Efficient Shared Near Neighbours Clustering of
Large Metric Data Sets

Stefano Lodi, Luisella Reami, and Claudio Sartori

University of Bologna, Department of Electronics, Computer Science and Systems,
CSITE-CNR, viale Risorgimento 2, 40136 Bologna, ITALY
{slodi,csartori}@deis.unibo.it

Abstract. Very few clustering methods are capable of clustering data
without assuming the availability of operations which are defined only in
strongly structured spaces, such as vector spaces. We propose an efficient
data clustering method based on the shared near neighbours approach,
which requires only a distance definition and is capable of discovering
clusters of any shape. Using efficient data structures for querying metric
data and a scheme for partitioning and sampling the data, the method
can cluster effectively and efficiently data sets whose size exceeds the
internal memory size.

1 Introduction

An important component of a data mining system is the data clustering method,
whose purpose is to solve the following problem: Given a similarity measure
between pairs of points of a multidimensional space and a data set on that
space, find a partition of the data set such that similar points belong to the
same member of the partition and dissimilar points belong to distinct members,
without utilizing a priori knowledge about the data, and with the following
additional constraints: (a) The use of computing resources must be minimized
and (b) the data set is large, i.e. the size of the data set exceeds the internal
memory size. Note that (a) and (b) imply that I/O cost has to be minimized.

In the literature, a collection of desirable additional features is usually consi-
dered, which can be summarized as follows. The method should have the ability
to discover clusters of arbitrary density, shape and relative position, or weakly
separated, and to detect outliers. The method should need a minimal number of
input parameters and be moderately sensitive to their value.

Many existing methods satisfy the above requirements. However, assump-
tions are often made about the mathematical structure of the space, e.g., the
space is a vector space over the reals. Such assumptions usually allow for impro-
vements in the effectiveness and efficiency of the method but result in a loss of
generality. In particular, methods requiring the ability to compute operations on
numbers, or a total order relation, cannot be applied easily to categorical data.

We present here a revised shared near neighbours clustering method which
is applicable to large metric data sets. The only requirement is that the dissi-
milarity measure is a distance function. The method requires little additional

J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAT 1704, pp. 424-E29] 1999.
© Springer-Verlag Berlin Heidelberg 1999

Efficient Shared Near Neighbours Clustering of Large Metric Data Sets 425

external memory and uses a metric access method, the multi-vantage point tree,
to organize data points in the available internal memory and efficiently retrieve
neighbourhood information. Large data sets are dealt with by performing par-
tial clustering steps, sampling the results and finally clustering the union of all
samples.

2 Clustering Large Metric Data Sets

The shared near neighbours (SNN) cluster analysis method was introduced in
[[. First we formally define clusters according to the SNN approach, then we
explain our new modified algorithm based on the approach.

Let X be a data set of N multidimensional points, (Y, <) a totally ordered
set, and d: X — Y a dissimilarity function. For any point x € X, let x; be an
enumeration of X — {z} that orders points by their dissimilarity from x, namely
such that d(z,z,) < d(z,z,) only if p < ¢. Let NN(z, k) be the set of the k first
neighbours of x in the enumeration, i.e. {z1,...,x;}. For k, t € IN, k > ¢, define
a binary relation Ry, on X as follows: Ry (z,y) iff x € NN(y, k), y € NN(z, k),
INN(z, k) " NN(y, k)| > t. Recall that a set A is closed w.r.t. a binary relation
R (or R-closed) if a € A, R(a,b) imply b € A. A cluster in X w.r.t. k,t is a least
Ry, +-closed subset of X.

The SNN method fulfils many traditional requirements well. Clusters of dif-
ferent shapes, densities and relative positions are recognized correctly, and the
method has the ability to separate regions when there is a sharp gradient bet-
ween them. Different orderings of the data do not affect the result in practice.
The globularity of the clusters increases with k, whereas increasing ¢ tends to
split large clusters into subclusters. Both parameters influence the method’s be-
haviour smoothly and predictably.

Nevertheless, the method has two main drawbacks when employed in data-
base environment. Firstly, computing the neighbourhood table by brute force
costs O(N?) time, where N is the number of points in the data set. Secondly,
the table is sized O(N). Thus, if the data set is substantially larger than the size
of internal memory, then we should expect that it cannot be clustered.

The first problem is addressed in [2], where points are stored into a mult-
idimensional access structure, the KD-tree. The cost of creating a KD-tree is
O(Nlog N) and a single k nearest neighbour query costs O(log N), resulting in
dramatic improvements in the cost of filling the neighbourhood table. However,
the KD-tree performs well only when dimensionality is low [3]. Moreover, it can
index only numerical data, thus restricting the generality of the approach. In
contrast, high dimensionality and categorical properties are not uncommon in
clustering applications.

To address the first problem, we propose to use the multi-vantage point tree
(mvp-tree) [4] as an access method for the SNN approach. The mvp-tree is
designed to minimize distance computations, therefore it is expected to perform
well in high dimensional spaces. Moreover, it only requires a distance, thus it
does not rule out the possibility of clustering categorical data.

426 S. Lodi, L. Reami, and C. Sartori

The problem of data sets exceeding internal memory can be addressed by
adopting a two-phase clustering strategy, as follows. In phase one, the data set
is partitioned and every partition is loaded and clustered in an internal memory
area of fixed capacity. For every partition, a phase one labeling vector is stored
in external memory and, from every cluster in the partition, a number of points
proportional to its size is randomly sampled and stored with its label. In phase
two, the union of all samples is clustered again, and a map of phase one labels
onto new labels is generated. Finally, every point in the data set is given the
new label its phase one label maps to. The following algorithm realizes in more
detail the above approach.

— Input: A data set B of points in a fixed number of dimensions. Integers k, ¢,
SampleSize, MinClSize. Real §.

— Output: A clustering vector V.

— Data Structures:

— A list D of multidimensional points of capacity NMax.

— A set of neighbour lists L; each of size k, for i = 1,..., NMax.

— An array C' to store cluster information for the current partition. The
array is organized as a set of circular linked lists: The i-th element of
the array contains the cluster label of the i-th point in D and the index
of the next point in the cluster.

— An array CS to store cluster information for the samples, organized as
a set of circular linked lists. The i-th element of the array contains the
cluster label of the i-th randomly sampled point and the index of the
next point in the cluster.

— A list S of data points to store sampled data.

— A sequential structure P in external memory of partially labeled data
points.

— A list M of pairs of cluster labels, representing a mapping on partial
cluster labels onto final cluster labels.

— Algorithm:
1. Repeat until the end of the data set is reached:
a) Load points of the data set into D until either NMaz points have
been loaded or the end of the data set is reached.
b) Create a mvp-tree on D.
¢) For every point ¢ in D, compute the neighbour list L; = iy,...,,,
k; < k, obtained as the result of the query NN(i, k) "RANGE(i, ¢),
where RANGE(4, §) denotes the result of a range query of radius ¢
centered in 1.
d) Initialize the array C. The i-th element has cluster label i and next
point 1.
e) For all pairs i,7, i < j:
i. Test whether i occurs in L;, j occurs in L;, and L;, L; have at
least ¢ points in common.
ii. If the test succeeds, update C' by setting the label of every point
in ¢[j] (the cluster containing j) to ¢ and merging in C' the circular
lists containing ¢ and j.

Efficient Shared Near Neighbours Clustering of Large Metric Data Sets 427

f) For every cluster ¢ in C:
i. if the size of the cluster |c| is less than MinClSize, then update
C by setting the label of every point in ¢ to a unique “outlier”
label. Continue with next cluster in C'.

ii. Compute the number of points to extract from the cluster as
sec = [SampleSize|c|/ NMaz].

iii. Extract a sample s of size s, and store it in S.

iv. Generate a new unique label ¢, for the cluster ¢ and update C
by setting the label of every point in ¢ to /.. Create a new entry
in M for /..

v. Create a new circular linked list in CS. Insert every sampled
point j of s in the new list, setting the point’s label to /..

g) For every point ¢ in D, read the partial label of ¢ from C and append

it to P.

2. a) Create a mvp-tree on S.
b) For every point ¢ in S, compute the neighbour list L; = iy, ..., i,

obtained as the result of the query NN(i, k).

¢) For all pairs i, 7, i < j:
i. Let ¢;, ¢; be the labels of 4, j in CS.

ii. Test whether ¢ occurs in L;, j occurs in L;, and L;, L; have at
least t points in common.

iii. If the test succeeds, update CS by setting the label of every point
in ¢[j] to ¢;, merge in CS the circular lists containing ¢ and j,
and update M by setting the final label to ¢; where the partial
label equals /;.

d) Scan P. For every point in P, read its partial current label from P,
map it to the final cluster label through M and append to V the
final label.

Three new parameters SampleSize, MinClSize, and § have been added (with
respect to the original SNN algorithm) with the following meaning. SampleSize
represents the number of randomly sampled points for every partition. MinClSize
is the minimum size of clusters that will be considered. § is the maximum distance
of nearest neighbours that will be in the neighbours list for a point. MinClSize
and § may be used to detect outliers, when the notion of outlier is distance based,
i.e. it implies an estimate of the maximum distance between points in a cluster.
Setting § to a value smaller than this distance will cause outliers to be grouped
into clusters of small size, which can be eliminated by setting MinClSize to a
suitably large cardinal.

3 Experimental Results and Conclusions

We have evaluated the performance of our algorithm by conducting experiments
on synthetic two dimensional data sets. In all tests, the distance function is
Euclidean, the partition size is NMax = 10000, the architecture is Intel i586

428 S. Lodi, L. Reami, and C. Sartori

(a) set 1 (b) results (t = 5) (c) results (¢ = 10)

(d) set 2 (e) results

Fig. 1. Test data sets

at 133 MHz with 128 MByte of internal memory, and the operating system is
Windows NT 4.0.

Data set 1 in figure[Ilis based on a data set introduced to test the WaveClu-
ster algorithm [5]. It is composed of 64188 points in 31 spherical clusters. The
algorithm recognizes two ring shaped clusters for ¢ = 5, and 37 mostly spherical
clusters for ¢t = 10. k is set to 16.

Data set 2 has been introduced as a test for the CURE algorithm [6]. It has
100000 points distributed as follows: Three spherical clusters of different density,
a dense region made by two ellipsoids connected by a dense chain of points, and
randomly placed outliers. The clustering result was obtained by setting k = 10,
t =3, =0.27, MinCiSize = 20, SampleSize = 50. The algorithm recognizes
four clusters and groups outliers correctly. The connected ellipsoids are merged
since the distance between points in the chain does not differ substantially from
the distance between points in the regions.

We compared the speed performance of our algorithm with one of the fas-
test and widely referenced available algorithms, DBSCAN [7]. Three data sets
with 20000, 60000 and 100000 points have been used for the comparison. In all
data sets, 10% of the points are outliers and the remaining points are equally
distributed among three spheres of different radius. Since the performance of

Efficient Shared Near Neighbours Clustering of Large Metric Data Sets 429

DBSCAN is affected by the values of the two input parameters, we chose the
values that resulted in the best performance, among the values giving the cor-
rect clustering. On the three data sets, DBSCAN terminated the tree creation
phase in 59.0, 181.0, and 310.0 seconds, respectively, and the clustering phase
in 49.4, 151.3, and 282.8 seconds, whereas our algorithm finished in 39.3, 118.0,
and 212.6 seconds.

These results show that the performance of the algorithm is not inferior to
the performance of DBSCAN in the clustering phase. Therefore, the algorithm is
suitable for employment when an access structure is not available. When compa-
red to CURE, the algorithm is not immune to the well-known chaining problem
(see figure[dl). However, the robustness of CURE is obtained within explicit limi-
tations in the authors’ approach, namely that data are numeric. Furthermore, in
a metric approach, the very notion of chaining seems problematic. Future work
will include a validation with high-dimensional data sets, experiments with real
data benchmarks and the extension of the algorithm for incremental clustering.

Acknowledgments The authors would like to thank Andrea Lodi, Rossella
Miglio, Angela Montanari, Marco Patella, and Gabriele Soffritti for helpful dis-
cussions on the subject.

References

1. R. Jarvis and E. Patrick. Clustering using a similarity measure based on shared
near neighbours. IEEE Transactions on Computers, 22(11):1025-1034, November
1973.

2. R. Jarvis and I. Hofman. Robust and efficient cluster analysis using a shared near
neighbours approach. In ICPR’98, Proc. of the 14th Int’l Conference on Pattern
Recognition, pages 243—-247. IEEE Computer Society, 1998.

3. Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. Information Processing Letters, 40(4):175-179, 25 November 1991.

4. T. Bozkaya and Z. M. Ozoyoglu. Distance-based indexing for high-dimensional
metric spaces. In Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, pages 357-368. ACM Press, 1997.

5. G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution
clustering approach for very large spatial databases. In VLDB’98, Proceedings of
24th International Conference on Very Large Data Bases, pages 428-439. Morgan
Kaufmann, 1998.

6. S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for
large databases. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD-98), pages 73-84. ACM Press, 1998.

7. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining (KDD-
96), page 226. AAAI Press, 1996.

	Introduction
	Clustering Large Metric Data Sets
	Experimental Results and Conclusions

