The Barcelogic SMT Solver*
Tool Paper

Miquel Bofill', Robert Nieuwenhuis?, Albert Oliveras?,
Enric Rodriguez-Carbonell?, and Albert Rubio?

! Universitat de Girona
2 Technical University of Catalonia, Barcelona

Abstract. This is the first system description of the Barcelogic SMT
solver, which implements all techniques that our group has been develop-
ing over the last four years as well as state-of-the-art features developed
by other research groups. We pay special attention to the theory solvers
and to functionalities that are not common in SMT solvers.

1 Introduction

The importance of propositional SAT solvers in verification applications has
been largely shown in the last few years. However, propositional logic is not
very expressive and by encoding practical problems into SAT, sometimes impor-
tant structural information is lost or substantial blow-up in the formula size is
caused. A successful alternative to SAT is to consider more expressive logics that
still have efficient solvers. For example, for reasoning about timed automata, it
is very useful to consider Difference Logic (DL), where atoms are of the form
x —y < k, being x and y integer or real variables, and k£ a numeric constant; in
hardware verification, when one wants to abstract away the concrete behavior
of certain components, it is useful to consider the logic of Equality with Uninter-
preted Functions (EUF), where atoms are equalities between first-order terms;
similarly, for software verification, one may need to reason about concrete data
structures such as arrays, lists or queues. Hence, it becomes very natural to con-
sider satisfiability modulo these concrete theories and deal with formulas that
contain thousands of clauses like:

p V x—read(Ai) <y V f(write(A, j,i+2)) =read(A,j)+1

In general, the problem known as Satisfiability Modulo Theories (SMT)
amounts to deciding the satisfiability of a typically ground formula modulo a
background theory T'. To achieve this goal, similarly to what is done in most
state-of-the-art SMT solvers, Barcelogic combines a Boolean DPLL(X) engine,
very similar in nature to a SAT solver, responsible for enumerating propositional
models of the formula, with a theory solver Solver.,., responsible for checking that

* All authors partially supported by the by the project LogicTools-2 (TIN2007-68093-
C02-01) funded by the Spanish Ministry of Science and Technology.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 294 2008.
© Springer-Verlag Berlin Heidelberg 2008



The Barcelogic SMT Solver 295

these models remain consistent with the theory T'. The integration of DPLL(X)
with the concrete solver Solver,., produces what we call a DPLL(T') system.

In order to produce our Barcelogic SMT solver we have worked, together
with some external colleagues, on developing and refining the DPLL(T') ap-
proach [NOT06, BNOTO6], designing efficient solvers for distinct theories that
comply with all the requirements of a Solver, [NOOT, [NO05] and in extending
SMT solvers to give support for other uses rather than just checking the satis-
fiability of a formula [NOOQG]. All these ideas have been incorporated in
our Barcelogic system, hence producing a very efficient and robust SMT solver,
as one can observe from its performance in previous editions of the SMT com-
petition (see http://www.smtcomp.org).

2 System Description

In this section we discuss the main components in the Barcelogic SMT solver:
the parser and preprocessor, the Boolean engine DPLL(X) and all theory solvers
that allow Barcelogic to deal with EUF, DL, Linear Arithmetic (LA) and com-
binations of these theories. Finally, we sketch some additional capabilities.

2.1 Parser and Preprocessor

Given an input formula in SMT-LIB format [TR05], Barcelogic’s parsing module
performs two tasks. One of them is to detect which is the most efficient theory
solver that is able to process all input atoms; the second task is to massage the
formula so that it can be fed to the DPLL(X) engine: convert it to CNF, abstract
all theory atoms taking into account T-equivalent atoms, apply Ackermann’s
reduction if EUF and an arithmetic theory are involved, and split the arithmetic
equality constraints into conjunctions of inequalities, to name but a few.

2.2 The Boolean Engine

The DPLL(X) engine currently used is a slight modification of our Barcel-
ogic SAT solver that took part in the 2006 SAT-Race (for detailed results,
see http://fmv. jku.at/sat-race-2006). It is competitive with state-of-the-art
SAT solvers and is indeed very similar to them, as it borrows most of the ideas
present in zChaff and MiniSAT [ES04]. Additionally, it implements
several adaptive heuristics to find the right frequency of calls to Solver,.(both for
consistency checks and theory propagations) and has been extended to accom-
modate the splitting-on-demand technique presented in [BNOTO6] where one
needs to add both new literals and clauses on the fly.

2.3 Theory Solvers

The EUF Solver. The theory solver for EUF is an extension of the congruence
closure algorithm presented in [NOO7]. It is an incremental algorithm that pio-
neered the integration of integer offsets in a congruence closure algorithm and
the efficient computation of small explanations of inconsistency.



296 M. Bofill et al.

The DL Solver. The solver for DL is an implementation of the algorithm
proposed by Cotton and Maler in [SMOG]. It is a negative-cycle-detection al-
gorithm that allows one to compute exhaustive theory propagation in a very
efficient way. In order to improve efficiency, the infinite-precision arithmetic li-
brary GMP [GMP] is only called if C++ native arithmetic types do not suffice
to ensure correctness.

The LA Solver. The solver for Linear Real Arithmetic (LRA) implements a
primal simplex algorithm based on [RS04] that allows incremental addition and
deletion of constraints. However, thanks to the work done by the preprocessor,
no (dis)equalities have to be processed, and hence the costly exhaustive implicit
equality propagation is no longer necessary. Further, as our algorithm can han-
dle linear programs in general form [Mar86], bounds are dealt with in a more
efficient way than in [RS04]. Finally, both the tableau as well as the revised im-
plementations of the algorithm are available for the solver to choose depending
on, e.g., the condition number or the density of the problem.

As regards Linear Integer Arithmetic (LIA), a branch-and-cut algorithm has
been implemented. Branching is performed by means of the cooperation of
the Boolean engine and the LRA solver following the splitting-on-demand ar-
chitecture [BNOTOG], instead of splitting inside a stand-alone LIA solver. In
combination with branch-and-bound, a cutting-planes algorithm has also been
implemented along the lines of [DAMOG].

Given the remarkable amount of DL literals that is typically manipulated
when solving a problem in LA, the aforementioned solvers are called in a layered
fashion ﬂm: a pre-filtering DL solver is used which checks the consistency
of the DL fragment of the assignment, and also propagates theory information
to DPLL(X).

2.4 Further Capabilities

Model generation. When a formula is found to be satisfiable, Barcelogic out-
puts a model as a conjunction of atoms in the SMT-LIB format. For the theories
under consideration, this amounts to (i) a truth value for each Boolean vari-
able, (ii) a concrete integer or real for each numeric variable, and (iii) a partial
mapping for each uninterpreted function symbol in the formula. Note that since
the formula is ground, only a finite number of function applications appear and
hence a partial mapping suffices to provide a model of the formula.

Predicate abstraction. Predicate abstraction is a technique for automatically
extracting finite-state abstractions for systems with potentially infinite state
space. The core operation in predicate abstraction is, given (i) a set of predicates
P that express properties of the system, and (ii) a formula F' that symbolically
represents a transition system or a set of states, to compute the best approxi-
mation of F' using the predicates P. In [LNOOQ6] we showed that by means of a
careful enumeration of satisfying assignments, state-of-the-art SMT solvers can
be turned into very efficient predicate abstraction engines, obtaining important
speedups wrt. previously existing techniques.



The Barcelogic SMT Solver 297

Max-SAT and Max-SMT. In several applications, one has a set of constraints
which is known to be unsatisfiable in advance and wants to find an assignment
that satisfies the maximum number of constraints. This is the so-called Max-
SAT or Max-SMT problem, depending on whether the constraints are expressed
as SAT or SMT. A further extension is the weighted version of these problems,
where one assigns a weight, called the wviolation cost, to each constraint and
wants to find the assignment that minimizes the sum of the costs of the unsat-
isfied constraints. In [NOOG] we showed how SMT tools can be easily adapted
to support this functionality and our Barcelogic SMT solver implements all the
techniques described there.

References

[BBCT05]

[BNOTO06)

[DAMO6]

[ES04]

[GMP]
[LNOOG6)]

[Mar86]

[IMMZ*01]

[NOO5]

[NOO6]

[NO07]

[NOTO6]

Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum,
P., Schulz, S., Sebastiani, R.: The MathSAT 3 System. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 315-321. Springer,
Heidelberg (2005)

Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand
in SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR
2006. LNCS (LNAT), vol. 4246, pp. 512-526. Springer, Heidelberg (2006)
Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T).
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81-94.
Springer, Heidelberg (2006)

Eén, N., Sorensson, N.: An Extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer,
Heidelberg (2004)

The GNU MP Bignum Library, http://gmplib.org/

Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast
Predicate Abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 424-437. Springer, Heidelberg (2006)

Maros, I.: Computational Techniques of the Simplex Method. Kluwer’s
International Series (2003)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: 38th Design Automation Confer-
ence, DAC 2001, pp. 530-535. ACM Press, New York (2001)
Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propa-
gation and Its Application to Difference Logic. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321-334. Springer, Heidelberg
(2005)

Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization
Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 156-169. Springer, Heidelberg (2006)

Nieuwenhuis, R., Oliveras, A.: Fast Congruence Closure and Extensions.
Information and Computation, IC 2005(4), 557-580 (2007)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, J. ACM 53(6), 937-977 (2006)


http://gmplib.org/

298 M. Bofill et al.

[RS04] RueB, H., Shankar, N.: Solving Linear Arithmetic Constraints. Technical
Report CSL-SRI-04-01, SRI International (2004)

[SMO6] Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation
for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 170-183. Springer, Heidelberg (2006)

[TRO5] Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Li-

brary (2005), http://goedel.cs.uiowa.edu/smtlib/


http://goedel.cs.uiowa.edu/smtlib/

	The Barcelogic SMT Solver
	Introduction
	System Description
	Parser and Preprocessor
	The Boolean Engine
	Theory Solvers
	Further Capabilities



