
A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 5–10, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assertion-Based Verification:
Industry Myths to Realities

(Invited Tutorial)

Harry Foster

Mentor Graphics Corporation
Plano, Texas

Harry_Foster@mentor.com

Abstract. Debugging, on average, has grown to consume more than 60% of to-
day’s ASIC and SoC verification effort. Clearly, this is a topic the industry must
address, and some organizations have done just that. Those that have adopted
an assertion-based verification (ABV) methodology have seen significant re-
duction in simulation debugging time (as much as 50% [1]) due to improved
observability. Furthermore, organizations that have embraced an ABV method-
ology are able to take advantage of more advanced verification techniques, such
as formal verification, thus improving their overall verification quality and re-
sults. Nonetheless, even with multiple published industry case studies from
various early adopters—each touting the benefits of applying ABV—the indus-
try as a whole has resisted adopting assertion-based techniques. This tutorial
provides an industry survey of today’s ABV landscape, ranging from myths to
realities. Emerging challenges and possible research opportunities are dis-
cussed. The following extended abstract provides a reference on which the tuto-
rial builds.

Keywords: Assertion, Assertion-Based Verification, Debugging, Formal Veri-
fication, Functional Verification, Property Specification, Simulation.

1 Introduction

Ensuring functional correctness on RTL designs continues to pose one of the greatest
challenges for today's ASIC and SoC design teams. Very few project managers would
disagree with this statement. In fact, an often cited 2004 industry study by Collett
International Research revealed that 35 percent of the total ASIC development effort
was spent in verification [2]. In 2008, Far West Research published a study that indi-
cated the verification effort has risen to 46 percent of the total ASIC development
effort [3]. Furthermore, these industry studies reveal that debugging is the fastest-
growing component of the verification effort, and that it consumes 60 percent of the
total verification effort. Unfortunately, with this increase in verification effort, the
industry has not experienced a measurable increase in quality of results. For example,
the Collett International Research study focused on design closure and revealed that
only 29 percent of projects developing ASICs were able to achieve first silicon

6 H. Foster

success. To make matters worse, the industry is witnessing increasing pressure to
shorten the overall ASIC and SoC development cycle. Clearly, new design and verifi-
cation techniques, combined with a focus on maturing functional verification process
capabilities within an organization (and the industry as a whole), are required. Asser-
tion-based verification (ABV), although certainly not an end-all to the verification
challenge, does directly address today’s debugging problem, while providing an inte-
gration path for more advanced forms of verification into the design flow (such as
formal verification). This tutorial discussion provides a survey of today’s ABV land-
scape, ranging from assertion language standardization efforts to industry case-
studies, to common industry myths and objections that are impeding adoption, to
emerging challenges and research opportunities.

2 Background

Alan Turing made the following observation over 50 years ago [4]: “How can one
check a large routine in the sense of making sure that it's right? In order that the man
who checks may not have too difficult a task, the programmer should make a number
of definite assertions which can be checked individually, and from which the correct-
ness of the whole program easily flows.” In essence, this view is at the heart of ABV.

Informally, an assertion is a statement of design intent that can be used to specify
design behavior. Assertions may specify internal design behaviors (such as a specific
FIFO structure) or external design behavior (such as protocol rules or even higher-
level, end-to-end behavior that spans multiple design blocks). One key characteristic
of assertions is that they allow the user to specify what the design is supposed to do at
a high level of abstraction, without having to describe the details of how the design
intent is to be implemented. Thus, this abstract view of the design intent is ideal for
the verification process—whether we are specifying high-level requirements or lower-
level internal design behavior by means of assertions.

As a background for the ABV discussion, this tutorial traces events (from an indus-
try perspective) that led to the emergence of assertion-based techniques.

3 The Road to Assertion Language Standards

Assertions are certainly not a new phenomenon in either software programming or
hardware description languages. For example, languages such as Java and VHDL
have contained simple assertion constructs for years —thus providing a convenient
mechanism for ferreting out a class of bugs that can be identified by checking a Boo-
lean condition (such as referencing a NULL pointer). Today’s assertion languages,
such as the IEEE Std 1850™-2005 Standard for Property Specification Language
(PSL) and the assertion language contained within the IEEE Std 1800™-2005 Sys-
temVerilog Verification and Hardware Description Language (SVA), not only allow
the user to specify Boolean conditions, but also their relation over time using tempo-
ral logic and a generalized form of regular expressions.

The foundation for today’s assertion language standards is built on the works of
Amir Pnueli (linear time logic LTL [5]), and Ed Clarke and Allen Emerson (computa-
tion tree logic CTL [6]). Furthermore, the works of Moshe Vardi and Pierre Wolper

 Assertion-Based Verification: Industry Myths to Realities 7

provided significant contributions in that they helped improve expressiveness of LTL
through the use of regular sequences of Boolean events [7, 8, 9]. Extending the ex-
pressiveness of CTL was later demonstrated by [10].

In the early 1990’s, researchers at the IBM Haifa Research Laboratory developed
the temporal language Sugar, which was a syntactic simplification (or sugaring) of
CTL. The goal was to simplify the specification process for the RuleBase model
checker. To improve usability and expressiveness, regular expressions were added to
the language in the mid 1990’s [11]. By the late 1990’s, IBM had expanded its use of
the Sugar assertion language for simulation [1].

With a similar motive, researchers at Intel Strategic CAD Labs developed the For-
Spec property specification language, whose underlying logic is the ForSpec Tempo-
ral Logic (FTL) [12], which is based on LTL. Their decision to base FTL on LTL was
driven by a desire to combine formal verification and dynamic validation techniques
in a limited fashion. Furthermore, experience had demonstrated that mainstream veri-
fication engineers generally find branching time unintuitive—particularly since they
are familiar with dynamic validation, which is inherently linear.

In 2000, both Sugar and ForSpec, in addition to the temporal property languages
CBV from Motorola and Temporal e from Verisity, were donated to Accellera Formal
Verification Technical Committee (FVTC) as candidate languages for standardiza-
tion. The process within the committee was to establish a set of requirements for an
assertion language and select a single language from four candidates. The final selec-
tion would then form the basis for the new standard, which then would undergo modi-
fication and enhancements dictated by the language requirements identified by the
committee. For example, one of the committee’s identified requirements was that its
underlying semantics for the final standard should be based on linear time. This re-
quirement influenced the IBM team to move Sugar from its branching-time semantics
based on CTL to the linear-time semantics of LTL. In 2002, the FVTC selected Sugar
as the base language, and it was approved by Accellera in 2004. Ultimately, the IEEE
1850™-2005 Property Specification Language PSL standard, based on the Accellera
standard, was approved in October 2005 [13].

In 2002, work was underway in Accellera for the creation of a new version of Ver-
ilog, which would combine hardware description and hardware verification language
capabilities into a single language. This effort resulted in the IEEE 1800™-2005 Sys-
temVerilog – Unified Hardware Design, Specification, and Verification Language
standard, which was approved in November 2005. A major feature of this new lan-
guage was the addition of temporal assertions, referred to as SystemVerilog Asser-
tions (SVA). SVA has its roots in Open Vera Assertions (from Synopsys), ForSpec,
and PSL. SVA provides direct links to control the verification environment by using
action blocks associated with its cover and assertion directives. This capability allows
the user to create reusable verification IP that can easily communicate with other
verification components within the testbench, thus providing a separation between
verification IP detection and action. In addition, the language provides a convenient
mechanism for expressing a data integrity class of properties through the use of local
variables. An SVA local variable provides the benefit of sampling and manipulating
data in a property or sequence without requiring the property writer to define auxiliary
state machines to model the intended behavior [14].

8 H. Foster

This tutorial compares and contrasts these two new industry standards, PSL and
SVA, and then discusses future language directions for both.

3 Industry Challenges

A few industry surveys indicate that approximately 60 percent of the industry is cur-
rently employing assertion-based techniques [15]. However, these surveys are flawed
in that they were conducted at conferences with a large attendance of engineers al-
ready using advanced verification techniques. From my own experience of engaging
with a larger more diverse population of engineers in the industry, ranging from the
extremely advanced to extremely basic, I would estimate that the figure is closer to 25
percent. Hence, it is a myth that ABV is a mainstream process. Increased adoption
will only occur as organizations begin to invest in maturing their process capabilities.

In the early 1990’s, the design community moved design up a level of abstraction
from gate level to RT level. You will see evidence of this shift in Fig. 1, with the
increase in the curve representing our ability to design larger blocks [3]. Yet even
with today’s synthesis breakthroughs in design productivity, designing and synthesiz-
ing RTL entirely from scratch cannot keep pace with what we are capable of fabricat-
ing. Hence, third-party IP that moves design to the transaction level will be necessary
to increase design productivity.

Fig. 1. Productivity gap, as reported by the Collett 2004 industry study [2]

Upon further examining Fig. 1, you might be drawn to the disparity between what
we can design and what we are able to verify. Yet in many respects, the data in Fig. 1
seems to defy reality. Design teams actually do verify complex chips today, which is
obvious from the myriad new electronic products available. In fact, today’s verifica-
tion gap is not due to a lack of innovation in verification technology. What differenti-
ates a successful team from an unsuccessful team is process and adoption of new
verification methods. Unsuccessful teams tend to approach development in an ad hoc

 Assertion-Based Verification: Industry Myths to Realities 9

fashion, while successful teams employ a more mature level of methodology that is
systematic.

In this tutorial, I present multiple case studies illustrating successful integration of
ABV by more advanced verification teams. In addition, I present case studies that
illustrate multiple challenges faced by mainstream verification teams when attempting
to adopt assertion-based techniques.

4 Future Direction and Research Opportunities

The industry is currently facing a design and verification productivity crisis, as illus-
trated by Fig. 1. Today’s RTL-based flows cannot accommodate rapid iterations in
design explorations, nor can they accommodate late stage changes in design features
required by the growing consumer and wireless electronics market. Historically, in-
creases in productivity have been achieved by raising the level of design and verifica-
tion abstraction. Today, industry is just beginning to witness a shift in abstraction
level from RTL to transaction level. While the increase in abstraction offers many
advantages, there are a number of unanswered questions in terms of how to describe
design intent (that is, assertions) on transaction-level models. These unanswered ques-
tions present opportunities for future research.

In this tutorial, I present a number of ABV research opportunities, which are based
on discussions with multiple tool developers and industry experts currently applying
assertion-based techniques.

References

1. Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs—Automatic Gen-
eration of Simulation Checkers from Formal Specifications. In: Proc. 12th International
Conference Computer Aided Verification, pp. 414–427 (2000)

2. 2004 IC/ASIC Functional Verification Study, Industry report from Collett International
Research, p. 34 (2004)

3. EDA Market Statistics Service Report, Far West Research (2008)
4. Turing, A.: In Report of a conference on high speed automatic calculating machines, pp.

67–69, Univ. Math. Laboratory, Cambridge (1949)
5. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. on Foundation of

Computer Science, pp. 46–57 (1977)
6. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using

branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

7. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2), 72–
99 (1983)

8. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Compu-
tation 115(1), 1–37 (1994)

9. Vardi, M.Y.: Branching vs. linear time: Final showdown. In: Margaria, T., Yi, W. (eds.)
ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, Springer, Heidelberg (2001)

10. Iwashita, H., Nakata, T.: Forward Model Checking Techniques Oriented to Buggy De-
signs. In: International Conference on Computer Aided Design, ICCAD (1997)

11. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)

10 H. Foster

12. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec Temporal
Logic: A New Temporal Property-Specification Language. In: Katoen, J.-P., Stevens, P.
(eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidel-
berg (2002)

13. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
14. Long, J., Seawright, A.: Synthesizing SVA Local Variables for Formal Verification. In:

Proceedings of the 44th Design Automation Conference, DAC 2007, pp. 75–80 (2007)
15. Verification Census, extracted from the world-wide-web on April 16 (2008),

 http://www.deepchip.com/posts/dvcon07.html

	Assertion-Based Verification: Industry Myths to Realities
	Introduction
	Background
	The Road to Assertion Language Standards
	Industry Challenges
	Future Direction and Research Opportunities
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

