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Abstract. Network security devices are becoming more sophisticated and so are 
the testing processes. Traditional network testbeds face challenges in terms  
of fidelity, scalability and complexity of security features. In this paper we  
propose a new methodology of testing security devices using network virtual-
ization techniques, and present an integrated solution, including network emula-
tion, test case specification and automated test execution. Our hybrid network 
emulation scheme provides high fidelity by host virtualization and scalability 
by lightweight protocol stack emulation. We also develop an intermediate level 
test case description language that is suitable for security tests at various net-
work protocol layers and that can be executed automatically on the emulated 
network. The methodology presented in this paper has been implemented and 
integrated into a security infrastructure testing system for US Department of 
Defense and we report the experimental results.  

Keywords: Network Modeling, Network Emulation, Security Testing, Test 
Automation, Virtualization. 

1   Introduction 

Security, reliability and interoperability are indispensable in today’s distributed hetero-
geneous information infrastructures. These properties rely on the correct functioning of 
the increasingly complicated security devices, such as traditional firewall, security 
switch, intrusion detection system (IDS) and so on [9,11,13,17]. For modern security 
devices, testing is no longer considered to involve only the vendor because software 
components such as user configuration and plug-in have become significant [1,21].  
On the other hand, since critical secure devices are often to be deployed at sensitive 
environment (e.g. government or military network), it is not appropriate to test them 
using the real network. Instead, target system and configuration are tested using special 
testbed before deployment. The last several decades have witnessed a great number  
of mature IP network testbed solutions [2,10], with the focus of integration testing  
and performance testing. In this work we study several key challenges and solutions 
particularly in testing network security devices.  

First, the nature of security testing demands a high level of fidelity between the 
testbed and the real environment in order to compose realistic test scenario and obtain 
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meaningful assessment. This cannot be achieved by the content-insensitive traffic 
generation paradigm often adopted in performance testing. Particularly, it is desirable 
that the testbed mimics the characteristics of the real network including topology, host 
machine properties and the protocol stack. Fidelity of protocol stack is especially 
important for (1) generation of realistic background traffic [20], and (2) designing test 
cases at transport or higher layer, or executing real applications. 

While duplicating the real environment or approaches of this nature guarantees fi-
delity, it could be extremely expensive to scale. An enterprise network normally con-
tains at least hundreds of physical hosts with heterogeneous configurations. Naturally 
a question to ask here is how many hosts will be involved in a test? While testing for 
properties like address blocking may require only a few, other features such as resil-
ience against Distributed Deny-of-Service (DDoS) attack could involve much more. 
A promising direction toward loyal and scalable solution is to employ rapidly devel-
oping virtualization techniques [16,19]. Virtual machine solutions such as VMware 
ESX server can increase the testbed size roughly by an order while still preserving all 
the applications; and lighterweight protocol stack virtualization methods can scale 
much better (e.g. virtual Honeynet [14,15]) at the cost of sacrificing some real appli-
cations. In this work we propose the integration of both based on the following as-
sumption: even in a test case involving a large number of hosts, the subset that has to 
run real application simultaneously is often very small. Our experience of developing 
a firewall/IDS test suite justifies this assumption. 

The last but not least notable issue is automation. Security tests usually employ 
precisely specified sequence of actions from various principals, which essentially 
requires coordination of the external network, internal network and the device under 
test itself. The test system should hide this control complicacy to the end user. In 
addition, as the security features of sophisticated device span over multiple network 
layers, the test description mechanism should provide corresponding capability and at 
the same time facilitate automatic test execution. 

Motivated by the above insights we propose Virtual Cyber Security Testing Capa-
bility (VCSTC) – a novel methodology of testing security device and the associated 
application solutions with high fidelity, scalability and usability. VCSTC methodol-
ogy aims at a broad category of target systems that could be deployed at the boundary 
(gateway) of a local, usually an organizational or enterprise network. The main secu-
rity-related functionality of such systems includes multi-directional access control, 
intrusion detection, virus/worm detection, vulnerability analysis and mitigation. Ex-
amples of such devices available on the market include Cisco ASA family, Top Layer 
Secure Command and many lower-end consumer security appliances. Two networks 
are involved in using and hence testing such devices: an internal network to be pro-
tected, and an untrusted external network. Typically there are four steps in testing: 
create a model for both internal and external network; emulate the two models on a 
testbed; develop test cases; and execute the test cases on the testbed. VCSTC method-
ology spans over all four steps, although model construction step is not related to 
testing and therefore is not the focus on this paper. To the best of our knowledge our 
approach is the first to integrate network emulation and automated testing, and it is 
distinguished from the existing security testbed solutions (such as DETER [2]) by the 
following two key aspects.  
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Hybrid network emulation: To test a security device deployed at network boundary, 
both internal and external network are emulated using the mixture of network host 
and protocol stack virtualization techniques. The emulated network contains two 
types of nodes: a small number of FAT nodes that are fully featured virtualized net-
work hosts, and a large number of THIN nodes each having only a virtual TCP/IP 
stack. Configuration of emulated networks is automatically done according to the user 
network model. Hosts involved in a test case will be mapped to emulated nodes (FAT 
or THIN) depending on what is executed on that host. By leveraging the advantage of 
these two virtualization methods, our hybrid testbed achieves the best balance be-
tween loyalty and scalability. We show that our methodology can support up to one 
thousand emulated nodes on a commodity computer. 

Test description language: In order to cater the diverse features of security device 
VCSTC uses an intermediate level test case description language to facilitate the 
specification of Point of Control and Observation (PCO) at various layers: IP, Socket 
and Application. PCOs could be deployed at any host and the target device, while the 
actually deployment and control are automatic. This language is tightly based on a 
programming language to provide virtually unlimited expressivity. A test case is dy-
namically compiled into a native executable before execution by the test driver. We 
evaluate this scheme by both manual test case generation and using the language as 
the target of model-based formal test generation methods. 

The rest of this paper is organized as follows. In section 2 we provide an overview 
of VCSTC methodology as well as the testing system architecture. Then the two main 
contributions are discussed in more details. Section 3 introduces our test description 
language; the hybrid network emulation approach is elaborated in Section 4. The 
second part of the paper reports our extensive evaluation of the methodology during 
the development of a testing platform for the U.S. Department of Defense (DoD) [13]. 
Section 5 presents our experience of manual and automatic test generation, as well as 
a brief remark on the performance. Finally we discuss some on-going and future work 
in Section 6. 

2   Testing Methodology and System Architecture 

In VCSTC methodology there are two essential components in security testing: model 
and test cases. They are independent and developed separately. The network model 
should contain sufficient information to emulate a real network, and in the meantime 
not associated with any special devices and therefore generally reusable. VCSTC 
supports several methods to build a network model: it could be automatically synthe-
sized using network management protocols (e.g. SNMP) and collected network traces, 
or using random network topology generation; or manually using prevalent modeling 
language such as UML with software tool assistance.  

Test cases could also be constructed through various ways. A test case mainly speci-
fies two things: (1) a set of PCOs and their deployment (2) a sequence of actions of the 
PCOs with the expected outcome. Test cases could be made abstract by defining pa-
rameters of numerical type or special type like IP address. Such abstract test cases could 
be concretized by selecting a set of parameter values. To execute a test on a given net-
work model (assuming they are compatible) we first compile it together with all  
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supporting libraries into an executable. Next the network model is automatically emu-
lated and PCOs are deployed at the designated hosts, each of which is controlled by the 
test driver through a private communication channel. After the test case finishes a log 
file with all network activities during its execution is returned to the tester along with 
the test verdict for evaluation. In this framework high fault coverage can be achieved by 
the combination of three approaches - selecting different network models; generating 
test cases from a model of the feature under test to cover it more comprehensively; and 
selecting many combinations of parameter value for an abstract test case. 

 

Fig. 1. Architecture of VCSTC platform capsulated within a single server that connects to both 
internal and external interface of a target device 

Figure 1 shows the architecture of a full-featured testing system we developed that 
realizes the VCSTC methodology. The system is an out-of-box product that could be 
contained within a single server. The modeling module provides an UML compatible 
environment for creating and validating network models. Models are stored in a data-
base after validation. The operational environment implements a streamline consisting 
test preparation, test execution and test result processing, all of which are exposed to 
the user via a Web-based interface. The test generation module accepts abstract test 
cases (as textual file) generated by the tester or from a formal model. They are then 
concretized based on a certain parameter selection policy and eventually compiled 
into a native binary file. The test executor is responsible of creating emulated network 
and executing test cases on it. The emulated network is essentially a virtual honeynet 
with hybrid nodes (details in Section 4) implemented using a pool of virtual machines 
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with a central controller. The whole testing workflow is automated to the extent that 
testers interact with VCSTC server only by providing network models and test cases 
from Web interface. The test executor hides the complexity of controlling the network 
emulator and PCOs from the users. 

Now we briefly describe the network configuration on the server. Three types of vir-
tualized network interfaces connect the emulator with other components. There are 
many virtual Network Interface Cards (NIC) of each type grouped together by virtual 
networks. The private interface VNIC-Control is used by the test executor to control the 
honeynet and all PCOs. This type of interface is totally invisible to the test cases and the 
target device. The other two types of interfaces VNIC-Int and VNIC-Ext are bridged 
with the physical NICs NIC-Int and NIC-Ext on the server, which are connected to the 
internal port and external port of the target device, respectively. This setup enables 
emulation of both the internal and the external network, while all emulated packets 
generated during testing are transformed into real packets at the corresponding VNIC 
before delivered to the device. Note that for simplicity Figure 1 only shows one internal 
path to the device whereas additional NIC and VNIC could be deployed similarly ac-
cording to the requirements for testing. Network traffic - both real and emulated - pass-
ing all VNIC will be monitored during test execution and readable test reports such as 
Message Sequence Chart (MSC) are generated afterwards for further analysis. 

3   Test Specification Language  

VCSTC uses its own notation for test case specification. The rationale of introducing 
the new notation is not to replace the traditional high level test specification language 
such as TTCN-3 or MSC; instead our main incentive is to provide a flexible way of 
developing test sequences related to security features at all layers of network protocol 
stack. Toward this goal our language is tightly based on a native programming lan-
guage such that any valid statement of the host programming language could be em-
bedded in the test code, providing encoding of an input symbol, for instance. A test 
case is a textual file with multiple declarative sections (described below) and a test 
code section. We show later that the proposed intermediate level language could be 
used to interpret test sequences from more abstract formal models such as EFSM [6]. 

The most important element in our language is PCO. A test case defines multiple 
PCOs on various places and controls their behavior. A PCO is deployed on either a 
host of internal/external network or the target device. Every PCO on network has one 
of three types: (1) Packet PCO sends and receives raw network packet of TCP, UDP 
or IP protocol by taking over the network interface of the host. (2) Socket PCO man-
ages one TCP or UDP socket. (3) Application PCO handles one user application. It 
reads and writes to the application through its standard input/output channel. Table 1 
summarizes the three types of PCO. A PCO must be bound on a host (i.e. an IP ad-
dress) before it can be function, and the mapping could be done by various ways. The 
PCO definition might supply a fixed IP address if the test case is design for some 
specific network models, or otherwise the binding could be done in test code by call-
ing run-time API. Note that multiple PCOs with different types could co-exist on the 
same host except for Packet PCO due to the nondeterministic behavior under the 
situation of multiple network capturers.  
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Table 1. Three types of PCOs 

Type of PCO    Packet PCO Socket PCO App. PCO 
Method of control Send/Receive raw 

TCP/UDP/IP packet 
Read/Write 
TCP/UDP socket 

Execute native 
application 

Number on each node One Many Many 
Blocking I/O No Yes No 

 
The actions of PCOs are defined in the test code section, which eventually returns a 

test verdict. A test case could contain parameters and become abstract. Abstract test case 
cannot be executed before assigning parameter values. Our language supports parame-
ters of bounded Integer type and IP address type, and a test concretization algorithm 
implements parameter value selection according to certain coverage criteria such as 
random sampling, boundary coverage and so forth. After the test case is concretized it is 
automatically transformed into the host language for compilation. In this phase auxiliary 
code such as test case initialization and cleanup routines is generated and weaved  
together with the test code. During compilation the VCSTC runtime library proving 
essential functionalities and all user defined libraries are linked. In practice, a lot of 
reusable routines (e.g. Malware simulation, special packet generation) are encapsulated 
in the form of library so that the test code could focus on the logic, that is, the sequence 
of actions from PCO. The VCSTC runtime library implements all types of PCO and the 
proxies used to control them remotely from the test executor. 

Now we discuss more details by an example. Figure 2 shows a test case that checks 
whether a security device provides an outgoing source IP black list of sufficient length. 
The test code uses Java as host language and implements a rather straightforward  
logic: a Web server is started on an external host by an Application PCO (line 8). There 
are many (NCLIENT) internal hosts with a Socket PCO on each (line 7). Both the 
server and clients are selected randomly from the network (lines 17-18). The device is 
controlled by a Device PCO (line 9). At the beginning the test case launches the server 
and clears the black list (line 22), followed by a check (lines 24-28) to see whether  
all clients can reach the server. Next the black list is configured through Device PCO 
(line 29), and we retry the connections again, expecting that no client can successfully 
reach the serer. Any client’s success in connecting at this time (line 32) proves the black 
list useless and therefore the test case returns the verdict failure. The test case contains 
two Integer parameters (lines 2-5): number of clients and server ports, which are to  
be assigned according to a user policy. Note that the execution of the test case is fully 
automated except for Device PCO. Configuration of target device might need manual 
activity, depending on the interface a specific device is providing. Many venders  
provide programmable configuration mechanism, which could be utilized by VCSTC 
runtime to fully automate test execution. 

We close this section by a remark on the relationship between test case and net-
work model. Test cases like the one in Figure 2 do not depend on any network-
specific properties such as background traffic and therefore could be executed on any 
network models. The only implicit constraint is that the network must contain enough 
(in this case NCLIENT) distinct hosts – this will be checked statically by the test 
executor when loading the test case. On the other hand, the test case might also ex-
plicitly specify a list of compatible network model names if necessary. 
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1. #TESTCASE OBL_Length_TCP 
2. #PARAM { 
3.   int{[0,512]} NCLIENTS; 
4.   int{[0,1024], [50000,51000]} PORT; 
5. } 
6. #PCO { 
7.   SOCKET pco_client[NCLIENTS]; 
8.   APP pco_server; 
9.   DEVICE pco_device; 
10. } 
11. #PACKET {} 
12. #VERDICT { 
13.   success, failure, unknown, timeout 
14. } 
15. #TESTBODY 
16. { 
17.  bind_PCO(pco_client, INTERNAL, RANDOM|NONDUP); 
18.  bind_PCO(pco_server, EXTERNAL, RANDOM); 
19.   
20.  log("Testing length of black-list using TCP"); 
21.  pco_server.execute("httpd", PORT); 
22.  pco_device.config("clear black list"); 
23.  Vector black_list = new Vector<InetAddress>(); 
24.  for (int x= 0;x<NCLIENTS;x++) { 
25.    if(!pco_client[x].connect     

   (pco_server.getIP(),PORT)) return unknown; 
26.    black_list.add(pco_client[x].getIPAddress()); 
27.    pco_client[x].close(); 
28.  } 
29.  pco_device.config("add to black list", black_list); 
30.  wait(3000); 
31.  for (int x= 0;x<NCLIENTS;x++) { 
32.     if(pco_client[x].connect(pco_server.getIP(),  

   PORT)) return failure; 
33.  } 
34.  return success; 

35. } 

Fig. 2. Example of a simplified abstract test case 

4   Network Host and Protocol Stack Virtualization  

A test case is executed on an emulated network that from the view of the device under 
test is the same as a real network. Emulated network is created from a network model 
using hybrid network virtualization approach. As we mention in Section 1, VCSTC 
mitigates the key challenge of scalability by using a hybrid virtual honeynet. Honey-
net [18] is used recently as a best practice of network emulation for the purpose of 
attack identification. We adapt a hybrid honeynet design where two virtualization 
techniques are used together to achieve the balance of scalability and fidelity. First we 
distinguish two terms used in this section: logical node and physical node. A logical 
node is a network host, either external or internal, defined in a test case. A logical 
node is identified by its IP address. A physical node is a network host in the emulated 
network. The test executor maintains a mapping from logical nodes to physical nodes 
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and deploys the PCOs according to this mapping. In our scheme of hybrid honeynet 
there are two types of physical nodes in the emulated network: 

 FAT node: A FAT physical node is emulated by a complete virtualized host 
machine. Thanks to the advanced virtualization techniques such node can accommo-
date any application running at the real host. A repository of pre-configured (e.g. with 
different Operating System and/or applications) virtual machine images are stored at 
the server while the honeynet controller selects the proper ones to load. Unfortu-
nately, host virtualization is still very expensive and we cannot afford to emulate the 
whole network using FAT nodes alone. 

 THIN node: A THIN physical node is emulated by virtualizing only a TCP/IP 
protocol stack but not the actual resources of a host. Software solutions such as Hon-
eyd [14] accomplish this by overriding the IP protocol stack on a single (possibly 
virtual) machine and claiming responsibility for a range of IP addresses. Socket based 
program could be executed on top of the virtualized protocol stack appearing to the 
outside as running with its own address. This approach is lightweight and therefore 
very scalable. The cost however, is that the function of PCO deployed on them is 
limited. Since all programs launch on THIN nodes share the same physical machine 
and therefore its resources, there is obviously a potential problem of interference. The 
exact constraints are determined by the virtualization tool used. In our system with 
Honeyd as protocol stack emulator if a logical node is mapped to a THIN node, then 
application PCOs on it can only execute a special type of socket-based EFSM simula-
tion program synthesized from user network traces (see Section 6). 

 

Fig. 3. Internal structure of a hybrid honeynet with two types of nodes 

We create and configure a mixture of these two types of physical nodes in the emu-
lated network, as shown in Figure 3. From the view of the emulator, we have a small 
number M of FAT nodes and a protocol stack virtualizer supporting N THIN nodes. 
These heterogeneous physical nodes are connected by a virtual network switch and 
form a honeynet. On the other hand, the heterogeneity is made transparent to the test 
cases. That is, all logical nodes are the same in terms of PCO capabilities. The map-
ping between logical and physical node is first created by the test executor before a 
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test case is loaded, and is adjusted dynamically by network reconfiguration under 
some circumstances. The separation of logical nodes and physical nodes has two 
obvious advantages. First the honeynet resource provisioning could be changed any-
time - for example adding more FAT nodes - without affecting any test case. Second, 
in most test cases only a small number of hosts run real applications (and therefore 
require to be mapped to a FAT node) simultaneously, despite that the total number of 
hosts is large. In such situations when a logical node does not have any activities we 
can remap it to a THIN node at runtime. When the current physical node provisioning 
can no longer support the execution of a test case, the test executor will get a runtime 
error and hence returns failure. Below we describe some heuristic guidelines practiced 
by the test executor for static and dynamic mapping. 

Guideline 1 (Static): If a logical node does not have Application PCO, always map it 
to a THIN node, because Packet and Socket PCOs could both be supported. 

Guideline 2 (Static): If a logical node has both Socket and Application PCO, map it 
to a FAT node if there is one available, otherwise map to a THIN node. Nodes with 
Application and Packet PCO have lower priority of mapping to FAT node. This is 
because Packet PCO is easier to migrate dynamically than Socket PCO. 

Guideline 3 (Dynamic): Before an Application PCO executes a real user application, 
mapping need to be adjusted if the logical node is currently mapped to a THIN node. 
If there is Socket PCO with established TCP connections at this time, we report fail-
ure because we cannot migrate TCP connection across physical nodes. Otherwise, if 
there is an unmapped FAT node, it is remapped to the logical node. If all FAT nodes 
are already mapped, we check whether one of them could be swapped to a THIN 
node, that is, on the current owning logical node no Application PCO is executing and 
no Socket PCO is connected. If this condition is satisfied, honeynet controller will 
reconfigure the network (i.e. IP address) and switch the mapping of two logical nodes, 
therefore allow the user application to be executed on a FAT node. If no FAT node 
satisfies this condition, failure is reported. 

As an example of test case, in Figure 2 we have an array of logical nodes (client) 
with only Socket PCO and another node (server) with only Application PCO. The 
mapping for this test case is trivial since only one FAT node is needed for the server 
node and all clients are mapped to THIN nodes. 

Figure 4 shows a more illustrative example. In this test case we have two client 
nodes with Application PCO and a server node with Application PCO. Table 2 shows 
the node mapping at several key timing points when the emulated network contains 
unlimited THIN nodes but only 2 FAT nodes. Before executing the test case, the first 
two nodes (client[0] and client[1]) get the FAT nodes and the rest (including 
server[0]) get THIN nodes. Before the server starts (line 13), it needs to be remapped 
to a FAT node, and client[0] could be swapped out since it is not active. Similarly 
when client[0] needs to launch its program reconfiguration happens again, swapping 
it with client[1]. Finally client[1] launches a program, now since client[0]’s PCO has 
terminated its application, it could be switched to a THIN node and client[1] gets the 
FAT node. Note that the jitter of mapping in this example is quite unrealistic since in 
practice the server contains much more FAT nodes. 
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1. …… 
2. #PCO { 
3.   APP pco_client[4]; 
4.   APP pco_server; 
5.   DEVICE pco_device; 
6. } 
7. …… 
8. #TESTBODY  
9. { 
10.  bind_PCO(pco_client, INTERNAL, RANDOM|NONDUP); 
11.  bind_PCO(pco_server, EXTERNAL, RANDOM); 
12.  …… 
13.  pco_server.execute_service(“IIS6.0”); 
14.  …… 
15.  pco_client[0].execute(“lynx”,”domain.com/page.cgi”); 
16.  …… 
17.  pco_client[0].terminate(); 
18.  …… 
19.  pco_client[1].execute(“iexplore”,”domain.com/page.cgi”); 
20.  …… 
21.  pco_client[1].terminate(); 
22.  …… 
23. pco_server.terminate(); 

24. } 

Fig. 4. Example of test case with dynamic node remapping 

 
Table 2. Node mapping of the test case with 2 FAT nodes 

 Line 10 Line 13 Line 17 Line 19 
server THIN FAT-1 FAT-1 FAT-1 
client[0] FAT-1 THIN FAT-2 THIN 
client[1] FAT-2 FAT-2 THIN FAT-2 

 
Dynamic network reconfiguration also involves a reconnection between the PCO 

proxy (in the test executor) and the physical node through the network interface 
VNIC-Control of the honeynet (Figure 1). When the new IP address becomes usable 
on the physical node, the PCO proxy will disconnects the old PCO and connect the 
new one. On a separate issue, we are currently investigating suitable process migra-
tion schemes supporting dynamic remapping including live TCP connections, which 
fully take the advantage of the hybrid network design. 

5   Experiments and Evaluation 

The proposed VCSTC methodology has been fully applied in the development of a 
real security testing platform for the U.S. DoD (Department of Defense). The purpose 
of this project is to provide critical network infrastructure owners with an effective 
and easy-to-use mechanism to assess the suitability of a security device or solution 
with respect to their own infrastructure before investment. In this section we report 
our experience and evaluation during the development of this platform. We start from 
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a brief overview of the system configuration and some simple practice in Section 5.1; 
then Section 5.2 summarizes our effort of integrating automatic test generation tech-
niques. Our system supports generating test cases (in our test description language) 
from two popular formal models – Parameterized EFSM and Simplified Firewall Rule 
Language. We also present performance evaluation of the system installed on com-
modity hardware in order to justify its feasibility and scalability.  

5.1   System Configuration and Basic Operations 

As discussed earlier, the whole system could be deployed on a single machine, i.e. 
HoneyNet server (Figure 1). We choose a typical hardware configuration: a Dell Pre-
cision 690 workstation with two Xeon 3.2 GHz Due Core CPUs and 2GB memory. 
The server has two Gigabit physical NICs (NIC-Int and NIC-Ext). Both modeling 
module and test executor are implemented in Java 1.5 and Jpcap (a packet manipula-
tion utility). The hybrid honeynet is composed of 5 VMware virtual machines running 
Ubuntu Linux as guest Operating System – 4 of them with 256MB virtual memory 
each are used as FAT nodes and the last one with 512MB virtual memory runs Hon-
eyd 1.5 to emulate up to 1024 THIN nodes. The system is used to test several security 
devices on the market, and our performance evaluation is conducted using Netgear 
ProSafe FVS318 VPN Firewall/Switch.  

We use both network models synthesized from real network and randomly gener-
ated large models. For real network, we derive a model from a testbed of the WAN-
in-Lab project [7] developed by Caltech. This testbed has 4 Cisco routers with SNMP 
capability. The whole model contains 39 subnets and totally about 40 distinguished 
hosts with services available. We imagine the target device is about to be deployed at 
the gateway of this network and manually develop a small test suite that covers the 
classic access control and content filtering features common to typical Firewall and 
IDS. It takes a Java developer two days after one day’s training to write about 50 test 
cases (Table 3). Using these test cases, the tester is able to verify precisely the details 
of many features of the device that is stated very informally and vaguely from its user 
manual. For instance, one of the Anti-virus test cases discovers that the device cannot 
enforce malicious URL blocking when the URL is encoded in HEX form (e.g. 
“www.abc.com/x.e%78e” for “www.abc.com/x.exe”), which effectively renders this 
URL blocking feature useless. Based on this experience we consider our test descrip-
tion language efficient and of good usability.  

 
Table 3. Firewall/IDS Test Suite 

Inbound filtering 24 Test cases 
Outbound filtering 24 Test cases 
Port Forwarding 4 Test cases 

Firewall Feature 

Dynamic filtering 1 Test cases 
Anti-virus features 2 Test cases 
Intrusion detection features 3 Test cases 
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5.2   Automatic Test Case Generation 

The applicability of our methodology could be broadened by leveraging the ad-
vanced test generation methods. We make an effort to integrate them into our meth-
odology. We investigate automated translation from test sequences derived from 
formal model to the VCSTC test description language. The first model we imple-
ment is EFSM. Our test system provides a GUI to specify a feature of the device 
using EFSM with parameters in I/O message. Figure 5 shows an example of a sin-
gle port blocking feature with two states. From the EFSM model test sequences 
could be automatically derived using various approaches, such as checking se-
quences from reachability analysis (Figure 5 shows the reachability graph when the 
range of port variable has 3 values). We then translate each test sequence into a test 
case file and then generate an incomplete user library that defines the I/O symbols 
of the model. Figure 6 shows a section of the test case corresponding to the se-
quence {Set_Block[0]/-, Visit[0]/-, Set_Unblock/-, Visit[0]/Resp} and an empty 
method definition for input symbol Set_Block, for which the test designer is respon-
sible of providing the code to implement this input symbol using the PCOs on in-
ternal and external hosts. Note this only needs to be done once and then shared by 
all test cases for the same model. 

 

Fig. 5. A simple EFSM model of port blocking feature (left) and the corresponding reachability 
graph as a FSM (right) 

 
Similarly our system supports generating test cases from firewall configurations. 

We use a simple grammar to describe firewall rules following classic semantics 
[1,11]. A rule contains a predicate based packet filter and an action and a configura-
tion is an ordered list of rules. After a user inputs a firewall configuration, test cases 
with input packets are automatically generated. The elements in the packet filter can 
be either a value or a wildcard (“*”), and furthermore the user might ask the test case 
concretization process to select a value by specifying it as a parameter of the rule. For 
example, a configuration as specified below is composed of two rules A and B. The 
test case generated from this configuration will contain three parameters (i.e. Src port 
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1. #TESTBODY  
2. { 
3.  input_Set_Block(pco_ext, pco_int, pco_device,0); 
4.  ASSERT(output(pco_ext, pco_int, pco_device) == NULL); 
5.  input_Visit(pco_ext, pco_int, pco_device,0); 
6.  ASSERT(output(pco_ext, pco_int, pco_device) == NULL); 
7.  input_Set_Unblock(pco_ext, pco_int, pco_device); 
8.  ASSERT(output(pco_ext, pco_int, pco_device) == NULL); 
9.  input_Visit(pco_ext, pco_int, pco_device,0); 
10.  ASSERT(output(pco_ext, pco_int, pco_device) == Resp); 
11.  return success; 
12. } 
13. #USES LIB_Simple_Port_Blocking 
 
1. public class LIB_Simple_Port_Blocking  
2. { 
3.  …… 
4.  public void input_Set_Block(PCO pco_ext, PCO pco_int,  PCO 

 pco_device) { 
5.   … //user provides implementation of input symbol; 
6.  } 
7.  …… 

} 

Fig. 6. Test code and library generated from EFSM test sequences 

 
in A, Protocol in B and Src port in B) and a pair of Socket PCO binding on internal 
and external network, respectively.  
 
A: “Allow TCP from [10.0.0.1:Param1] to [*.*] through External” 
B: “Deny Param2 from [*:Param3] to [192.168.0.2:80] through External” 

 

The test code first enables this configuration through Device PCO, and then essen-
tially sends a packet enabling a subset of rules to see whether the device under test 
takes the expected action. Clearly the subset of rules triggered by a particular packet 
depends on the parameter value of all rules. In our example, A and B could be en-
abled together if Param2=TCP and Param1 = Param3. In fact when both A and B are 
enabled they conflict with each other, and it is to the interest of the tester how the 
device will handle. The test case concretization process produces parameter assign-
ments in such a way that most rule subsets are covered. Due to space limit we omit 
the detail of the algorithm and test case generated. From our experiences of integrat-
ing the two formal models, we believe that our methodology is promising for a variety 
of application domains related to network security testing. 

5.3   Performance Evaluation 

Finally we remark on the performance evaluation of our system. First we clarify that 
VCSTC is not targeted for performance testing or load testing therefore it is not de-
signed to meet hard real-time requirements. The purpose of evaluation is instead to 
justify the feasibility of our design for network model and tests of practical scale. We 
use a series of micro-benchmarks to measure various aspects of the system, with the 
focus on the performance penalty incurred by using hybrid network virtualization. 
The first performance penalty comes from initializing the emulated network. For FAT  
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# of THIN Node 16 64 256 1024 
Startup Time 6.67s 24.13s 30.59s 55.43s 

(a) 

Message Size  4KB     8KB 16KB 32KB 64KB 
Trans. Time <1ms 1.00ms 2.13ms 3.88ms 7.87ms 

(b) 

# Connections 1 2 3 4 
Bandwidth (each con.) 6.80Mb/s 2.95Mb/s 2.08 Mb/s 1.90 Mb/s 

(c) 

Fig. 7. (a) Startup time of hybrid honeynet with different network size. (b) Transmission time 
of PCO control messages. (c) TCP transmission bandwidth between external and internal net-
work nodes with 1-4 simultaneous connections measured by iPerf. 
 
nodes the controller reset/reload loads a virtual machine image which takes constant 
time; then the Honeyd engine virtualizes the pool of THIN nodes and launch the PCO 
on each node. The Honeyd start up time is proportional to the number of THIN nodes 
as shown in Figure 7 (a), for instance a network of 1024 nodes could take up to 1 
minute to initialize. Note that under certain situations it is unnecessary to reinitialize 
network for each test case, specifically when all test cases share a network model and 
they all cleanup properly. In addition, communication cost between the test driver and 
the PCO is not neglectable because the control message sent might carry a data por-
tion (e.g. a packet to send from that PCO). We measure the transmission time with 
various message sizes shown as Figure 7 (b). There is no difference between FAT and 
THIN nodes since the same control channel is used. 

The packet dispatching mechanism used by protocol stack virtualization tools (i.e. 
Honeyd) also causes delay in data transmission involving a THIN node. Basically all 
socket function calls are delegated to the tool and go through internal tunneling, 
which forms a global bottleneck. We use a benchmarking tool iPerf to measure the 
bandwidth of concurrent TCP connections between external and internal nodes. If 
both are FAT nodes the bandwidth for a single link is 8.89Mb/s; if one side is THIN 
node, it is downgraded as shown in Figure 7(c). We believe that this bandwidth limi-
tation is not critical to validity of most security related tests. 

 

Fig. 8. Honeyd CPU load percentage for three networks of THIN nodes each sending UDP 
traffic at 2KB/s  
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Another simple benchmark is designed to evaluate approximately the work load of 
testing server. The dominating factor here again is large number of THIN nodes virtual-
ized by Honeyd. We create network of different size, then let each node send UDP 
packet at a given rate to random destination node. This scenario corresponds to a typical 
test case where all logical nodes carry symmetric tasks. Figure 8 shows the CPU usage 
of the VMware guest OS running Honeyd during a window of 20 seconds. When the 
network is small (16 nodes) an average 33.4% CPU time is used while a large network 
(1024 nodes) is likely to saturate the CPU (85.8%). While admittedly being a coarse 
measurement, this shows that our system is capable of running fairly large models. 

6   Discussion 

In this work we present a new security testing approach, VCSTC using network host 
and protocol stack virtualization. Two main aspects are discussed in detail: (1) design-
ing a scalable and yet loyal network testbed; (2) develop test cases manually or auto-
matically. Compared to existing solutions, VCSTC has a few advantages. Our novel 
design of hybrid network emulation provides both fidelity (by network host virtualiza-
tion) and scalability (by lightweight protocol stack virtualization). We also develop an 
intermediate level test description language that is suitable for security tests at various 
network protocol layers. In the paper we discuss how test cases are executed automati-
cally on the emulated network model. Extensive experiments have been conducted on 
our implementation platform, which justify the benefits of our proposed methodology.  

On the other hand, we are still at the initial stage of applying network virtualization 
techniques to testing. Lots of issues remain to be explored in our current approach be-
fore its applicability could be further broadened. Our approach aims at security testing at 
IP layer and above. As a matter of fact, VCSTC does not support routing protocol emu-
lation despite that it generates real IP packets. Consequently, routing related security 
features cannot be tested under our framework. For similar reason data link layer secu-
rity features are not supported. Emulating routing in a scalable fashion is a challenging 
task and it may change the protocol stack virtualization scheme in a drastic way. A 
promising approach is to use one virtualizer for each routing domain or subnet, and 
connect them by FAT nodes where routing protocols are implemented. Also the test 
language is to be augmented to support routing operations at the PCOs. 

Protocol synthesis from real network is another challenge where network traffic 
with high fidelity is desired. This is an issue for both network modeling and testbed 
design. Since running real user applications on top of all virtualized nodes is clearly 
not practical, we need to synthesize a model of the protocol from network traces 
[3,12] and emulate it on the testbed in order to generate (not simply replay) traffic 
patterns similar to those seen. In our ongoing work we use a state machine minimiza-
tion approach [5] to obtain EFSM models from field-decoded protocols (e.g. by  
Ethereal), and implement a special program to simulate EFSM models that could be 
executed on top of both FAT and THIN nodes. We envision this and the enhancement 
for routing emulation will render our VCSTC a more powerful and useful tool for 
testing both hardware and software based network security systems. 
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