

defined as follows:

• If either Ub or Ub̄ abort, then (σ0, σ1) := (⊥, ⊥).
• Otherwise, let σ0 (resp, σ1) be the output of U0 (resp., U1).

Ŝ is given (σ0, σ1).
3. Finally, Ŝ outputs a bit b′.

Ŝ succeeds (denoted Succ) if b′ = b. The advantage of Ŝ is
∣
∣Pr[Succ] − 1

2

∣
∣.

For the definition to be meaningful, we cannot give Ŝ the signature output by
one user in case the other aborts: if we did, Ŝ could simply abort the execution
with its ‘left’ oracle and then, depending on whether it is given a signature on
m0 or m1, easily determine b. On the other hand, in contrast to [16], we allow the
game to continue if either user aborts (this only strengthens the definition). Note
also that Ŝ may generate PK in an arbitrary manner, not necessarily using Gen.
It seems perfectly natural to us to allow this possibility, though it appears to
have been formally considered only relatively recently [2,26,16].

In extending the above definition to the case of a signer interacting with
an arbitrary number of users, an obvious approach is to allow the signer to
output two vectors m0, m1 containing the same messages m1, . . . , m� (possibly
allowing repeats) in permuted order. A difficulty that arises is how to deal with
a signer who aborts some of the sessions. Some natural ways of dealing with
this are (1) if the signer aborts any session, it receives no signatures; or (2) say
m0 = (m0

1, . . . , m
0
�) and m1 = (m1

1, . . . , m
1
�). Then if the signer aborts the ith
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session, it is given neither the signature on m0
i nor the signature on m1

i . The first
option seems (to us) to be too weak. The second option seems a bit arbitrary,
though reasonable; an aesthetic drawback is that it is not clear that it is implied
by Definition 3. In the full version we sketch a third possibility, intermediate in
strength between the above two, which is implied by Definition 3.

In any case, all the above ways of dealing with abort (even in the original
case with two users) seem a bit arbitrary even though for technical reasons they
are necessary to make the definitions non-trivial. We therefore propose a new
definition which, in our opinion, handles the issue of abort in a cleaner way.
Though it allows some ‘attacks’ which are ruled out by Definition 3, we believe
it models the security desired of typical proposed applications of blind signatures
(such as e-cash or e-voting). Further discussion follows the definition.

Definition 4. Blind signature scheme (Gen, S, U , Vrfy) satisfies a posteriori
blindness if for any polynomial �, any �′ such that 1 ≤ �′(k) ≤ �(k) for all
k, and any ppt algorithm Ŝ, the advantage of Ŝ in the following game is at
most a negligible quantity:

1. Ŝ(1k) outputs an arbitrary public key PK and a message distribution4 M
sampleable in polynomial time.

2. Messages m1, . . . , m� are sampled according to M, and Ŝ interacts con-
currently with UPK(m1), . . ., UPK(m�). The game ends if the number of non-
aborted sessions is not equal to �′. Otherwise, we say event NA(�′) occurs
and the game continues.

3. Let i1, . . . , i�′ denote the indices of the non-aborted sessions and let π be a
random one-to-one function mapping {1, . . . , �′} to these indices. Ŝ is given
(mπ(1), σπ(1)), . . ., (mπ(�′), σπ(�′)).

4. Finally, Ŝ outputs (i, i′).
Ŝ succeeds (this event is denoted by Succ) if π(i) = i′. The advantage of Ŝ is
Pr[Succ] − 1

�′ Pr[NA(�′)].

Note that allowing the signer to choose the message distribution is stronger than
quantifying over all sampleable distributions, since it allows the signer to choose
a distribution that depends on the (maliciously-chosen) public key.

The intent of the above definition is to model the scenario where (honest)
users anyway choose the ‘messages’ to be signed from some known distribution.
For example, in the case of e-cash the message might be a random string; in the
case of e-voting the message might be an honestly-generated public key; finally,
a scenario similar (but not identical) to that of Definition 3 can be achieved
if M is the uniform distribution over {m0, m1}. After interacting with users
who choose their messages according to this distribution, the signer is given all
message/signature pairs (in a randomly-permuted order) from the non-aborted
sessions; this corresponds to the scenario when the users in the non-aborted
sessions reveal their message/signature pairs (e.g., by spending an e-coin or

4 This could be specified, e.g., by a circuit whose output (on uniform input) defines
the distribution.
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casting a vote). Informally, the signer ‘wins’ if it can link some
message/signature pair to its corresponding session with probability better
than randomly guessing a non-aborted session.

The nice thing about the above definition is that it models exactly what the
signer actually ‘sees’ in the real world, without imposing any artificial (though
necessary) restrictions. We remark also that Definition 4 in the special case � = 2
implies the general case.

We stress, however, that Definition 4 guarantees no ‘blindness’ whatsoever in
the aborted sessions. In particular, a scheme in which the user reveals m (and
aborts) if the signer sends an improper first message could still potentially be
secure with respect to Definition 4 though it would not satisfy Definition 3. We do
not view this as a problem since we view ‘messages’ as having no inherent secrecy
requirement (indeed, the user eventually reveals its message anyway); rather, the
goal is to prevent the linking of a particular message (that is later used) to a
particular session. In this sense, schemes satisfying a posteriori blindness are
analogous to commitment schemes with a posteriori secrecy (cf. [17, Section
4.8.2.5]). For this reason, schemes satisfying this notion may not be appropriate
for all possible applications of blind signatures.5

3 A Warm-Up for Our Main Result

Our blind signature scheme builds on an elegant construction due to Fischlin [16]
that relies on a common reference string. We review Fischlin’s scheme and then,
as a step toward our main result, present a blind signature scheme that can be
proven concurrently-secure using complexity leveraging (cf. footnote 3).

3.1 Fischlin’s Blind Signature Scheme

We describe a simplified6 version of Fischlin’s scheme that satisfies our definitions
of blindness and unforgeability in the common reference string (CRS) model.
Let Π ′ = (Gen′, Sign′, Vrfy′) be a standard signature scheme, and let Com be
a perfectly-binding commitment scheme. Fischlin’s scheme is defined as follows
(see also Figure 1):

Setup: The CRS contains a public key pkE for a semantically-secure public-
key encryption scheme, and a string ρ used as a CRS for a non-interactive
zero-knowledge (NIZK) proof system. EpkE (·) denotes encryption using pkE .

Key generation: Gen(1k) runs Gen′(1k) to obtain keys (pk′, sk′) and outputs
these keys.

Signing: The protocol for a user U to obtain a signature on a message m is as
follows:

5 However, we conjecture that any scheme satisfying Def. 4 can be converted to one
satisfying Def. 3 by using a commitment to the message in the signing protocol.

6 The scheme presented by Fischlin includes some additional complications that are
used to achieve strong unforgeability, which we do not consider here.
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CRS: pkE, ρ
Public key: pk′

S(sk′) U(m)

� com com ← Com(m)

σ′ ← Sign′
sk′(com) σ′

�
C ← EpkE (com‖σ′)
π : {C correct (for m)}

Fig. 1. Fischlin’s protocol

• U computes com ← Com(m) and sends com to the signer.
• S computes σ′ ← Sign′sk′(com) and sends σ′ to U .
• U verifies the signature sent in the previous step, and aborts if it is invalid.

Otherwise, the user computes C ← EpkE (com‖σ′) and computes an NIZK
proof π (using ρ) that (m, C, pkE , pk′) ∈ L where L is defined as the set of
tuples (m, C, pkE , pk′) for which there exists ω1, ω2, com, σ′ such that

com := Com(m; ω1)
∧

C := EpkE (com‖σ′; ω2)
∧

Vrfy′pk′(com, σ′) = 1 .

(Note that L is an NP language.) The signature is (C, π).
Verification: To verify signature (C, π) on m with respect to public key pk′

and CRS (pkE , ρ), verify that π is a valid proof (with respect to ρ) that
(m, C, pkE , pk′) ∈ L.

We now sketch the proofs of blindness and unforgeability. For blindness, note
that the signer observes only a commitment to m, an encryption of this com-
mitment, and an NIZK proof π; it is not too hard to see that none of these leaks
information about m, nor allows the signer to correlate a particular execution
of the protocol with a particular signature output by U .

For unforgeability, an adversary Û that forges a signature in the sense of Def-
inition 2 can be used to construct a forger F for standard signature scheme Π ′:
given public key pk′ of an instance of Π ′, forger F generates pkE on its own
(along with the corresponding secret key skE), generates ρ at random, and runs
Û in the natural way. F can easily execute the protocol with Û using its own
signing oracle. Finally, if Û outputs � + 1 distinct messages {mi} with valid
signatures {(Ci, πi)}, then with all but negligible probability (by soundness of
the NIZK proof system and perfect binding of the commitment scheme) each
Ci is a valid encryption of a distinct commitment comi and a valid signature
σ′

i (with respect to Π ′) on this commitment. Given this, F can recover all the
{(comi, σ

′
i)} by decrypting all the ciphertexts using skE ; since F accessed its

signing oracle exactly � times, at least one (comi, σ
′
i) leads to a valid forgery

for Π ′.
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3.2 Concurrently-Secure Blind Signatures: A Partial Solution

If we try to adapt Fischlin’s scheme so as to avoid the CRS, we encounter two
main obstacles. We describe these now, along with our solutions.

Removing ρ: If the signer generates ρ, the proof π may leak information about
the underlying m, com, or σ′ (which would violate blindness); on the other hand,
the user clearly cannot generate ρ itself since then soundness may no longer apply
and forgery would be possible.

We can resolve this by relying on ZAPs [14] rather than NIZK, and having
the signer include the first message ρ for a ZAP as part of its public key. (A
ZAP is a two-round witness-indistinguishable proof system; see Appendix A).
Since a ZAP is witness indistinguishable but not zero knowledge, however, the
protocol must be changed so as to provide an alternate witness that will be
available to a simulator (for proving blindness) but not to a malicious user (or else
forgery becomes possible). We provide such a witness by having the signer include
y0 = f(x0) and y1 = f(x1) in its public key, where f is a one-way function,
and then having the signer give a witness-indistinguishable proof of knowledge
of either x0 or x1 as part of the signing protocol [15]. When constructing the
signature (after execution of the signing protocol), the user U computes C as
in Fischlin’s protocol and then gives a witness-indistinguishable proof π that
(essentially) it either constructed C appropriately or it knows one of x0 or x1.

Removing pkE: If the signer generates pkE then it is trivial for a malicious
signer to violate the blindness property; if the user generates pkE on its own,
then the reduction in the proof of unforgeability given in the previous section
no longer works since F can no longer recover a forgery for Π ′ from a forgery
for the blind signature scheme (since it cannot decrypt C).

If we are willing to rely on complexity leveraging, we can overcome this dif-
ficulty by using a commitment scheme Com∗ to construct C rather than an
encryption scheme. If Com∗ is secure against ppt adversaries, blindness still
holds. If, however, Com∗ can be broken in time T (k) for some super-polynomial
function T (·), then (referring to the proof of unforgeability in the previous sec-
tion) we can construct a forger F running in time O(T (k)) who extracts a valid
signature for Π ′. If we further assume that Π ′ is secure even against adversaries
running in time O(T (k)), this still yields a contradiction and is enough to prove
unforgeability of the blind signature scheme.

This gives the main intuition. We now give a more complete description of the
protocol, along with sketches of the proofs of blindness and unforgeability. We
take the liberty of being somewhat informal, as this protocol is meant mainly
as a ‘stepping stone’ toward our main result (which does not use complexity
leveraging).

Let Π ′ = (Gen′, Sign′, Vrfy′) be a standard signature scheme, and let f be
a one-way function. We assume these are secure (in the appropriate sense) for
adversaries running in time O(T (k)), where T (·) is a super-polynomial function.
Let Com, Com∗ be perfectly-binding commitment schemes, where Com∗ is such
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Public key: pk′, y0, y1, ρ
S(sk′, x0) U(m)

� com com ← Com(m)

�
WI-PoK : f−1(y0) or f−1(y1)

�� verify

σ′ ← Sign′
sk′(com) σ′

�
C∗

1 ← Com∗(com‖σ′)
C∗

2 ← Com∗(0k)

π :

C∗
1 correct (for m)

or
C∗

2 = Com∗(f−1(y0))
or

C∗
2 = Com∗(f−1(y1))

Fig. 2. A partial solution using complexity leveraging

that given C∗ ← Com∗(m) it is possible to recover m in time T (k). (However,
Com∗ is still hiding for ppt adversaries.) Our protocol is defined as follows:

Key generation: Gen(1k) runs Gen′(1k) to obtain keys (pk′, sk′). It also chooses
x0, x1 ← {0, 1}k and sets y0 := f(x0) and y1 := f(x1). Finally, it com-
putes ρ as the verifier’s initial message in a ZAP. The public key is PK :=
(pk′, y0, y1, ρ) and the secret key is SK := (sk′, x0).

Signing: The protocol for U to obtain a signature on message m is as follows:
• U computes com ← Com(m) and sends com to the signer.
• S and U execute a witness-indistinguishable proof of knowledge (WI-PoK)

in which S proves knowledge of either f−1(y0) or f−1(y1). (This should
be witness indistinguishable even against adversaries running in O(T (k))
time.) If this proof fails, U aborts.

• S computes σ′ ← Sign′sk′(com) and sends σ′ to U .
• U verifies the signature sent in the previous step, and aborts if it is invalid.

Otherwise, the user computes C∗
1 ← Com∗(com‖σ′) and C∗

2 ← Com∗(0k). It
then computes a ZAP π (with respect to ρ) that (m, C∗

1 , C∗
2 , pk′, y0, y1) ∈ L,

where L contains tuples for which there exist ω1, ω2, com, x, σ′ such that:

com := Com(m; ω1)
∧

C∗
1 := Com∗(com‖σ′; ω2)

∧
Vrfy′pk′(com, σ′) = 1

or
C∗

2 := Com∗(x; ω2)
∧

f(x) ∈ {y0, y1}

(Note that L ∈ NP .) The signature is (C∗
1 , C∗

2 , π).
Verification: To verify signature (C∗

1 , C∗
2 , π) on message m, verify that π is a

valid proof (with respect to ρ) that (m, C∗
1 , C∗

2 , pk′, y0, y1) ∈ L.
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We now sketch the proofs of blindness and unforgeability. Again, these are
informal because they are mostly intended to provide the reader with some
intuition toward our main result that appears in the following section.

Proof sketch (blindness). Given a malicious signer Ŝ we will consider a se-
quence of hybrid experiments, and argue that the success probability of Ŝ (in
the sense of Definition 3) cannot change by more than a negligible amount in go-
ing from one experiment to the next. The first experiment is the original game
of Definition 3, and in the final experiment the success probability of Ŝ will
be exactly 1/2. We conclude that the success probability of Ŝ in the original
experiment is negligibly-close to 1/2, thus proving blindness.

In the initial experiment H0 the signer Ŝ outputs a public key PK = (pk′,
y0, y1, ρ) and two equal-length messages m0, m1. A random bit b is chosen and
Ŝ interacts with Ub

def= UPK(mb) and Ub̄
def= UPK(mb̄). If neither of these users

aborts, then Ŝ is given the signatures output by these users. Finally, Ŝ outputs
a bit b′, and succeeds if b′ = b.

In the first hybrid experiment H1, whenever U0 does not abort we extract
from the WI-PoK (given by Ŝ to U0) a value x such that f(x) ∈ {y0, y1}. If Ŝ
gives a valid WI-PoK but extraction fails, b′ is chosen at random; otherwise, b′ is
computed as in H0. Clearly, the success probabilities in games H0 and H1 differ
by only a negligible amount. We remark that extraction here is only required
from one of the proofs given by Ŝ, and furthermore if the WI-PoK given to U0
fails then no signatures need be provided to Ŝ (even if the WI-PoK given to
U1 succeeds). Thus, no difficulties arise due to the concurrent execution of two
WI-PoKs by Ŝ.

In H2, the signatures output by U0, U1 are both computed using the witness
x that was extracted (this is only done if neither user aborts and extraction is
successful, as otherwise either Ŝ is given (⊥, ⊥) or else extraction failed and b′ is
chosen at random). Specifically, each user computes C∗

1 as before but now sets
C∗

2 := Com∗(x; ω); the proof π is constructed using (ω, x) as the witness. Hiding
of Com∗ (for ppt adversaries) and witness-indistinguishability of the ZAP imply
that the success probabilities of Ŝ in experiments H1 and H2 differ by only a
negligible amount.

In the final experiment H3, the first component C∗
1 of the signature generated

by each user is computed as a commitment to ‘garbage’, i.e., an all-0s string of
the appropriate length. Also, the commitments com sent by each of the users
during their execution of the protocol are replaced with commitments to garbage
as well. Hiding of Com and Com∗ (against ppt adversaries) again implies that
the success probabilities in experiments H2 and H3 differ by only a negligible
amount.

In H3, both protocol executions are distributed identically and both signa-
tures are independent of these executions; thus, the probability of success is
exactly 1/2. This concludes the proof.

Proof sketch (unforgeability). As in the analysis of the Fischlin scheme, an
adversary Û that, with non-negligible probability, forges a signature with respect
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to the blind signature scheme can be used as a sub-routine of an algorithm that
‘breaks’ another cryptographic assumption. Here, however, there are two main
differences:
1. First, the resulting algorithm must be able to extract the underlying mes-

sages being committed to in C∗
1 and/or C∗

2 ; this can be done in time T (k)
(but not in polynomial time) and so we obtain an algorithm running in
O(T (k)) time rather than in polynomial time.

2. Second, the algorithm is only ensured to extract (with non-negligible prob-
ability) either � + 1 distinct commitments {comi} along with � + 1 valid
signatures {σ′

i}, or a value x with f(x) ∈ {y0, y1} (in the proof for the
Fischlin scheme only the first of these could occur). The first event imme-
diately leads to a forgery on Π ′. The second event leads to an algorithm I
inverting f with non-negligible probability (using the technique of Feige and
Shamir [15]).

If the signature scheme Π ′ and the one-way function f are secure even against
adversaries running in time O(T (k)), the above leads to a contradiction. Hence,
we conclude that the blind signature scheme is unforgeable.

4 A Concurrently-Secure Blind Signature Scheme

In this section, we describe our main result: a concurrently-secure blind sig-
nature scheme based on standard cryptographic assumptions. In addition to a
standard signature scheme, our construction also relies on a perfectly-binding
commitment scheme and a ZAP, reviewed in Appendix A. We also use a spe-
cial type of commitment scheme, described below, and a particular concurrent
zero-knowledge protocol, discussed in detail in the following section.

For our protocol we will require a special type of commitment scheme that we
call ambiguous. In such a scheme, commitment depends on a key pkc which can
be generated in one of two ways: either by a ‘normal’ key-generation procedure
ComGen, or by an ‘alternate’ key-generation procedure ExtGen which outputs
some additional trapdoor information td along with pkc. If pkc is generated by
ComGen, the scheme is perfectly hiding. On the other hand, if pkc is generated
by ExtGen then td enables extraction of the committed value. Formally:

Definition 5. An ambiguous commitment scheme is a tuple of ppt algorithms
(ComGen, ExtGen, Com, Extract) such that:

Functionality: ComGen(1k) outputs a key pkc. ExtGen(1k) outputs a key pkc

and a trapdoor td.
Indistinguishability: The keys output by ComGen and ExtGen are computa-

tionally indistinguishable; that is:
{

pkc ← ComGen(1k) : pkc

}
c≈

{

(pkc, td) ← ExtGen(1k) : pkc

}

.

Perfect hiding: If pkc is output by ComGen, then (with probability 1) Compkc(·)
is a perfectly-hiding commitment scheme.
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Extraction: If (pkc, td) is output by ExtGen, then Extracttd(Compkc(m)) = m
with probability 1. (This implies that if pkc is output by ExtGen, then
Compkc(·) is perfectly binding.)

The last two requirements imply that the ranges of ComGen and ExtGen are
disjoint.

Commitment schemes with the above functionality (satisfying also some addi-
tional requirements) were shown previously by Damg̊ard and Nielsen [13] based
on a variety of number-theoretic assumptions. The following construction is eas-
ily seen to satisfy Definition 5 under the decisional Diffie-Hellman assumption:

– ComGen(1k) first generates a group G of prime order q, along with gener-
ators g, h ∈ G. It then chooses r1, r2 ← Zq. If r1 �= r2 it outputs pkc =
(G, q, g, h, gr1, hr2), and otherwise7 it outputs pkc = (G, q, g, h, g0, h1).

– ExtGen(1k) generates G, q, g, h exactly as ComGen. It then chooses r ← Zq

and outputs pkc = (G, q, g, h, gr, hr) and td = r.
– Com∗

pkc
(m), where m ∈ G and pkc = (G, q, g, h, g1, h1), chooses random

x, y ← Zq and outputs A = gxhy and B = gx
1hy

1 · m.
– Extractr(A, B) outputs B/Ar.

4.1 The PRS Concurrent Zero-Knowledge Protocol

As part of our blind signature scheme, we rely on a concurrent zero-knowledge
protocol adapted from work of Prabhakaran, Rosen, and Sahai [30,32] and de-
scribed in Figure 3; we will refer to this protocol as cZK. Protocol cZK is almost
identical to the protocol shown in [32, Section 4.8.2], with one difference being
that we are satisfied with an argument system8 rather than a proof system.
The first step of the second stage of cZK is also added specifically for the proof
of security of our blind signature scheme. Finally, cZK is also a (stand-alone)
argument of knowledge, something we need for our protocol.

We do not offer a proof that cZK satisfies the definition of concurrent zero-
knowledge, appealing instead to the analysis in [32] which extends without sig-
nificant modification to our protocol. Actually, for the proof of security of our
blind signature scheme we do not rely on the concurrent zero-knowledge property
of cZK as a ‘black-box,’ but instead rely on the properties of the specific zero-
knowledge simulator shown by Prabhakaran, et al. We therefore briefly describe
their simulation strategy at a high level.

The keys to the simulation strategy of [30] are that (1) second-stage messages
can be simulated (without knowing a witness) in a straight-line manner as long
as the simulator learns in advance the value α that the verifier committed to
in the first phase; and (2) the value α can be extracted if the verifier ever
answers correctly for two different values of sj . Correspondingly, the simulation
7 We explicitly check whether r1 �= r2, even though this occurs with negligible proba-

bility, since perfect hiding for keys output by ComGen must hold with probability 1.
8 Recall that in a proof system soundness must hold unconditionally, while in an

argument system soundness need only hold against a ppt cheating prover.
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Inputs: The prover and verifier reduce their common input to a graph G = (V, E).
From its witness, the prover computes (as private input) a Hamiltonian cycle C ⊆
E. Let k be the security parameter.

First stage: Let r = log2(k).

1. The verifier uniformly selects α ∈ {0, 1}r , and then chooses values {α0
i,j}r

i,j=1

and {α1
i,j}r

i,j=1 at random subject to the constraint that α0
i,j ⊕ α1

i,j = α for
all i, j. The verifier sets com ← Com(α) and comb

i,j ← Com(αb
i,j), and sends

all these commitments to the prover.
2. For j = 1, . . . , r:

1. The prover selects a random sj ∈ {0, 1}r and sends it to the verifier.

2. Let sj = sj
1 · · · sj

r. The verifier sends {αs
j
i

i,j}r
i=1 along with the randomness

used in generating {coms
j
i

i,j}r
i=1. The prover verifies that these match the

corresponding initial commitments sent by the verifier, and aborts if this
is not the case.

Second stage: The prover and verifier run r parallel executions of (a modified version
of) Blum’s Hamiltonicity protocol [7]:

1. The verifier and prover execute a (standard) zero-knowledge proof in which
the verifier proves that its commitments (sent in step 1 of the first phase) are
‘consistent’: namely, that there exist values α and {α0

i,j , α
1
i,j}r

i,j=1 such that
(1) com is a commitment to α; (2) comb

i,j is a commitment to αb
i,j for all i, j, b;

and (3) α0
i,j ⊕α1

i,j = α for all i, j. If the verifier’s proof fails, the prover aborts.
2. The prover selects r random permutations π1, . . . , πr of the vertices V , and

sends perfectly-binding commitments to the entries of the adjacency matrices
of the resulting permuted graphs.

3. The verifier sends α, and the verifier and prover execute a (standard) zero-
knowledge proof in which the verifier proves that com is a commitment to α.
If the verifier’s proof fails, the prover aborts.

4. For j = 1, . . . , r do: if αj = 1 send πj and open all the commitments in
the jth adjacency matrix. If αj = 0 open only the commitments to entries
corresponding to the (permuted) cycle C.

5. The verifier checks the values sent by the prover in the standard way.

Fig. 3. A concurrent zero-knowledge argument of knowledge

used in [30,32] can be separated, both conceptually and functionally, into two
parts: a ‘look-ahead’ sub-routine (whose goal is to extract α for all existing
sessions) and a ‘straight-line simulation’ sub-routine (which actually generates
the transcript that is output by the simulator). The look-ahead sub-routine
dynamically updates a table containing (roughly speaking) all the α-values that
have been extracted thus far; if the straight-line simulation sub-routine is reached
and a corresponding value of α (needed to continue the simulation) is not in the
table, the simulator aborts with output ⊥.

Another important feature of the simulation strategy is that control alternates
between the two sub-routines according to a fixed schedule that does not depend
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on the actions of the particular verifier under consideration. This, in turn, means
that we can distinguish in advance the portion of the simulator’s random coins
that are used for ‘look-aheads’ and those that are used for straight-line simu-
lation. We will exploit this feature in the unforegablility proof of our protocol.
We remark also that the transcript generated by the ‘straight-line simulation’
sub-routine is built up incrementally, message-by-message, but once a message
is placed in this transcript it is never removed.

4.2 Our Construction: An Overview

We begin with some intuition motivating our construction. Recalling the scheme
presented in Section 3.2, we see that the use of complexity leveraging there is due
to the need to extract from the commitments of Û in the proof of unforgeability
(which requires super-polynomial time). A first thought is to let Com∗ in that
protocol be an ambiguous commitment scheme, with the public key pkc for the
commitment included in the signer’s public key and generated using ComGen.
Then, in the proof of unforgeability, we can generate pkc using ExtGen (instead
of ComGen) and thus extract the necessary values from the signature forgeries
output by Û .

An immediate problem is that a malicious signer could then easily violate
blindness by generating pkc using ExtGen. To prevent this, we have the signer
provide a proof9 that pkc was correctly generated as part the signing protocol.
Because we will want to replace pkc with an incorrectly-generated key in the
proof of unforgeability, this proof will need to be (concurrent) zero knowledge
(witness indistinguishability does not help us here). Because we will again want
to provide an ‘alternate’ witness in the proof of blindness, it will also be a proof
of knowledge. We remark that once we introduce this change, we no longer need
the values y0, y1 in the signer’s public key

This almost completes the description of our protocol. However, a difficulty
arises if we try to prove unforgeability of the construction as described to this
point. Roughly speaking, for the construction thus far it is possible to prove the
following:

Given Û who interacts with � instances of S and outputs � + 1 valid
signatures on distinct messages with non-negligible probability (cf. Def-
inition 2), we can construct an adversarial forger F who interacts with
a signing oracle for (standard signature scheme) Π ′ and outputs � + 1
valid signatures on distinct messages with non-negligible probability.

The problem is that F makes more than � queries to its signing oracle, and it is
therefore not clear that the � + 1 signatures output by F yield a valid forgery!
To see why, note that although Û invokes only � instances of S, simulation of
the zero-knowledge proof by F requires rewinding of Û , and many more than �
signatures will have to be generated as part of this rewinding. (In the protocol
of Section 3.2 no rewinding was needed and so F made exactly � queries to its

9 Actually, we use an argument system but this does not affect the intuition.
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Public key: pk′, pkc, ρ
S(sk′) U(m)

� com com ← Com(m)

�
cZK : {pkc correct}

�� verify
nonce ← {0, 1}k

σ′ ← Sign′
sk′(com‖nonce) nonce, σ′

�
C∗ ← Com∗

pkc
(com‖nonce‖σ′)

π :

⎧

⎨

⎩

C∗ correct (for m)
or

pkc correct

⎫

⎬

⎭

Fig. 4. A high-level overview of our protocol

signing oracle there.) Dealing with this issue is the most difficult and technically-
involved aspect of our construction.

We resolve the issue in the following way: instead of having the signer generate
a (standard) signature on the commitment com sent by the user in the first round,
we have the signer choose a random string nonce ∈ {0, 1}k and sign com‖nonce
(computation of the final signature by U is changed in the obvious way). In the
proof of unforgeability, we still construct a forger F who outputs � + 1 valid sig-
natures on distinct messages {(comi‖noncei)}, but requests more than � signa-
tures from its signing oracle. Now, however, we can show that these � + 1 mes-
sages are (in a certain sense) independent of the random nonces used during the
rewinding done by F . (Here, in particular, we rely on the fact that in step 1 of
the second phase of cZK the verifier proves consistency of its commitments, and
therefore it does not matter in which iteration the simulator extracted α.) Since
the nonces used during rewinding are chosen at random, this means that with
overwhelming probability at least one of the messages comi‖noncei will be differ-
ent from any query made by F to its signing oracle, in which case F can output a
forgery for Π ′.

We remark that in proving the above we rely on the specific concurrent zero-
knowledge protocol cZK, as well as a particular simulation strategy for this
protocol, rather than relying on concurrent zero-knowledge in a ‘black-box’ way.
Indeed, we do not know how to prove unforgeability of our construction when
instantiated with an arbitrary concurrent zero-knowledge protocol.

4.3 Our Construction

We now give the details of our construction. Let Π ′ = (Gen′, Sign′, Vrfy′) be
a standard signature scheme, let cZK be the protocol of Figure 3, and let
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(ComGen, ExtGen, Com∗, Extract) be an ambiguous commitment scheme. Our
protocol is constructed as follows (see Figure 4):

Key generation: First, Gen′(1k) is run to obtain keys (pk′, sk′) and
ComGen(1k) is run to obtain pkc. The signer also computes ρ as the ver-
ifier’s initial message in a ZAP. The public key is PK := (pk′, pkc, ρ) and the
secret key is sk′ along with the randomness used to generate pkc.

Signing: The protocol for a user U to obtain a signature on a message m is as
follows:

• U computes com ← Com(m) and sends com to the signer.
• S and U execute protocol cZK by which S proves that pkc was generated

correctly. Formally, it proves that pkc ∈ LComGen, where

LComGen
def=

{

pkc : ∃ω s.t. pkc := ComGen(1k; ω)
}

.

If this proof fails, U aborts. If S aborts in cZK (because it detects that U
is cheating), then S aborts the entire signing protocol.

• S chooses nonce ← {0, 1}k, computes σ′ ← Sign′sk′(com‖nonce), and sends
nonce, σ′ to U .

• U verifies the signature sent in the previous step, and aborts if it is invalid.
Otherwise, the user computes C∗ ← Com∗

pkc
(com‖nonce‖σ′). It then com-

putes a ZAP π (with respect to ρ) that (m, C∗, pk′, pkc) ∈ L2, where L2
contains tuples such that there exist ω1, ω2, com, nonce, σ′ with:

(

com := Com(m; ω1)
∧

C∗ := Com∗
pkc

(com‖nonce‖σ′; ω2)
∧

Vrfy′pk′(com‖nonce, σ′) = 1
)

or
pkc := ComGen(1k; ω1)

The signature is (C∗, π).

Verification: To verify signature (C∗, π) on message m, verify that π is a valid
proof (with respect to initial message ρ) that (m, C∗, pk′, pkc) ∈ L2.

We claim the following about the above scheme:

Theorem 1. Assuming that (1) Com is computationally hiding; (2) (ComGen,
ExtGen, Com∗, Extract) is an ambiguous commitment scheme; (3) cZK is an ar-
gument of knowledge with negligible knowledge error; and (4) the ZAP being used
is witness indistinguishable, the blind signature scheme above satisfies blindness.

Theorem 2. Assuming that (1) Com is perfectly binding; (2) (ComGen, ExtGen,
Com∗, Extract) is an ambiguous commitment scheme; (3) the ZAP being used
has negligible soundness error; and (4) Π ′ = (Gen′, Sign′, Vrfy′) is existentially
unforgeable under adaptive chosen-message attacks, the blind signature scheme
above satisfies unforgeability.
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The proof of blindness (in the sense of Definition 3) follows the general structure
of the proof of blindness sketched in Section 3.2. (The above scheme also satisfies
all definitions of blindness mentioned in Section 2 and in particular Definition 4.)
The proof of unforgeability was sketched in Section 4.2. Complete proofs of all
the above will appear in the full version.
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A ZAPs

A ZAP is a 2-round witness-indistinguishable proof (with negligible sound-
ness error) for some NP-language L with associated relation RL. Formally, let
Lp(k)

def= L ∩ {0, 1}≤p(k). A ZAP consists of two polynomial-time interactive
algorithms P , V along with a polynomial p such that:

• On input 1k, the verifier V outputs an initial message ρ.
• On input ρ, a statement x ∈ Lp(k), and a witness w such that (x, w) ∈ RL,

the prover P outputs a proof π.
• Given ρ, x, and π, the verifier V outputs a decision bit.

For any k and (x, w) as above, V(ρ, x, P(ρ, x, w)) = 1 with probability 1. A ZAP
also satisfies adaptive soundness even against all-powerful cheating provers; that
is, for arbitrary P∗ the following is negligible:

Pr
[

ρ ← V(1k); (x, π) ← P∗(ρ) : V(ρ, x, π) = 1
∧

x �∈ L
]

.

We define witness indistinguishability by requiring that the advantage of any
ppt adversary A in the following game is negligible:
1. A(1k) outputs a string ρ, a sequence x1, . . . , x� ∈ Lp(k), and two sequences

w0
1 , . . . , w

0
� and w1

1 , . . . , w
1
� . It is required that (xi, w

0
i ), (xi, w

1
i ) ∈ RL for all i.

2. A random bit b is chosen.
3. Compute πi ← P(ρ, xi, w

b
i ) for all i, and give these to A.

4. A outputs a bit b′. The advantage of A is
∣
∣Pr[b′ = b] − 1

2

∣
∣.

ZAPs can be constructed based on trapdoor permutations [14].
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