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Abstract. One of the most important characteristics of intelligent ac-
tivity is the ability to change behaviour according to many forms of
feedback. Through learning an agent can interact with its environment
to improve its performance over time. However, most of the techniques
known that involves learning are time expensive, i.e., once the agent
is supposed to learn over time by experimentation, the task has to be
executed many times. Hence, high fidelity simulators can save a lot of
time. In this context, this paper describes the framework designed to al-
low a team of real RoboNova-I humanoids robots to be simulated under
USARSim environment. Details about the complete process of modeling
and programming the robot are given, as well as the learning method-
ology proposed to improve robot’s performance. Due to the use of a
high fidelity model, the learning algorithms can be widely explored in
simulation before adapted to real robots.

1 Introduction

In recent years, there has been much discussion concerning how knowledge can
be acquired and used by autonomous agents. Through learning an agent can
interact with an unknown environment and improve its performance over time
by focusing its sensors on parts of the environment that are relevant to the task
at hand.

In this scenario, the RoboCup® has created in the last years a set of realistic
and simulated leagues to stimulate developments in the robotic field. One of these
leagues is the Humanoid League, where autonomous mobile robots with a human-
like appearance play soccer against each other. Humanoid League rules follow
FIFA soccer laws in general lines. However, currently, some simplifications are
assumed. Differently from conventional soccer, for example, each team consists
of two players, in which one can be designated as a goalkeeper.

Another recently created league is the RoboCup Rescue Simulation Virtual
Robots, in which a team of heterogeneous robots is asked to look for victims in
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a urban search and rescue (USAR) task. This category also aims to fill the gap
between real and simulated environments by using a high fidelity simulator, the
USARSim [1], recently extended by the work of Zaratti et al. [2] to work with
legged robots. It is also an important research tool for studies of learning, Human
Robot Interaction (HRI) and multi-robot coordination, given the possibility of
simulating commercial and self-developed robot platforms.

Recently, some simulated models of real legged robots have been proposed.
The Sony Aibo and Sony QRIO [2] are some of these models. One of the main
constraints for using these robots as the basis for researching learning relies
in the fact that they are no longer commercially available. In fact, there is
a commercial platform that has been modelled for USARSim, Robovie-M [3].
However, its model is not yet fully available.

This paper presents the details about the complete process of modeling and
programming the commercially available version of Robonova-I humanoid robot,
as well as the learning methodology proposed to improve its performance on the
Humanoid league task. The rest of this paper is structured as follows. Section
2 explains the main characteristics of autonomous Learning. Section 3 presents
the proposed approach for building the robot model, describing, in details, the
complete high fidelity geometric model of the robot and the set of script files
needed to configure this model in the USARSim RoboCup simulator. The learn-
ing framework is presented in Section 4. Finally, Section 5 summarizes with the
main conclusions and presents some lines for further work.

2 Learning

Reinforcement Learning (RL) ] is a class that lies between the extremes of
supervised learning, where the policy is taught by an expert, and unsupervised
learning, where there is no evaluative feedback. It is a technique that allows an
agent to adapt to its environment through the development of an action policy,
which determines the action that should be taken in each environmental state
in order to maximize (or minimize) a function over a cumulative reinforcement.
The reinforcement is a real value that defines the desirability of a state and can
be expressed both in terms of rewards or punishments. In RL systems, the a
priori domain knowledge incorporated by the designer is minimal and is mostly
encapsulated in the reinforcement function.

Q-learning [5] is the preferred RL algorithm because it provides good exper-
imental results in terms of learning speed and it is a model-free learning for
optimal policies. It learns the values of all actions in all states, rather than only
representing the policy.

3 Proposed Approach

The use of Learning, more specifically RL, is wide spread on RoboCup. In the
development of the simulated robots’ plan, DAMAS Rescue team used Jack
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Intelligent Agent programming language [0], decision tree algorithms and rein-
forcement learning [7]. Moreover, F180 champions CMUDragons are known to
use RL techniques. Furthermore, Soccer Simulation 3D champion FC-Portugal
can be cited as another successful example [g].

However, most of the techniques known that involves RL are time expensive,
i.e., it takes time to find a policy to successfully accomplish the proposed task
and difficult to configure. In these cases, as the agent is supposed to learn over
time by experimentation, the task has to be executed many times. Hence, high
fidelity simulators can save a lot of time.

In our case, the study of real robots in a simulated environment only makes
sense if the resultant study can be sent back to the real robot. For this pur-
pose, the construction of the Robonova-I humanoid robot simulated model in
USARSim is proposed.

4 Bulding Robonova-I Model

The construction of a robot model in the USARSim environment is a very com-
plex process. Since documentation for this task is extremely rare, we will detail
in the following sections the construction of the Robonova-I model. In this ap-
proach, two main steps were adopted: i) robot geometric model construction and
it) robot scripting.

4.1 Geometric Model

The construction of the geometric model of the robot makes necessary the steps
mentioned next.

Creating the static meshes. In our approach a tridimentional model of the
robot was made in a CAD (Computer Aided Design) environment. We adopted
the AutoCad® 2007 software, which provides a rich set of 3D creation and
management tools, necessary to reproduce the complex forms of the robot.

One important remark must be done with respect to the XYZ coordinate sys-
tem. Autocad environment is well known to use the XYZ positive axis arranged
according to the LHR (left hand rule). The final assembly of the robot in the
Unreal engine is assumed to arrange XYZ axis according to the RHR (right
hand rule). In order to convert between systems, the orientation of the X axis
must be changed. This situation forces the feet of our CAD robot model to be
constructed above the XY plane, with the robot front oriented to the -X axis.

Accomplishing the first step of the process, a high fidelity model of the
Robonova-I robot was generated in the CAD environment using exclusively static
meshes. It is also important to remark that other kinds of primitives (like sur-
faces or regions) are not recognized in Unreal engine. Each robot material (in
this case golden metal, black plastic and servomotors plastic) was represented in
a different layer. The complete robot drawing was splited, and one new drawing
was created to each rigid part of the robot (without joints). The complete robot
model and its parts are shown in Figure [
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Fig. 1. Geometrical model of the Robonova-I robot. a) Assembled robot; b) Exploded
main parts of the robot.

Converting the static meshes. In next step, the static meshes must be con-
verted to its preferred file format to be imported in USARSim. The ASE (ASCII
Scene Exporter) file format is the standard, since it stores identifiers for all file
objects materials. In our approach, we adopted the software 3D Studio MAX®
8 to realize this task. After a CAD file was imported, three different materials
(simple color patterns) were created using the material editor tool. One material
was assigned to each layer of the original CAD drawing and, so, all static meshes
were attached together forming a single body composed by different materials.
The body was so rendered to texture, in order to generate a texture map. The
texture properly was discarded, and the file was exported to the ASE format.
This process was repeated to each one of the rigid parts of the robot.

Creating textures. In order to allow the use of simple textures in the robot
into the USARSim environment, in proposed approach three standard 256x256
Bitmap files with 8 colors depth were created in the paint software and filled
with the three different colors of the textures.

Assigning textures. In the next step, the textures must be assigned to the
materials specified in the ASE file. This process was realized inside of the Unreal
Editor 2004. First, all three textures were imported and a unique UTX texture
package was created. After this, each of the static meshes of the rigid parts
of the robot were imported into a unique USX package. Still using the Unreal
Editor, each material of each component of the meshes in the USX package was
linked to one of the textures in the UTX package. The USX package now stores
all information about robot geometry, except the information concerning the
position to correctly assemble this parts, which will be informed in the robots
configuration script.

4.2 Robot Configuration

After preparing the robot parts geometric model and textures, it is necessary
to add these new models to the USARSim file structure. However, the robot
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Table 1. Robonova-I parts and parameter values: weight, rotation angle, static friction
rupture with robot up and down

Robot part Quantity Weight Rotation Up SFR Down SFR

Head 1 27g - -
Chest 1 337 - - -
Hand 2 65g 180° - -
Elbow 2 65g 180° - -
Shoulder 2 6g 360" - -
Thigh 2 23g 90° - -
Knee 2 135g 90" - -
Superior ankle 2 44g 180° - -
Inferior ankle 2 2 23g 180° - -
Foot 2 83g 90" - -
Spins - 8g - - -
Robonova-I - 1.260g - 260 Kgf 600K gf
& Unreal Tournament 2004 =Jo/Ed & Unreal Tournament 2004 =JoEd

Fig. 2. Frontal view (out of scale) Fig. 3. Back view (out of scale)

physical parameters and dynamics still have to be configured. In this phase,
scripts written in the Unreal Script language are prepared for each part of the
robot, as well as for the complete robot model. For the individual parts, pa-
rameters such as torque, mass, angular velocity, friction, restitution, etc., are
described. These parameters are used by the Karma engine [9] that is respon-
sible for modeling the USARSim system dynamics. As for the complete robot
model script, it contains the static meshes assembling and relative movements
(i.e. axis spin) information.

To keep the fidelity of the model, some experiments were carried out with the
real Robonova-I in order to obtain some of the Karma parameters. Based on the
data of these experiments, well-known physical constants and robot geometry,
one can estimate static and dynamic friction, maximum and minimum joint
aperture, motor torque, etc. Some of the acquired values are shown in table [l

Finally, scripts were compiled in order to generate the robot model into the
USARSim environment. The final robot model built and imported in the virtual
environment (out of scale) is presented in Figures 2] and
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5 Robonova-I Learning Framework

The design of architectures composed of very simple skills is not easy, nor is
the learning of its sequence, as producing an adequate combination of these
behaviours is not straight-forward. Furthermore, the controller decomposition
introduces the need for determining when to trigger control, i.e. when to re-
evaluate the previously selected behaviour and choose a new one.

Considering these constraints, the framework described proposes the intro-
duction of learning in two levels. In the first level, the information provided by
sensors (gyroscopes, camera and pressure sensors) is used to build the controllers
responsible for movements. These basic controllers represent the set of sequen-
tial servo commands that a robot may perform to execute a movement. We
can divide the controllers in four main groups: i) Walking Controllers; i) Pre-
cise Positioning Controllers; 44) Special Actions Controllers; and iv) Goalkeeper
Controllers.

In the Walking Controllers the three main controllers are the shift-right, the
shift-left and the forward walk controllers. As the names propose, they are re-
sponsible for the shift-sideways movements and for the forward walk movement
of the robot. Other Walking Controllers are the backward walk, the diagonal
walks (forward left, forward right, backward left and backward right), the turns
(left and right) and the forward run.

In the Precise Positioning Controllers there are just three controllers that
are smaller and more precise versions of the three main Walking Controllers.
They are step-right, step-left and step-forward. The steps are small movements
sideways or forward executed to allow a precise positioning of the robot.

There are four Special Actions Controllers, two of them responsible for the
interaction with the ball, the kick right and the kick left controllers, used to
kick the ball with the right leg and with the left leg respectively. The other two
are the stand-up controller and the bend controller. The stand-up controller is
used when the robot falls to get back to the upright condition while the bend
controller is used to allow the camera to track objects near the feet of the robot.

Finally, the Goalkeeper Controllers are specific actions for the goalkeeper, such
as: defend-right, defend-left and defend-mid. Each of them is used to defend a
ball kicked to the right, left or in the direction of the robot respectively.

As for the second level, once defined the basic controllers, it is possible to
apply the learning approach to automate the process of choosing a controller to
execute in a specific environment situation. Figure [@h presents an overview of
the proposed system architecture.

5.1 State and Action Space Modeling

For using RL algorithms, one has to guarantee that the problem can be modelled
as a MDP (Markov Decision Process), i.e, the problem has to be represented as a
finite set of actions and states and a discrete time model where the states should
be available for measurement. However, real robot tasks have infinite state and
action spaces, continuous time and due to sensorial limitation are not always
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Fig. 4. a) System Architecture. b) Joints position and spin.

measurable. To deal with this problem, a discretization model for the state and
action spaces is proposed.

First, consider the joints robot structure presented in Figure [@b. For each
arm there are three joints with one DOF each, while for each legs these number
reaches five, what give us sixteen DOFs. The state and action space discretiza-
tions are divided into two groups: 1) for low level learning or controllers learning
and 2) for high level learning or switching controller determination.

Low level discretization. The low level action space is composed of sixteen
elements, each representing a servo. Each action corresponds to change a servo
angle by adding or subtracting 15 degrees to its actual state.

If the state vector, defined by the gyroscopes, camera and pressure sensors
values indicate a falling, the robot is assigned with a null value reward and for
each action performed, it receives an unitary reinforce. We work in all cases with
a minimization criterium and with a step corresponding to a change in the servos
configuration. In these cases, the goal is to perform the movements without much
changing in the robot servos and without falling down.

High level discretization. For the high level learning, after fine tuning the
individual controllers, one can apply the high level learning, using the same
state vector defined for the low level phase, to decide which basic controller to
execute. The reward structure considers that each action performed costs a unit
to the learning agent, while accomplishing the goal gives it a null reinforcement
value. This criterium can help the robot to save battery. To help configuring the
learning parameters, a graphical interface was implemented.

6 Conclusion

This paper presented a complete framework for a Robonova-I humanoid robot,
composed by: i) A complete high fidelity geometric model of the robot; i) A set
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of scritp files to configure this model in the USARSim RoboCup simulator; iii)
An architecture model to be used in robot learning, and iv) A graphical interface
for learning parameters settings.

At the best of our known, this set of features represents the first available
framework of a commercially available humanoid robot. In this way, this frame-
work is expected to work as an important tool in robots dynamics research and
also to contribute to reduce time required to test learning algorithms.

The paper also presented a detailed description of the robot modeling and
configuration process for USARSim environment, filling some gaps in the related
technical literature and expecting to reduce the amont of time required to create
new robots and models in this environment.

As main ongoing works, there is a set of experiments to establish the confi-
dence degree between proposed model and real Robonova-I robot with respect
to dynamics, sense and acts. As future work, we point the implementation of a
large number of RL algorithms in order to extend the framework capabilities.
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