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Abstract. Automatic speaker verification (ASV) has become increas-
ingly desirable in recent years. This system in general, requires 20 to 40
features as input for satisfactory verification. In this paper, features size
is reduced by Ant Colony Optimization (ACO) technique to increase the
ASV performance. After feature reduction phase, feature vectors are ap-
plied to a Gaussian Mixture Model (GMM) which is a text-independent
speaker verification Model. Experiments are conducted on a subset of
TIMIT corpora. The results indicate that with the optimized feature set,
the performance of the ASV system is improved. Moreover, the speed of
verification is significantly increased because number of features is re-
duced over 73% which consequently decrease the complexity of our ASV
system.

Keywords: Speaker Verification, Gaussian Mixture Model (GMM), Fea-
ture Selection, Ant Colony Optimization (ACO).

1 Introduction

Automatic Speaker Verification (ASV) refers to the task of verifying speaker’s
identity using speaker-specific information contained in speech signal. Speaker
Verification methods are totally divided to text-dependent and text-independent
applications. When the same text is used for both training and testing, the sys-
tem is called to be text-dependent while for text-independent operation, the
text used to train and test of the ASV system is completely unconstrained.
Text independent speaker verification requires no restriction on the type of in-
put speech. In contrast, Text independent speaker verification usually gives less
performance than text dependent speaker verification, which requires test input
to be the same sentence as training data [1].

Speech signals contain a huge amount of information and can be described as
having a number of different levels of information. At the top level, we have lex-
ical and syntactic features, below that are prosodic features, further below these
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are phonetic features, and at the most basic level we have low-level acoustic
features, which generally give information on the system that creates the sound,
such as the speakers’ vocal tract. Information solely about how the sound is
produced (from low level acoustic features) should give enough information to
identify accurately a speaker as this is naturally speaker dependent and inde-
pendent of text [2].

Low level acoustic features also contain some redundant features, which can be
eliminated using feature selection (FS) techniques. The objective of FS is to sim-
plify a dataset by reducing its dimensionality and identifying relevant underlying
features without sacrificing predictive accuracy. By doing that, it also reduces
redundancy in the information provided by the selected features. Selected fea-
tures should have high inter-class variance and low intra-class variability. Ideally
they should also be as independent of each other as possible in order to minimize
redundancy [3].

Feature selection has been rarely used in ASV systems. Day and Nandi [2] em-
ployed genetic programming (GP) for FS, also L plus-R minus feature selection
algorithm is used by Pandit and Kittkr [4] for text-dependent speaker verifica-
tion. Ant colony optimization (ACO) is a powerful method in many optimization
methods [5] and has been employed here for feature selection in ASV systems. In
this paper ACO algorithm has been applied to the problem of feature selection
in ASV systems.

The rest of this paper is organized as follows. Section 2 presents a brief overview
of ASV systems. Feature selection based ACO is described in Sections 3. Next
section reports experimental results which include a brief discussion of the results
obtained. Finally the conclusion and future research is offered in section 5.

2 An Overview of ASV Systems

The typical process in most proposed ASV systems involves: some form of pre-
processing of the data (silence removal) and feature extraction, followed by some
form of speaker modeling to estimate class dependent feature distributions (see
Fig. 1). A comprehensive overview can be found in [6]. Adopting this strategy
the ASV problem can be further divided into the two problem domains of:

1) Preprocessing, feature generation and selection.
2) Speaker modeling and matching.

2.1 Feature Extraction

Most previous works relied on the use of low-level acoustic features. Mel-frequency
cepstral coefficients (MFCCs) have been particularly popular for ASV systems in
recent years. This transform gives a highly compact representation of the spectral
envelope of a sound. Many proposed systems have relied solely on these features
and good results have been reported [1,7]. MFCCs have usually been associated
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Fig. 1. Overview of the speaker verification process [8]

with speech analysis and processing, and can be used as a compact representation
of the spectral envelope.

The process of MFCC analysis is summarized as follows [8]:

� Segmentation of a speech signal into frames with a fixed window size and a
fixed shift period.

� For each frame:
• Compute its fast Fourier transform (FFT).
• Wrap the frequencies according to the Mel scale.
• Compute the log of the magnitude.
• Compute the discrete cosine transform (DCT).

2.2 Speaker Modeling

The speaker modeling stage of the process varies more in the literature. The
purpose of speaker modeling is characterizing an individual which is enrolled into
an ASV system with the aim of defining a model (usually feature distribution
values). The two most popular methods in previous works are Gaussian mixture
models (GMM) [7] and vector quantization (VQ) [9]. Other techniques such as
mono-Gaussian models [10], decision trees [11], SVM [12], and ANN [13] have
also been applied. In this paper GMM is used for speaker modeling.

The GMM method is a parametric method that consists of M Gaussian distri-
butions parameterized by their priori probabilities, mean vectors and covariance
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matrices. The parameters are typically estimated by maximum likelihood (ML)
estimation [7].

Let X = {x1, x2, ..., xT } be a set of T vectors, each of which is a d-dimensional
feature vector extracted by digital speech signal processing. Since the distribu-
tion of these vectors is unknown, it is approximately modeled by a mixture of
Gaussian densities, which is a weighted sum of M component densities, given by
the equation:

p(xt|λ) =
M∑

i=1

wiN(xt, μi, Σi) (1)

where λ denotes a prototype consisting of a set of model parameters λ = {wi, μi,
Σi}, wi are the mixture weights and N(xt, μi, Σi) are the d-variate Gaussian com-
ponent densities with mean vectors μi and covariance matrices Σi

N(xt, μi, Σi) =
exp{− 1

2 (xt − μi)′Σ−1
i (xt − μi)}

(2π)d/2|Σi|1/2 (2)

In training the GMM, these parameters are estimated such that they are fitted
with the distribution of the training vectors. The most widely used training
method is the ML estimation. For a sequence of training vectors X , the likelihood
of the GMM is:

p(X |λ) =
T∏

t=1

p(xt|λ) (3)

The classification for speaker verification may be performed based on the log
likelihood ratio (LLR). Given the observation X , the LLR is defined as:

LLR(X) = log p(X |λ) (4)

Let Θ be a given threshold, associated with the claimed speaker model λ. A
discriminant function LLR(X) for the unknown X and model λ used to reject
or accept the claimed speaker is as follows:

LLR(X)
{

≥ Θ Accept
< Θ Reject

(5)

Where threshold Θ is taken as an equal error rate (EER) threshold [8].

3 Application of ACO for Feature Selection

In the early 1990s, ant colony optimization (ACO) was introduced by M. Dorigo
and colleagues as a novel nature-inspired meta-heuristic for the solution of hard
combinatorial optimization (CO) problems [5]. ACO belongs to the class of meta-
heuristics, which includes approximate algorithms used to obtain good enough
solutions to hard CO problems in a reasonable amount of computation time.

The paradigm is based on the observation made by ethologists about the
medium used by ants to communicate information regarding shortest paths to
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food by means of pheromone trails. A moving ant lays some pheromone on the
ground, thus, a path is made by a trail of this substance. While an isolated ant
moves practically at random (exploration), an ant encountering a previously laid
trail can detect it and decide with high probability to follow it and consequently
reinforce the trail with its own pheromone (exploitation)[5].

The feature selection task is reformulated based on the ACO which requires
a problem to be represented as a graph. Here nodes represent features, with the
edges between them denoting the choice of the next feature. The search for the
optimal feature subset is then an ant traversal through the graph where a mini-
mum number of nodes are visited that satisfies the traversal stopping criterion.
The heuristic desirability of traversal and edge pheromone levels are combined
to form the so-called probabilistic transition rule, denoting the probability of ant
k at feature i choosing to travel to feature j at time t [14]:

P
k
ij(t) =

⎧
⎨

⎩

[τij(t)]α.[ηij ]β∑

l∈Jk
i

[τil(t)]α.[ηil]β
j ∈ Jk

i

0 otherwise

(6)

Where, ηij is the heuristic desirability of choosing feature j when at feature i
(ηij is optional but often needed for achieving a high algorithm performance), Jk

i

is the set of neighbor nodes of node i which have not yet been visited by the ant
k. α > 0, β > 0 are two parameters that determine the relative importance of
the pheromone value and heuristic information (the choice of α, β is determined
experimentally) and τij(t) is the amount of virtual pheromone on edge (i,j). The
pheromone on each edge is updated according to the following formula:

τij(t + 1) = (1 − ρ).τij(t) +
m∑

k=1

Δk
ij(t) (7)

where:

Δk
ij(t) =

{
γ′(Sk)/|Sk| if (i, j) ∈ Sk

0 otherwise
(8)

The value 0 ≤ ρ ≤ 1 is decay constant used to simulate the evaporation of the
pheromone, Sk is the feature subset found by ant k. The pheromone is updated
according to both the measure of the ”goodness” of the ant’s feature subset
(γ́) and the size of the subset itself. By this definition, all ants can update the
pheromone. The overall process of ACO feature selection for ASV is shown in
Fig. 2.

4 Experimental Results

4.1 TIMIT Dataset

The TIMIT corpora [15] is used in this paper. This corpus contains 630 speakers
(438 male and 192 female) representing 8 major dialect regions of the United
States, each speaking ten sentences. There are two sentences that are spoken by
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Fig. 2. Overall process of ACO feature selection for ASV

all speakers and the remaining eight are selected randomly from a large database.
The speech signal is recorded through a high quality microphone with a sampling
frequency of 16 kHz in a quiet environment, with no session interval between
recordings.

Eight sentences (SX, SI) were used to develop each speaker model, and the
remaining 2 SA sentences were used to test each speaker. The 35 speakers included
in both the test and train directories were used during the TIMIT(35) trials.

4.2 Evaluation Measure

The evaluation of the speaker verification system is based on detection error
tradeoff (DET) curves, which show the tradeoff between false alarm (FA) and
false rejection (FR) errors. Typically equal error rate (EER), which is the point
on the curve where FA = FR, is chosen as evaluation measure. We also used
detection cost function (DCF) defined as [7]:

DCF = Cmiss.Emiss.Ptarget + Cfa.Efa.(1 − Ptarget) (9)

where Ptarget is the priori probability of target tests with Ptarget = 0.01, Emiss

and Efa are false rejection rate and false acceptance rate respectively at a op-
erating point and the specific cost factors Cmiss = 10 and Cfa = 1. Hence, the
point of interest is shifted towards low FA rates.

4.3 Experimental Setup

Experiments were conducted on a subset of TIMIT corpora consists of 22 male
and 13 female speakers of different accent that were selected randomly. Data
were processed in 30 ms frames (480 samples) with 50% overlaps. Frames were
segmented by Hamming window and pre-emphasized with α = 0.97 to compen-
sate the effect of microphone’s low pass filter. At first, for each frame MFCCs
were extracted from silence removed data. Moreover, delta coefficients were cal-
culated based on the MFCCs and appended to them. Furthermore, two energy
terms were also extracted to form input vectors. ACO-based feature selection
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Table 1. Selected Features of ACO-GMM

Table 2. Equal Error Rate (EER) Results (%) and DCF for GMM and ACO-GMM

was applied to input vectors which was described earlier. Then, verification pro-
cess was performed using the GMM approach. The performance criterion is due
to EER and DCF according to an adopted decision threshold strategy.

Table 1 shows the number of selected features and selected features which
were chosen by ACO. As we can see in table 1, ACO can degrade dimensionality
of features over 73%. EER and DCF for GMM and ACO-GMM with different
number of Gaussian (32, 64) were shown in Table 2.

DET curves for GMM and ACO-GMM with 32 Gaussian are shown in Figure 3,
and those for 64 Gaussian are shown in Figure 4. From the results, it can be seen
that ACO-GMM yields a significant improvement in speed than the baseline GMM
approach. The improvement is due to the selection of optimal feature set by ACO
algorithm.

Fig. 3. DET curves for GMM and ACO-GMM with 32 Gaussians (a)original features
26 (b) original features 42
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Fig. 4. DET curves for GMM and ACO-GMM with 64 Gaussians (a)original features
26 (b) original features 42

5 Conclusion and Future Research

In this paper, we have addressed the problem of optimizing the acoustic fea-
ture set by ACO technique for text-independent speaker verification system
based on GMM. ACO selected the relevant features among all Mel-Cepstrum
coefficients in order to increase the performance of our ASV system. The ex-
perimental results on subset of TIMIT database showed that ACO is able to
select the most informative features without loosing the performance. The fea-
ture vectors size reduced over 73% which led to a less complexity of our ASV
system. Moreover, verification process in the test phase speeds up because less
complexity is achieved by the proposed system in comparison with current ASV
systems.

For future work, the authors plan to investigate the performance of proposed
ASV system by taking advantage of using GMM-UBM and other models in-
stead of GMM. Finally, another research direction will involve experiments with
different datasets.
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