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Abstract. Debugging, on average, has grown to consume more than 60% of to-
day’s ASIC and SoC verification effort. Clearly, this is a topic the industry must 
address, and some organizations have done just that. Those that have adopted 
an assertion-based verification (ABV) methodology have seen significant re-
duction in simulation debugging time (as much as 50% [1]) due to improved 
observability. Furthermore, organizations that have embraced an ABV method-
ology are able to take advantage of more advanced verification techniques, such 
as formal verification, thus improving their overall verification quality and re-
sults. Nonetheless, even with multiple published industry case studies from 
various early adopters—each touting the benefits of applying ABV—the indus-
try as a whole has resisted adopting assertion-based techniques. This tutorial 
provides an industry survey of today’s ABV landscape, ranging from myths to 
realities. Emerging challenges and possible research opportunities are dis-
cussed. The following extended abstract provides a reference on which the tuto-
rial builds. 
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1   Introduction 

Ensuring functional correctness on RTL designs continues to pose one of the greatest 
challenges for today's ASIC and SoC design teams. Very few project managers would 
disagree with this statement. In fact, an often cited 2004 industry study by Collett 
International Research revealed that 35 percent of the total ASIC development effort 
was spent in verification [2]. In 2008, Far West Research published a study that indi-
cated the verification effort has risen to 46 percent of the total ASIC development 
effort [3]. Furthermore, these industry studies reveal that debugging is the fastest-
growing component of the verification effort, and that it consumes 60 percent of the 
total verification effort. Unfortunately, with this increase in verification effort, the 
industry has not experienced a measurable increase in quality of results. For example, 
the Collett International Research study focused on design closure and revealed that 
only 29 percent of projects developing ASICs were able to achieve first silicon  
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success. To make matters worse, the industry is witnessing increasing pressure to 
shorten the overall ASIC and SoC development cycle. Clearly, new design and verifi-
cation techniques, combined with a focus on maturing functional verification process 
capabilities within an organization (and the industry as a whole), are required. Asser-
tion-based verification (ABV), although certainly not an end-all to the verification 
challenge, does directly address today’s debugging problem, while providing an inte-
gration path for more advanced forms of verification into the design flow (such as 
formal verification). This tutorial discussion provides a survey of today’s ABV land-
scape, ranging from assertion language standardization efforts to industry case-
studies, to common industry myths and objections that are impeding adoption, to 
emerging challenges and research opportunities.  

2   Background 

Alan Turing made the following observation over 50 years ago [4]: “How can one 
check a large routine in the sense of making sure that it's right? In order that the man 
who checks may not have too difficult a task, the programmer should make a number 
of definite assertions which can be checked individually, and from which the correct-
ness of the whole program easily flows.” In essence, this view is at the heart of ABV. 

Informally, an assertion is a statement of design intent that can be used to specify 
design behavior. Assertions may specify internal design behaviors (such as a specific 
FIFO structure) or external design behavior (such as protocol rules or even higher-
level, end-to-end behavior that spans multiple design blocks). One key characteristic 
of assertions is that they allow the user to specify what the design is supposed to do at 
a high level of abstraction, without having to describe the details of how the design 
intent is to be implemented. Thus, this abstract view of the design intent is ideal for 
the verification process—whether we are specifying high-level requirements or lower-
level internal design behavior by means of assertions. 

As a background for the ABV discussion, this tutorial traces events (from an indus-
try perspective) that led to the emergence of assertion-based techniques. 

3   The Road to Assertion Language Standards 

Assertions are certainly not a new phenomenon in either software programming or 
hardware description languages. For example, languages such as Java and VHDL 
have contained simple assertion constructs for years —thus providing a convenient 
mechanism for ferreting out a class of bugs that can be identified by checking a Boo-
lean condition (such as referencing a NULL pointer). Today’s assertion languages, 
such as the IEEE Std 1850™-2005 Standard for Property Specification Language 
(PSL)  and the assertion language contained within the IEEE Std 1800™-2005 Sys-
temVerilog Verification and Hardware Description Language (SVA), not only allow 
the user to specify Boolean conditions, but also their relation over time using tempo-
ral logic and a generalized form of regular expressions.  

The foundation for today’s assertion language standards is built on the works of 
Amir Pnueli (linear time logic LTL [5]), and Ed Clarke and Allen Emerson (computa-
tion tree logic CTL [6]). Furthermore, the works of Moshe Vardi and Pierre Wolper 
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provided significant contributions in that they helped improve expressiveness of LTL 
through the use of regular sequences of Boolean events [7, 8, 9]. Extending the ex-
pressiveness of CTL was later demonstrated by [10]. 

In the early 1990’s, researchers at the IBM Haifa Research Laboratory developed 
the temporal language Sugar, which was a syntactic simplification (or sugaring) of 
CTL. The goal was to simplify the specification process for the RuleBase model 
checker. To improve usability and expressiveness, regular expressions were added to 
the language in the mid 1990’s [11]. By the late 1990’s, IBM had expanded its use of 
the Sugar assertion language for simulation [1]. 

With a similar motive, researchers at Intel Strategic CAD Labs developed the For-
Spec property specification language, whose underlying logic is the ForSpec Tempo-
ral Logic (FTL) [12], which is based on LTL. Their decision to base FTL on LTL was 
driven by a desire to combine formal verification and dynamic validation techniques 
in a limited fashion. Furthermore, experience had demonstrated that mainstream veri-
fication engineers generally find branching time unintuitive—particularly since they 
are familiar with dynamic validation, which is inherently linear. 

In 2000, both Sugar and ForSpec, in addition to the temporal property languages 
CBV from Motorola and Temporal e from Verisity, were donated to Accellera Formal 
Verification Technical Committee (FVTC) as candidate languages for standardiza-
tion. The process within the committee was to establish a set of requirements for an 
assertion language and select a single language from four candidates. The final selec-
tion would then form the basis for the new standard, which then would undergo modi-
fication and enhancements dictated by the language requirements identified by the 
committee. For example, one of the committee’s identified requirements was that its 
underlying semantics for the final standard should be based on linear time. This re-
quirement influenced the IBM team to move Sugar from its branching-time semantics 
based on CTL to the linear-time semantics of LTL. In 2002, the FVTC selected Sugar 
as the base language, and it was approved by Accellera in 2004. Ultimately, the IEEE 
1850™-2005 Property Specification Language PSL standard, based on the Accellera 
standard, was approved in October 2005 [13]. 

In 2002, work was underway in Accellera for the creation of a new version of Ver-
ilog, which would combine hardware description and hardware verification language 
capabilities into a single language. This effort resulted in the IEEE 1800™-2005 Sys-
temVerilog – Unified Hardware Design, Specification, and Verification Language 
standard, which was approved in November 2005. A major feature of this new lan-
guage was the addition of temporal assertions, referred to as SystemVerilog Asser-
tions (SVA). SVA has its roots in Open Vera Assertions (from Synopsys), ForSpec, 
and PSL. SVA provides direct links to control the verification environment by using 
action blocks associated with its cover and assertion directives. This capability allows 
the user to create reusable verification IP that can easily communicate with other 
verification components within the testbench, thus providing a separation between 
verification IP detection and action. In addition, the language provides a convenient 
mechanism for expressing a data integrity class of properties through the use of local 
variables. An SVA local variable provides the benefit of sampling and manipulating 
data in a property or sequence without requiring the property writer to define auxiliary 
state machines to model the intended behavior [14].  
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This tutorial compares and contrasts these two new industry standards, PSL and 
SVA,  and then discusses future language directions for both.  

3   Industry Challenges 

A few industry surveys indicate that approximately 60 percent of the industry is cur-
rently employing assertion-based techniques [15]. However, these surveys are flawed 
in that they were conducted at conferences with a large attendance of engineers al-
ready using advanced verification techniques. From my own experience of engaging 
with a larger more diverse population of engineers in the industry, ranging from the 
extremely advanced to extremely basic, I would estimate that the figure is closer to 25 
percent. Hence, it is a myth that ABV is a mainstream process. Increased adoption 
will only occur as organizations begin to invest in maturing their process capabilities.  

In the early 1990’s, the design community moved design up a level of abstraction 
from gate level to RT level. You will see evidence of this shift in Fig. 1, with the 
increase in the curve representing our ability to design larger blocks [3]. Yet even 
with today’s synthesis breakthroughs in design productivity, designing and synthesiz-
ing RTL entirely from scratch cannot keep pace with what we are capable of fabricat-
ing. Hence, third-party IP that moves design to the transaction level will be necessary 
to increase design productivity.  

 

Fig. 1. Productivity gap, as reported by the Collett 2004 industry study [2] 

Upon further examining Fig. 1, you might be drawn to the disparity between what 
we can design and what we are able to verify. Yet in many respects, the data in Fig. 1 
seems to defy reality. Design teams actually do verify complex chips today, which is 
obvious from the myriad new electronic products available. In fact, today’s verifica-
tion gap is not due to a lack of innovation in verification technology. What differenti-
ates a successful team from an unsuccessful team is process and adoption of new 
verification methods. Unsuccessful teams tend to approach development in an ad hoc 
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fashion, while successful teams employ a more mature level of methodology that is 
systematic. 

In this tutorial, I present multiple case studies illustrating successful integration of 
ABV by more advanced verification teams. In addition, I present case studies that 
illustrate multiple challenges faced by mainstream verification teams when attempting 
to adopt assertion-based techniques.   

4   Future Direction and Research Opportunities 

The industry is currently facing a design and verification productivity crisis, as illus-
trated by Fig. 1. Today’s RTL-based flows cannot accommodate rapid iterations in 
design explorations, nor can they accommodate late stage changes in design features 
required by the growing consumer and wireless electronics market. Historically, in-
creases in productivity have been achieved by raising the level of design and verifica-
tion abstraction. Today, industry is just beginning to witness a shift in abstraction 
level from RTL to transaction level. While the increase in abstraction offers many 
advantages, there are a number of unanswered questions in terms of how to describe 
design intent (that is, assertions) on transaction-level models. These unanswered ques-
tions present opportunities for future research. 

In this tutorial, I present a number of ABV research opportunities, which are based 
on discussions with multiple tool developers and industry experts currently applying 
assertion-based techniques. 
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