
K. Suzuki et al. (Eds.): TestCom/FATES 2008, LNCS 5047, pp. 119–134, 2008.
© IFIP International Federation for Information Processing 2008

VCSTC: Virtual Cyber Security Testing Capability
– An Application Oriented Paradigm for Network

Infrastructure Protection

Guoqiang Shu, Dongluo Chen, Zhijun Liu, Na Li, Lifeng Sang, and David Lee

Department of Computer Science and Engineering, the Ohio State University
Columbus, OH 43210, USA

{shug,chendon,liuzh,lina,sangl,lee}@cse.ohio-state.edu

Abstract. Network security devices are becoming more sophisticated and so are
the testing processes. Traditional network testbeds face challenges in terms
of fidelity, scalability and complexity of security features. In this paper we
propose a new methodology of testing security devices using network virtual-
ization techniques, and present an integrated solution, including network emula-
tion, test case specification and automated test execution. Our hybrid network
emulation scheme provides high fidelity by host virtualization and scalability
by lightweight protocol stack emulation. We also develop an intermediate level
test case description language that is suitable for security tests at various net-
work protocol layers and that can be executed automatically on the emulated
network. The methodology presented in this paper has been implemented and
integrated into a security infrastructure testing system for US Department of
Defense and we report the experimental results.

Keywords: Network Modeling, Network Emulation, Security Testing, Test
Automation, Virtualization.

1 Introduction

Security, reliability and interoperability are indispensable in today’s distributed hetero-
geneous information infrastructures. These properties rely on the correct functioning of
the increasingly complicated security devices, such as traditional firewall, security
switch, intrusion detection system (IDS) and so on [9,11,13,17]. For modern security
devices, testing is no longer considered to involve only the vendor because software
components such as user configuration and plug-in have become significant [1,21].
On the other hand, since critical secure devices are often to be deployed at sensitive
environment (e.g. government or military network), it is not appropriate to test them
using the real network. Instead, target system and configuration are tested using special
testbed before deployment. The last several decades have witnessed a great number
of mature IP network testbed solutions [2,10], with the focus of integration testing
and performance testing. In this work we study several key challenges and solutions
particularly in testing network security devices.

First, the nature of security testing demands a high level of fidelity between the
testbed and the real environment in order to compose realistic test scenario and obtain

120 G. Shu et al.

meaningful assessment. This cannot be achieved by the content-insensitive traffic
generation paradigm often adopted in performance testing. Particularly, it is desirable
that the testbed mimics the characteristics of the real network including topology, host
machine properties and the protocol stack. Fidelity of protocol stack is especially
important for (1) generation of realistic background traffic [20], and (2) designing test
cases at transport or higher layer, or executing real applications.

While duplicating the real environment or approaches of this nature guarantees fi-
delity, it could be extremely expensive to scale. An enterprise network normally con-
tains at least hundreds of physical hosts with heterogeneous configurations. Naturally
a question to ask here is how many hosts will be involved in a test? While testing for
properties like address blocking may require only a few, other features such as resil-
ience against Distributed Deny-of-Service (DDoS) attack could involve much more.
A promising direction toward loyal and scalable solution is to employ rapidly devel-
oping virtualization techniques [16,19]. Virtual machine solutions such as VMware
ESX server can increase the testbed size roughly by an order while still preserving all
the applications; and lighterweight protocol stack virtualization methods can scale
much better (e.g. virtual Honeynet [14,15]) at the cost of sacrificing some real appli-
cations. In this work we propose the integration of both based on the following as-
sumption: even in a test case involving a large number of hosts, the subset that has to
run real application simultaneously is often very small. Our experience of developing
a firewall/IDS test suite justifies this assumption.

The last but not least notable issue is automation. Security tests usually employ
precisely specified sequence of actions from various principals, which essentially
requires coordination of the external network, internal network and the device under
test itself. The test system should hide this control complicacy to the end user. In
addition, as the security features of sophisticated device span over multiple network
layers, the test description mechanism should provide corresponding capability and at
the same time facilitate automatic test execution.

Motivated by the above insights we propose Virtual Cyber Security Testing Capa-
bility (VCSTC) – a novel methodology of testing security device and the associated
application solutions with high fidelity, scalability and usability. VCSTC methodol-
ogy aims at a broad category of target systems that could be deployed at the boundary
(gateway) of a local, usually an organizational or enterprise network. The main secu-
rity-related functionality of such systems includes multi-directional access control,
intrusion detection, virus/worm detection, vulnerability analysis and mitigation. Ex-
amples of such devices available on the market include Cisco ASA family, Top Layer
Secure Command and many lower-end consumer security appliances. Two networks
are involved in using and hence testing such devices: an internal network to be pro-
tected, and an untrusted external network. Typically there are four steps in testing:
create a model for both internal and external network; emulate the two models on a
testbed; develop test cases; and execute the test cases on the testbed. VCSTC method-
ology spans over all four steps, although model construction step is not related to
testing and therefore is not the focus on this paper. To the best of our knowledge our
approach is the first to integrate network emulation and automated testing, and it is
distinguished from the existing security testbed solutions (such as DETER [2]) by the
following two key aspects.

 VCSTC: Virtual Cyber Security Testing Capability 121

Hybrid network emulation: To test a security device deployed at network boundary,
both internal and external network are emulated using the mixture of network host
and protocol stack virtualization techniques. The emulated network contains two
types of nodes: a small number of FAT nodes that are fully featured virtualized net-
work hosts, and a large number of THIN nodes each having only a virtual TCP/IP
stack. Configuration of emulated networks is automatically done according to the user
network model. Hosts involved in a test case will be mapped to emulated nodes (FAT
or THIN) depending on what is executed on that host. By leveraging the advantage of
these two virtualization methods, our hybrid testbed achieves the best balance be-
tween loyalty and scalability. We show that our methodology can support up to one
thousand emulated nodes on a commodity computer.

Test description language: In order to cater the diverse features of security device
VCSTC uses an intermediate level test case description language to facilitate the
specification of Point of Control and Observation (PCO) at various layers: IP, Socket
and Application. PCOs could be deployed at any host and the target device, while the
actually deployment and control are automatic. This language is tightly based on a
programming language to provide virtually unlimited expressivity. A test case is dy-
namically compiled into a native executable before execution by the test driver. We
evaluate this scheme by both manual test case generation and using the language as
the target of model-based formal test generation methods.

The rest of this paper is organized as follows. In section 2 we provide an overview
of VCSTC methodology as well as the testing system architecture. Then the two main
contributions are discussed in more details. Section 3 introduces our test description
language; the hybrid network emulation approach is elaborated in Section 4. The
second part of the paper reports our extensive evaluation of the methodology during
the development of a testing platform for the U.S. Department of Defense (DoD) [13].
Section 5 presents our experience of manual and automatic test generation, as well as
a brief remark on the performance. Finally we discuss some on-going and future work
in Section 6.

2 Testing Methodology and System Architecture

In VCSTC methodology there are two essential components in security testing: model
and test cases. They are independent and developed separately. The network model
should contain sufficient information to emulate a real network, and in the meantime
not associated with any special devices and therefore generally reusable. VCSTC
supports several methods to build a network model: it could be automatically synthe-
sized using network management protocols (e.g. SNMP) and collected network traces,
or using random network topology generation; or manually using prevalent modeling
language such as UML with software tool assistance.

Test cases could also be constructed through various ways. A test case mainly speci-
fies two things: (1) a set of PCOs and their deployment (2) a sequence of actions of the
PCOs with the expected outcome. Test cases could be made abstract by defining pa-
rameters of numerical type or special type like IP address. Such abstract test cases could
be concretized by selecting a set of parameter values. To execute a test on a given net-
work model (assuming they are compatible) we first compile it together with all

122 G. Shu et al.

supporting libraries into an executable. Next the network model is automatically emu-
lated and PCOs are deployed at the designated hosts, each of which is controlled by the
test driver through a private communication channel. After the test case finishes a log
file with all network activities during its execution is returned to the tester along with
the test verdict for evaluation. In this framework high fault coverage can be achieved by
the combination of three approaches - selecting different network models; generating
test cases from a model of the feature under test to cover it more comprehensively; and
selecting many combinations of parameter value for an abstract test case.

Fig. 1. Architecture of VCSTC platform capsulated within a single server that connects to both
internal and external interface of a target device

Figure 1 shows the architecture of a full-featured testing system we developed that
realizes the VCSTC methodology. The system is an out-of-box product that could be
contained within a single server. The modeling module provides an UML compatible
environment for creating and validating network models. Models are stored in a data-
base after validation. The operational environment implements a streamline consisting
test preparation, test execution and test result processing, all of which are exposed to
the user via a Web-based interface. The test generation module accepts abstract test
cases (as textual file) generated by the tester or from a formal model. They are then
concretized based on a certain parameter selection policy and eventually compiled
into a native binary file. The test executor is responsible of creating emulated network
and executing test cases on it. The emulated network is essentially a virtual honeynet
with hybrid nodes (details in Section 4) implemented using a pool of virtual machines

 VCSTC: Virtual Cyber Security Testing Capability 123

with a central controller. The whole testing workflow is automated to the extent that
testers interact with VCSTC server only by providing network models and test cases
from Web interface. The test executor hides the complexity of controlling the network
emulator and PCOs from the users.

Now we briefly describe the network configuration on the server. Three types of vir-
tualized network interfaces connect the emulator with other components. There are
many virtual Network Interface Cards (NIC) of each type grouped together by virtual
networks. The private interface VNIC-Control is used by the test executor to control the
honeynet and all PCOs. This type of interface is totally invisible to the test cases and the
target device. The other two types of interfaces VNIC-Int and VNIC-Ext are bridged
with the physical NICs NIC-Int and NIC-Ext on the server, which are connected to the
internal port and external port of the target device, respectively. This setup enables
emulation of both the internal and the external network, while all emulated packets
generated during testing are transformed into real packets at the corresponding VNIC
before delivered to the device. Note that for simplicity Figure 1 only shows one internal
path to the device whereas additional NIC and VNIC could be deployed similarly ac-
cording to the requirements for testing. Network traffic - both real and emulated - pass-
ing all VNIC will be monitored during test execution and readable test reports such as
Message Sequence Chart (MSC) are generated afterwards for further analysis.

3 Test Specification Language

VCSTC uses its own notation for test case specification. The rationale of introducing
the new notation is not to replace the traditional high level test specification language
such as TTCN-3 or MSC; instead our main incentive is to provide a flexible way of
developing test sequences related to security features at all layers of network protocol
stack. Toward this goal our language is tightly based on a native programming lan-
guage such that any valid statement of the host programming language could be em-
bedded in the test code, providing encoding of an input symbol, for instance. A test
case is a textual file with multiple declarative sections (described below) and a test
code section. We show later that the proposed intermediate level language could be
used to interpret test sequences from more abstract formal models such as EFSM [6].

The most important element in our language is PCO. A test case defines multiple
PCOs on various places and controls their behavior. A PCO is deployed on either a
host of internal/external network or the target device. Every PCO on network has one
of three types: (1) Packet PCO sends and receives raw network packet of TCP, UDP
or IP protocol by taking over the network interface of the host. (2) Socket PCO man-
ages one TCP or UDP socket. (3) Application PCO handles one user application. It
reads and writes to the application through its standard input/output channel. Table 1
summarizes the three types of PCO. A PCO must be bound on a host (i.e. an IP ad-
dress) before it can be function, and the mapping could be done by various ways. The
PCO definition might supply a fixed IP address if the test case is design for some
specific network models, or otherwise the binding could be done in test code by call-
ing run-time API. Note that multiple PCOs with different types could co-exist on the
same host except for Packet PCO due to the nondeterministic behavior under the
situation of multiple network capturers.

124 G. Shu et al.

Table 1. Three types of PCOs

Type of PCO Packet PCO Socket PCO App. PCO
Method of control Send/Receive raw

TCP/UDP/IP packet
Read/Write
TCP/UDP socket

Execute native
application

Number on each node One Many Many
Blocking I/O No Yes No

The actions of PCOs are defined in the test code section, which eventually returns a

test verdict. A test case could contain parameters and become abstract. Abstract test case
cannot be executed before assigning parameter values. Our language supports parame-
ters of bounded Integer type and IP address type, and a test concretization algorithm
implements parameter value selection according to certain coverage criteria such as
random sampling, boundary coverage and so forth. After the test case is concretized it is
automatically transformed into the host language for compilation. In this phase auxiliary
code such as test case initialization and cleanup routines is generated and weaved
together with the test code. During compilation the VCSTC runtime library proving
essential functionalities and all user defined libraries are linked. In practice, a lot of
reusable routines (e.g. Malware simulation, special packet generation) are encapsulated
in the form of library so that the test code could focus on the logic, that is, the sequence
of actions from PCO. The VCSTC runtime library implements all types of PCO and the
proxies used to control them remotely from the test executor.

Now we discuss more details by an example. Figure 2 shows a test case that checks
whether a security device provides an outgoing source IP black list of sufficient length.
The test code uses Java as host language and implements a rather straightforward
logic: a Web server is started on an external host by an Application PCO (line 8). There
are many (NCLIENT) internal hosts with a Socket PCO on each (line 7). Both the
server and clients are selected randomly from the network (lines 17-18). The device is
controlled by a Device PCO (line 9). At the beginning the test case launches the server
and clears the black list (line 22), followed by a check (lines 24-28) to see whether
all clients can reach the server. Next the black list is configured through Device PCO
(line 29), and we retry the connections again, expecting that no client can successfully
reach the serer. Any client’s success in connecting at this time (line 32) proves the black
list useless and therefore the test case returns the verdict failure. The test case contains
two Integer parameters (lines 2-5): number of clients and server ports, which are to
be assigned according to a user policy. Note that the execution of the test case is fully
automated except for Device PCO. Configuration of target device might need manual
activity, depending on the interface a specific device is providing. Many venders
provide programmable configuration mechanism, which could be utilized by VCSTC
runtime to fully automate test execution.

We close this section by a remark on the relationship between test case and net-
work model. Test cases like the one in Figure 2 do not depend on any network-
specific properties such as background traffic and therefore could be executed on any
network models. The only implicit constraint is that the network must contain enough
(in this case NCLIENT) distinct hosts – this will be checked statically by the test
executor when loading the test case. On the other hand, the test case might also ex-
plicitly specify a list of compatible network model names if necessary.

 VCSTC: Virtual Cyber Security Testing Capability 125

1. #TESTCASE OBL_Length_TCP
2. #PARAM {
3. int{[0,512]} NCLIENTS;
4. int{[0,1024], [50000,51000]} PORT;
5. }
6. #PCO {
7. SOCKET pco_client[NCLIENTS];
8. APP pco_server;
9. DEVICE pco_device;
10. }
11. #PACKET {}
12. #VERDICT {
13. success, failure, unknown, timeout
14. }
15. #TESTBODY
16. {
17. bind_PCO(pco_client, INTERNAL, RANDOM|NONDUP);
18. bind_PCO(pco_server, EXTERNAL, RANDOM);
19.
20. log("Testing length of black-list using TCP");
21. pco_server.execute("httpd", PORT);
22. pco_device.config("clear black list");
23. Vector black_list = new Vector<InetAddress>();
24. for (int x= 0;x<NCLIENTS;x++) {
25. if(!pco_client[x].connect

 (pco_server.getIP(),PORT)) return unknown;
26. black_list.add(pco_client[x].getIPAddress());
27. pco_client[x].close();
28. }
29. pco_device.config("add to black list", black_list);
30. wait(3000);
31. for (int x= 0;x<NCLIENTS;x++) {
32. if(pco_client[x].connect(pco_server.getIP(),

 PORT)) return failure;
33. }
34. return success;

35. }

Fig. 2. Example of a simplified abstract test case

4 Network Host and Protocol Stack Virtualization

A test case is executed on an emulated network that from the view of the device under
test is the same as a real network. Emulated network is created from a network model
using hybrid network virtualization approach. As we mention in Section 1, VCSTC
mitigates the key challenge of scalability by using a hybrid virtual honeynet. Honey-
net [18] is used recently as a best practice of network emulation for the purpose of
attack identification. We adapt a hybrid honeynet design where two virtualization
techniques are used together to achieve the balance of scalability and fidelity. First we
distinguish two terms used in this section: logical node and physical node. A logical
node is a network host, either external or internal, defined in a test case. A logical
node is identified by its IP address. A physical node is a network host in the emulated
network. The test executor maintains a mapping from logical nodes to physical nodes

126 G. Shu et al.

and deploys the PCOs according to this mapping. In our scheme of hybrid honeynet
there are two types of physical nodes in the emulated network:

 FAT node: A FAT physical node is emulated by a complete virtualized host
machine. Thanks to the advanced virtualization techniques such node can accommo-
date any application running at the real host. A repository of pre-configured (e.g. with
different Operating System and/or applications) virtual machine images are stored at
the server while the honeynet controller selects the proper ones to load. Unfortu-
nately, host virtualization is still very expensive and we cannot afford to emulate the
whole network using FAT nodes alone.

 THIN node: A THIN physical node is emulated by virtualizing only a TCP/IP
protocol stack but not the actual resources of a host. Software solutions such as Hon-
eyd [14] accomplish this by overriding the IP protocol stack on a single (possibly
virtual) machine and claiming responsibility for a range of IP addresses. Socket based
program could be executed on top of the virtualized protocol stack appearing to the
outside as running with its own address. This approach is lightweight and therefore
very scalable. The cost however, is that the function of PCO deployed on them is
limited. Since all programs launch on THIN nodes share the same physical machine
and therefore its resources, there is obviously a potential problem of interference. The
exact constraints are determined by the virtualization tool used. In our system with
Honeyd as protocol stack emulator if a logical node is mapped to a THIN node, then
application PCOs on it can only execute a special type of socket-based EFSM simula-
tion program synthesized from user network traces (see Section 6).

Fig. 3. Internal structure of a hybrid honeynet with two types of nodes

We create and configure a mixture of these two types of physical nodes in the emu-
lated network, as shown in Figure 3. From the view of the emulator, we have a small
number M of FAT nodes and a protocol stack virtualizer supporting N THIN nodes.
These heterogeneous physical nodes are connected by a virtual network switch and
form a honeynet. On the other hand, the heterogeneity is made transparent to the test
cases. That is, all logical nodes are the same in terms of PCO capabilities. The map-
ping between logical and physical node is first created by the test executor before a

 VCSTC: Virtual Cyber Security Testing Capability 127

test case is loaded, and is adjusted dynamically by network reconfiguration under
some circumstances. The separation of logical nodes and physical nodes has two
obvious advantages. First the honeynet resource provisioning could be changed any-
time - for example adding more FAT nodes - without affecting any test case. Second,
in most test cases only a small number of hosts run real applications (and therefore
require to be mapped to a FAT node) simultaneously, despite that the total number of
hosts is large. In such situations when a logical node does not have any activities we
can remap it to a THIN node at runtime. When the current physical node provisioning
can no longer support the execution of a test case, the test executor will get a runtime
error and hence returns failure. Below we describe some heuristic guidelines practiced
by the test executor for static and dynamic mapping.

Guideline 1 (Static): If a logical node does not have Application PCO, always map it
to a THIN node, because Packet and Socket PCOs could both be supported.

Guideline 2 (Static): If a logical node has both Socket and Application PCO, map it
to a FAT node if there is one available, otherwise map to a THIN node. Nodes with
Application and Packet PCO have lower priority of mapping to FAT node. This is
because Packet PCO is easier to migrate dynamically than Socket PCO.

Guideline 3 (Dynamic): Before an Application PCO executes a real user application,
mapping need to be adjusted if the logical node is currently mapped to a THIN node.
If there is Socket PCO with established TCP connections at this time, we report fail-
ure because we cannot migrate TCP connection across physical nodes. Otherwise, if
there is an unmapped FAT node, it is remapped to the logical node. If all FAT nodes
are already mapped, we check whether one of them could be swapped to a THIN
node, that is, on the current owning logical node no Application PCO is executing and
no Socket PCO is connected. If this condition is satisfied, honeynet controller will
reconfigure the network (i.e. IP address) and switch the mapping of two logical nodes,
therefore allow the user application to be executed on a FAT node. If no FAT node
satisfies this condition, failure is reported.

As an example of test case, in Figure 2 we have an array of logical nodes (client)
with only Socket PCO and another node (server) with only Application PCO. The
mapping for this test case is trivial since only one FAT node is needed for the server
node and all clients are mapped to THIN nodes.

Figure 4 shows a more illustrative example. In this test case we have two client
nodes with Application PCO and a server node with Application PCO. Table 2 shows
the node mapping at several key timing points when the emulated network contains
unlimited THIN nodes but only 2 FAT nodes. Before executing the test case, the first
two nodes (client[0] and client[1]) get the FAT nodes and the rest (including
server[0]) get THIN nodes. Before the server starts (line 13), it needs to be remapped
to a FAT node, and client[0] could be swapped out since it is not active. Similarly
when client[0] needs to launch its program reconfiguration happens again, swapping
it with client[1]. Finally client[1] launches a program, now since client[0]’s PCO has
terminated its application, it could be switched to a THIN node and client[1] gets the
FAT node. Note that the jitter of mapping in this example is quite unrealistic since in
practice the server contains much more FAT nodes.

128 G. Shu et al.

1. ……
2. #PCO {
3. APP pco_client[4];
4. APP pco_server;
5. DEVICE pco_device;
6. }
7. ……
8. #TESTBODY
9. {
10. bind_PCO(pco_client, INTERNAL, RANDOM|NONDUP);
11. bind_PCO(pco_server, EXTERNAL, RANDOM);
12. ……
13. pco_server.execute_service(“IIS6.0”);
14. ……
15. pco_client[0].execute(“lynx”,”domain.com/page.cgi”);
16. ……
17. pco_client[0].terminate();
18. ……
19. pco_client[1].execute(“iexplore”,”domain.com/page.cgi”);
20. ……
21. pco_client[1].terminate();
22. ……
23. pco_server.terminate();

24. }

Fig. 4. Example of test case with dynamic node remapping

Table 2. Node mapping of the test case with 2 FAT nodes

 Line 10 Line 13 Line 17 Line 19
server THIN FAT-1 FAT-1 FAT-1
client[0] FAT-1 THIN FAT-2 THIN
client[1] FAT-2 FAT-2 THIN FAT-2

Dynamic network reconfiguration also involves a reconnection between the PCO

proxy (in the test executor) and the physical node through the network interface
VNIC-Control of the honeynet (Figure 1). When the new IP address becomes usable
on the physical node, the PCO proxy will disconnects the old PCO and connect the
new one. On a separate issue, we are currently investigating suitable process migra-
tion schemes supporting dynamic remapping including live TCP connections, which
fully take the advantage of the hybrid network design.

5 Experiments and Evaluation

The proposed VCSTC methodology has been fully applied in the development of a
real security testing platform for the U.S. DoD (Department of Defense). The purpose
of this project is to provide critical network infrastructure owners with an effective
and easy-to-use mechanism to assess the suitability of a security device or solution
with respect to their own infrastructure before investment. In this section we report
our experience and evaluation during the development of this platform. We start from

 VCSTC: Virtual Cyber Security Testing Capability 129

a brief overview of the system configuration and some simple practice in Section 5.1;
then Section 5.2 summarizes our effort of integrating automatic test generation tech-
niques. Our system supports generating test cases (in our test description language)
from two popular formal models – Parameterized EFSM and Simplified Firewall Rule
Language. We also present performance evaluation of the system installed on com-
modity hardware in order to justify its feasibility and scalability.

5.1 System Configuration and Basic Operations

As discussed earlier, the whole system could be deployed on a single machine, i.e.
HoneyNet server (Figure 1). We choose a typical hardware configuration: a Dell Pre-
cision 690 workstation with two Xeon 3.2 GHz Due Core CPUs and 2GB memory.
The server has two Gigabit physical NICs (NIC-Int and NIC-Ext). Both modeling
module and test executor are implemented in Java 1.5 and Jpcap (a packet manipula-
tion utility). The hybrid honeynet is composed of 5 VMware virtual machines running
Ubuntu Linux as guest Operating System – 4 of them with 256MB virtual memory
each are used as FAT nodes and the last one with 512MB virtual memory runs Hon-
eyd 1.5 to emulate up to 1024 THIN nodes. The system is used to test several security
devices on the market, and our performance evaluation is conducted using Netgear
ProSafe FVS318 VPN Firewall/Switch.

We use both network models synthesized from real network and randomly gener-
ated large models. For real network, we derive a model from a testbed of the WAN-
in-Lab project [7] developed by Caltech. This testbed has 4 Cisco routers with SNMP
capability. The whole model contains 39 subnets and totally about 40 distinguished
hosts with services available. We imagine the target device is about to be deployed at
the gateway of this network and manually develop a small test suite that covers the
classic access control and content filtering features common to typical Firewall and
IDS. It takes a Java developer two days after one day’s training to write about 50 test
cases (Table 3). Using these test cases, the tester is able to verify precisely the details
of many features of the device that is stated very informally and vaguely from its user
manual. For instance, one of the Anti-virus test cases discovers that the device cannot
enforce malicious URL blocking when the URL is encoded in HEX form (e.g.
“www.abc.com/x.e%78e” for “www.abc.com/x.exe”), which effectively renders this
URL blocking feature useless. Based on this experience we consider our test descrip-
tion language efficient and of good usability.

Table 3. Firewall/IDS Test Suite

Inbound filtering 24 Test cases
Outbound filtering 24 Test cases
Port Forwarding 4 Test cases

Firewall Feature

Dynamic filtering 1 Test cases
Anti-virus features 2 Test cases
Intrusion detection features 3 Test cases

130 G. Shu et al.

5.2 Automatic Test Case Generation

The applicability of our methodology could be broadened by leveraging the ad-
vanced test generation methods. We make an effort to integrate them into our meth-
odology. We investigate automated translation from test sequences derived from
formal model to the VCSTC test description language. The first model we imple-
ment is EFSM. Our test system provides a GUI to specify a feature of the device
using EFSM with parameters in I/O message. Figure 5 shows an example of a sin-
gle port blocking feature with two states. From the EFSM model test sequences
could be automatically derived using various approaches, such as checking se-
quences from reachability analysis (Figure 5 shows the reachability graph when the
range of port variable has 3 values). We then translate each test sequence into a test
case file and then generate an incomplete user library that defines the I/O symbols
of the model. Figure 6 shows a section of the test case corresponding to the se-
quence {Set_Block[0]/-, Visit[0]/-, Set_Unblock/-, Visit[0]/Resp} and an empty
method definition for input symbol Set_Block, for which the test designer is respon-
sible of providing the code to implement this input symbol using the PCOs on in-
ternal and external hosts. Note this only needs to be done once and then shared by
all test cases for the same model.

Fig. 5. A simple EFSM model of port blocking feature (left) and the corresponding reachability
graph as a FSM (right)

Similarly our system supports generating test cases from firewall configurations.

We use a simple grammar to describe firewall rules following classic semantics
[1,11]. A rule contains a predicate based packet filter and an action and a configura-
tion is an ordered list of rules. After a user inputs a firewall configuration, test cases
with input packets are automatically generated. The elements in the packet filter can
be either a value or a wildcard (“*”), and furthermore the user might ask the test case
concretization process to select a value by specifying it as a parameter of the rule. For
example, a configuration as specified below is composed of two rules A and B. The
test case generated from this configuration will contain three parameters (i.e. Src port

 VCSTC: Virtual Cyber Security Testing Capability 131

1. #TESTBODY
2. {
3. input_Set_Block(pco_ext, pco_int, pco_device,0);
4. ASSERT(output(pco_ext, pco_int, pco_device) == NULL);
5. input_Visit(pco_ext, pco_int, pco_device,0);
6. ASSERT(output(pco_ext, pco_int, pco_device) == NULL);
7. input_Set_Unblock(pco_ext, pco_int, pco_device);
8. ASSERT(output(pco_ext, pco_int, pco_device) == NULL);
9. input_Visit(pco_ext, pco_int, pco_device,0);
10. ASSERT(output(pco_ext, pco_int, pco_device) == Resp);
11. return success;
12. }
13. #USES LIB_Simple_Port_Blocking

1. public class LIB_Simple_Port_Blocking
2. {
3. ……
4. public void input_Set_Block(PCO pco_ext, PCO pco_int, PCO

 pco_device) {
5. … //user provides implementation of input symbol;
6. }
7. ……

}

Fig. 6. Test code and library generated from EFSM test sequences

in A, Protocol in B and Src port in B) and a pair of Socket PCO binding on internal
and external network, respectively.

A: “Allow TCP from [10.0.0.1:Param1] to [*.*] through External”
B: “Deny Param2 from [*:Param3] to [192.168.0.2:80] through External”

The test code first enables this configuration through Device PCO, and then essen-
tially sends a packet enabling a subset of rules to see whether the device under test
takes the expected action. Clearly the subset of rules triggered by a particular packet
depends on the parameter value of all rules. In our example, A and B could be en-
abled together if Param2=TCP and Param1 = Param3. In fact when both A and B are
enabled they conflict with each other, and it is to the interest of the tester how the
device will handle. The test case concretization process produces parameter assign-
ments in such a way that most rule subsets are covered. Due to space limit we omit
the detail of the algorithm and test case generated. From our experiences of integrat-
ing the two formal models, we believe that our methodology is promising for a variety
of application domains related to network security testing.

5.3 Performance Evaluation

Finally we remark on the performance evaluation of our system. First we clarify that
VCSTC is not targeted for performance testing or load testing therefore it is not de-
signed to meet hard real-time requirements. The purpose of evaluation is instead to
justify the feasibility of our design for network model and tests of practical scale. We
use a series of micro-benchmarks to measure various aspects of the system, with the
focus on the performance penalty incurred by using hybrid network virtualization.
The first performance penalty comes from initializing the emulated network. For FAT

132 G. Shu et al.

of THIN Node 16 64 256 1024
Startup Time 6.67s 24.13s 30.59s 55.43s

(a)

Message Size 4KB 8KB 16KB 32KB 64KB
Trans. Time <1ms 1.00ms 2.13ms 3.88ms 7.87ms

(b)

Connections 1 2 3 4
Bandwidth (each con.) 6.80Mb/s 2.95Mb/s 2.08 Mb/s 1.90 Mb/s

(c)

Fig. 7. (a) Startup time of hybrid honeynet with different network size. (b) Transmission time
of PCO control messages. (c) TCP transmission bandwidth between external and internal net-
work nodes with 1-4 simultaneous connections measured by iPerf.

nodes the controller reset/reload loads a virtual machine image which takes constant
time; then the Honeyd engine virtualizes the pool of THIN nodes and launch the PCO
on each node. The Honeyd start up time is proportional to the number of THIN nodes
as shown in Figure 7 (a), for instance a network of 1024 nodes could take up to 1
minute to initialize. Note that under certain situations it is unnecessary to reinitialize
network for each test case, specifically when all test cases share a network model and
they all cleanup properly. In addition, communication cost between the test driver and
the PCO is not neglectable because the control message sent might carry a data por-
tion (e.g. a packet to send from that PCO). We measure the transmission time with
various message sizes shown as Figure 7 (b). There is no difference between FAT and
THIN nodes since the same control channel is used.

The packet dispatching mechanism used by protocol stack virtualization tools (i.e.
Honeyd) also causes delay in data transmission involving a THIN node. Basically all
socket function calls are delegated to the tool and go through internal tunneling,
which forms a global bottleneck. We use a benchmarking tool iPerf to measure the
bandwidth of concurrent TCP connections between external and internal nodes. If
both are FAT nodes the bandwidth for a single link is 8.89Mb/s; if one side is THIN
node, it is downgraded as shown in Figure 7(c). We believe that this bandwidth limi-
tation is not critical to validity of most security related tests.

Fig. 8. Honeyd CPU load percentage for three networks of THIN nodes each sending UDP
traffic at 2KB/s

 VCSTC: Virtual Cyber Security Testing Capability 133

Another simple benchmark is designed to evaluate approximately the work load of
testing server. The dominating factor here again is large number of THIN nodes virtual-
ized by Honeyd. We create network of different size, then let each node send UDP
packet at a given rate to random destination node. This scenario corresponds to a typical
test case where all logical nodes carry symmetric tasks. Figure 8 shows the CPU usage
of the VMware guest OS running Honeyd during a window of 20 seconds. When the
network is small (16 nodes) an average 33.4% CPU time is used while a large network
(1024 nodes) is likely to saturate the CPU (85.8%). While admittedly being a coarse
measurement, this shows that our system is capable of running fairly large models.

6 Discussion

In this work we present a new security testing approach, VCSTC using network host
and protocol stack virtualization. Two main aspects are discussed in detail: (1) design-
ing a scalable and yet loyal network testbed; (2) develop test cases manually or auto-
matically. Compared to existing solutions, VCSTC has a few advantages. Our novel
design of hybrid network emulation provides both fidelity (by network host virtualiza-
tion) and scalability (by lightweight protocol stack virtualization). We also develop an
intermediate level test description language that is suitable for security tests at various
network protocol layers. In the paper we discuss how test cases are executed automati-
cally on the emulated network model. Extensive experiments have been conducted on
our implementation platform, which justify the benefits of our proposed methodology.

On the other hand, we are still at the initial stage of applying network virtualization
techniques to testing. Lots of issues remain to be explored in our current approach be-
fore its applicability could be further broadened. Our approach aims at security testing at
IP layer and above. As a matter of fact, VCSTC does not support routing protocol emu-
lation despite that it generates real IP packets. Consequently, routing related security
features cannot be tested under our framework. For similar reason data link layer secu-
rity features are not supported. Emulating routing in a scalable fashion is a challenging
task and it may change the protocol stack virtualization scheme in a drastic way. A
promising approach is to use one virtualizer for each routing domain or subnet, and
connect them by FAT nodes where routing protocols are implemented. Also the test
language is to be augmented to support routing operations at the PCOs.

Protocol synthesis from real network is another challenge where network traffic
with high fidelity is desired. This is an issue for both network modeling and testbed
design. Since running real user applications on top of all virtualized nodes is clearly
not practical, we need to synthesize a model of the protocol from network traces
[3,12] and emulate it on the testbed in order to generate (not simply replay) traffic
patterns similar to those seen. In our ongoing work we use a state machine minimiza-
tion approach [5] to obtain EFSM models from field-decoded protocols (e.g. by
Ethereal), and implement a special program to simulate EFSM models that could be
executed on top of both FAT and THIN nodes. We envision this and the enhancement
for routing emulation will render our VCSTC a more powerful and useful tool for
testing both hardware and software based network security systems.

Acknowledgement. The VCSTC project was supported by the U.S. Department of
Defense under grant award N41756-06-C-5541. Work in this paper is also supported in
part by the U.S. National Science Foundation (NSF) under grant awards CNS-0403342,

134 G. Shu et al.

CNS-0548403. We thank Steven Low from Caltech for kindly allowing us to use the
WAN-in-Lab testbed.

References

1. Al-Shaer, E., Hamed, H.: Discovery of Policy Anomalies in Distributed Firewalls. In: Pro-
ceedings of IEEE INFOCOM (2004)

2. Benzel, T., Braden, R., Kim, D., Neuman, B., Joseph, A., Sklower, K., Ostrenga, R.,
Schwab, S.: Experience with DETER: A Testbed for Security Research. In: 2nd IEEE
Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities (TridentCom) (2006)

3. Cui, W., Kannan, J., Wang, H.: Discoverer: Automatic Protocol Reverse Engineering from
Network Traces. In: The 16th USENIX Security Symposium (2007)

4. El-Atawy, A., Ibrahim, K., Hamed, H., Al-Shaer, E.: Policy Segmentation for Intelligent
Firewall Testing. In: 1st Workshop on Secure Network Protocols (NPSec) (2005)

5. Gören, S., Ferguson, F.J.: On state reduction of incompletely specified finite state ma-
chines. Computers and Electrical Engineering 33(1), 58–69 (2007)

6. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - A sur-
vey. In: Proceedings of the IEEE, pp. 1090–1123 (1996)

7. Lee, G.S., Andrew, L.H., Tang, A., Low, S.H.: WAN-in-Lab: Motivation, Deployment and
Experiments. Protocols for Fast, Long Distance Networks (PFLDnet), 85–90 (2007)

8. Liljenstam, M., Nicol, D.M., Berk, V., Gray, R.: Simulating Realistic Network Worm
Traffic for Worm Warning System Design and Testing. In: Proceedings of the 2003 Work-
shop on Rapid Malcode (WORM) (2003)

9. Lyu, M., Lau, L.: Firewall security: policies, testing and performance evaluation. In: Pro-
ceedings of the COMSAC, pp. 116–121 (2000)

10. Maier, S., Herrscher, D., Rothermel, K.: Experiences with node virtualization for scalable
network emulation. Computer Communication 30(5), 943–956 (2007)

11. Mayer, A., Wool, A., Ziskind, E.: Fang: A Firewall Analysis Engine. In: Proceedings of
the IEEE Symposium on Security and Privacy (2000)

12. Orebaugh, A., Ramirez, G., Burke, J., Pesce, L.: Wireshark & Ethereal Network Protocol
Analyzer Toolkit (Jay Beale’s Open Source Security). Syngress Publishing (2007)

13. Pederson, P., Lee, D., Shu, G., Chen, D., Liu, Z., Li, N., Sang, L.: Virtual Cyber-Security
Testing Capability for Large Scale Distributed Information Infrastructure Protection (sub-
mitted, 2008)

14. Provos, N., Holz, T.: Virtual Honeypots: From Botnet Tracking to Intrusion Detection, 1st
edn. Addison-Wesley Professional, Reading (2007)

15. Provos, N.: A Virtual Honeypot Framework. In: Proceedings of the 13th USENIX. Secu-
rity Symposium (2004)

16. Sabiguero, A., Baire, A., Boutet, A., Viho, C.: Virtualized Interoperability Testing: Appli-
cation to IPv6 Network Mobility. In: 18th IFIP/IEEE International Workshop on Distrib-
uted Systems: Operations and Management, pp. 187–190 (2007)

17. Sherwood, J.: The Security Certification Criteria Project. In: The 3rd International Com-
mon Criteria Conference (2002)

18. Spitzner, L.: The Honeynet Project: Trapping the Hackers. IEEE Security and Pri-
vacy 1(2), 15–23 (2003)

19. VMware Inc, http://www.vmware.com
20. Wang, L., Ellis, C., Yin, W., Luong, D.D.: Hercules: An Environment for Large-Scale En-

terprise Infrastructure Testing. In: Proceedings of the Workshop on Advances and Innova-
tions in Systems Testing (2007)

21. Wool, A.: Architecting the Lumeta firewall analyzer. In: 10th USENIX Security Sympo-
sium, pp. 85–97 (2001)

	VCSTC: Virtual Cyber Security Testing Capability – An Application Oriented Paradigm for Network Infrastructure Protection
	Introduction
	Testing Methodology and System Architecture
	Test Specification Language
	Network Host and Protocol Stack Virtualization
	Experiments and Evaluation
	System Configuration and Basic Operations
	Automatic Test Case Generation
	Performance Evaluation

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

