
Speeding up the Discrete Log Computation on

Curves with Automorphisms

I. Duursma1, P. Gaudry2, and F. Morain2 � ��

1 Université de Limoges, Laboratoire d’Arithmétique
Calcul formel et Optimisation,
123 avenue Albert Thomas,

F-87060 Limoges CEDEX, France
duursma@unilim.fr

2 Laboratoire d’Informatique de l’École polytechnique (LIX)
F-91128 Palaiseau CEDEX, France

{gaudry, morain}@lix.polytechnique.fr
http://www.lix.polytechnique.fr/

Abstract. We show how to speed up the discrete log computations on
curves having automorphisms of large order, thus generalizing the at-
tacks on anomalous binary elliptic curves. This includes the first known
attack on most of the hyperelliptic curves described in the literature.

Keywords: elliptic and hyperelliptic curves, discrete logarithm, auto-
morphisms.

1 Introduction

The use of elliptic curves in cryptography was first suggested by Miller [28] and
Koblitz [19], following the work of Lenstra on integer factorization [23]. Many
people improved on these ideas and the domain is flourishing. (See for instance
the many books on that topic, e.g. [18,27].) Koblitz [20] was the first to suggest
using hyperelliptic curves for the same goal.

The security of many cryptosystems based on curves relies on the difficulty
of the discrete log problem. In some special cases, it was shown that this prob-
lem was rather easy [26], [11], [44], [38], [40]. Apart from new lifting ideas
[43,17,7,6,15] that remain to be tested, it seems that the discrete log on elliptic
curves still resists. On ordinary curves, the only known attack is a parallelized
version of Pollard’s rho method [50]. The Certicom challenge1 records the state
of the art in the field.

Among the curves suggested for cryptographic use, the so-called Anomalous
Binary Curves (ABC curves) have been shown to be somewhat less secure than
� On leave from the French Department of Defense, Délégation Générale pour
l’Armement.

�� This work was supported by Action COURBES of INRIA (action coopérative de la
direction scientifique de l’INRIA).

1 See http://www.certicom.com/chal/.

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT’99, LNCS 1716, pp. 103–121, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

104 I. Duursma et al.

ordinary curves, due to the existence of an automorphism of large order. Two
types of attack have been suggested [52], [13]. The first one can be seen as an
additive rho method, the second one as a multiplicative method.

The purpose of this article is to point out that these attacks can be gen-
eralized to the case where there exists an automorphim on the curve (resp. on
the Jacobian of an hyperelliptic curve). In particular, we show how to obtain a
speedup of

√
m if there is an automorphism of order m.

The organization of the article is as follows. First of all, we recall Pollard’s
algorithm and its additive and multiplicative variants. Then, we describe the
use of equivalence classes as originated in [52,13]. In particular, we show how
to tackle the problem of useless cycles in the Wiener-Zuccherato approach, by
analyzing the number of useless cycles and being able to throw them out. We
then show how to use automorphisms of large order on (hyper)elliptic curves,
including generalized ABC curves [30,45] and curves with CM by Z[

√−1] or
Z[(1 +

√−3)/2], for which this appears to be the first published attack. This
method applies also to hyperelliptic curves that were presented by Koblitz and
others. We support our approach by numerical simulations.

2 Parallel Collision Search

Let G be a finite abelian group with law written additively ⊕ (and multiplication
by k denoted by [k]P) and P an element of order n of G (w.l.o.g. we will assume
that n is prime using the Pohlig-Hellman approach [33]). Let Q be an element
of < P >, the cyclic group generated by P . The discrete log problem refers to
the search for κ s.t. Q = [κ]P . For instance, G can be the group of points of an
elliptic curve over a finite field, or the Jacobian of a hyperelliptic curve.

Generically, there exist three methods for computing discrete logs in time
O(

√
n): Shanks’s method [41], Pollard’s rho and lambda methods [34], the last

one being better when one has to find the discrete logarithm in a reduced range
(that is not over [0, n[). The first method also uses O(

√
n) space, which is gen-

erally a problem. After recalling Pollard’s rho, we show how a parallel collision
search method can be described in the same spirit.

2.1 Pollard’s Rho Method

It is well known that if we collect approximately k random values from a set of
cardinality n, then we will find two equal values if k =

√
πn/2 on average. To

solve the memory problem, Pollard [34] suggested to iterate a random function
f on the group < P >. Starting from a point R0 ∈< P >, for instance R0 =
[u0]P ⊕ [v0]Q with u0 and v0 random integers (modulo n), one computes

Ri+1 = f(Ri)

thereby obtaining two sequences (ui) and (vi) modulo n such that:

Ri = [ui]P ⊕ [vi]Q.

Speeding up the Discrete Log Computation 105

In order to understand the properties of this random sequence, one is led to
study the functional graph of f , that is the graph built using all starting points
R ∈< P >, as shown in Figure 1.

✫✪
✬✩

◦
R0

◦
R1

◦
R2

◦
Rµ−1

◦
Rµ

◦
Rµ+1

◦
◦

Rµ+λ−1

Fig. 1. The rho shape of (Ri).

Such a sequence consists in a tail of length µ and a cycle of length λ, thus
forming a rho of size ρ = µ + λ. Asymptotic values for the critical parameters
of this graph are given in [10]. For instance, a graph with n vertices should have
0.5 logn (connected) components, the average tail (resp. cycle) length should be√
πn/8, thus giving a rho length of about

√
πn/2.

These results imply that after about
√
πn/2 iterations, we will find a collision,

that is two integers i and j for which Ri = Rj . This will give an identity

[ui − uj]P ⊕ [vi − vj]Q = 0

from which we can deduce κ if vi �≡ vj mod n, which happens with probability
1 − 1/n: Indeed, each element R of < P > has n different representations as
[u]P ⊕ [v]Q and the values vi and vj are supposed to be random integers in
[0, n− 1].

2.2 Using Distinguished Points

An efficient implementation of parallel collision search requires storing a limited
number of points that have a distinguished property (this idea was used for the
first time in [35]). If θ is the proportion of distinguished points, then we should
find a collision after computing about

√
πn/2 points, or θ

√
πn/2 distinguished

points. Now, parallelization is straightforward: have each processor contribute
to the same list of distinguished points [50]. Each processor would have to find
θ
√
πn/2/M points, thus yielding a speedup of M to the total running time.
To understand how a parallelized search works, consider figure 2, on which

we have drawn two paths, the one corresponding to processor i and the second to
processor j. Their paths collide at point C, which lies between the distinguished
points D1 and D3 (resp. D2 and D3). The collision will be discovered as soon as
we find that R = D3.

Such a random walk has a very important feature: it is deterministic, which
means that if f(R) = C, then f(f(R)) = f(C), so that after hitting C from any
direction, one follows a single path afterwards.

106 I. Duursma et al.

❍❍❍❍❍❍❍❍❍

❍❍❍❥

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✯

✲
C

◦

D1

• ◦

D2

• ◦
◦

◦
D3

•

Fig. 2. The deterministic property.

2.3 Choosing the Function f

An Additive Random Walk. One way of choosing a good random function
consists in precomputing r random points (T (j))0≤j<r in < P >, with T (j) =
[u(j)]P ⊕ [v(j)]Q and to define the random walk as

f(R) = R⊕ T (j)

where j = H(R) with H a hash function sending < P > to {0, 1, . . . , r−1}. This
creates an additive random walk in Z/nZ since each point Ri can be written as
Ri = [ui]P ⊕ [vi]Q for which

ui+1 ≡ ui + u(j) mod n, vi+1 ≡ vi + v(j) mod n.

Satler and Schnorr [39] have shown that the above approach is sufficiently
random if r ≥ 8. Teske has found experimentally [49] that a value of r ≥ 20 is
more convenient.

A Multiplicative Random Walk. One can also use a function f built with
fixed multipliers (µj)0≤j<r , µj defined modulo n. We define:

f(R) = [µj]R

where j = H(R) as above. In this version, we would in fact compute:

f(R) =


r−1∏

j=0

µ
fj

j


R0.

A collision with a single sequence would not be interesting since this would lead
to (

∏
j µ

fj

j) ≡ 1 mod n. A collision is interesting if it comes from two distinct
sequences: two initial values R0 = [u0]P ⊕ [v0]Q and R′

0 = [u′0]P ⊕ [v′0]Q would
lead to a more useful [

∏
j µ

fj

j]([u0]P ⊕ [v0]Q) = [u′0]P ⊕ [v′0]Q. For this to be
random enough, we must have r large as above. To be efficient, the method
requires that the multiples be efficiently computed.

Speeding up the Discrete Log Computation 107

Mixed Walks. In practice, it would be fruitful to mix both strategies. This
would lead to a walk that is difficult to analyze in theory but which is likely to
be “more random”.

3 Random Mappings on Equivalence Classes

Let ∼ be an equivalence relation on < P > for which there are n/m equivalence
classes. We note R for the equivalence class of R. If we can iterate Pollard’s rho
on the set of equivalence classes < P > / ∼, then we should find a collision in
time

√
πn/(2m) instead of

√
πn/2.

The easiest way of building an equivalence class is by using automorphisms
of the group G. Wiener and Zuccherato [52] considered the case where G is the
set of points of an elliptic curve E defined over a finite field K. In that case, the
equivalence relation would be S ∼ T if and only if T = −S. The first known
nontrivial example of such a phenomenon came from ABC curves [52,13] (see
section 3.3 below).

More generally, if we know an automorphism α of order m operating on G,
we can use the equivalence relation:

S ∼ T ⇐⇒ ∃i, S = [αi]T

and hope to get a speedup of
√
m. We will give new examples in the following

section.
¿From now on, we suppose our equivalence class is built on an automorphism

α of order m. For the method to work efficiently, the equivalence class of a point
should be easy to compute, that is much faster than an addition in G.

3.1 Well Defined Mappings

The first thing we can think of is to iterate f as usual, but perform the matches
on the equivalence classes only. Starting from a random point R in < P >, we
iterate R = f(R); if R = Rj for some j, try to find a match and stop, otherwise,
store R.

❍❍❍❍❍❍❍❍❍

❍❍❍❥

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

✲
C

◦

D1

• ◦

D2

• ◦
◦

◦
D3

•

◦

Fig. 3. Paths that cross each other.

108 I. Duursma et al.

This looks fine, as long as we do not want to parallelize the algorithm. In that
case, we can come across the diagram of figure 3 which shows that the random
walk would no longer be deterministic. For instance, imagine that we are again
in the case of elliptic curves with an additive walk and that:

Ri+1 = Ri + T (k) = (x, y),

Sj+1 = Sj + T (�) = (x,−y).

In that case Sj+1 = Ri+1, but in general f(Sj+1) �= f(Ri+1).

Therefore, we must find a function f defined over < P > and that is well
defined over the equivalence classes. More precisely, we want that if R′ ∈ R, then
f(R′) = f(R). The most obvious approach is to use Ri+1 = f(Ri) and we iterate
R = f(R) until a collision is found.

3.2 Useless Cycles for Additive Walks

Let us explain why useless cycles appear. Suppose that G is the set E(K) of
points on an elliptic curve E over the finite field K = Fpn . Suppose we use a
function f as in section 2.3. Assume that the representative of a class is the point
(x, y) with least y. Then we could encounter a situation where starting from Ri,
we find

Ri+1 = Ri ⊕ T (j) = �Ri � T (j).

It could happen that
Ri+2 = Ri+1 ⊕ T (j)

(the same j), thus yielding

Ri+2 = �Ri � T (j) ⊕ T (j) = Ri.

This proves the existence of useless 2-cycles.
We fix some notations for studying these cycles. We consider a (primitive)

t-cycle consisting of points R1, R2, . . . , Rt, Rt+1 = R1. We denote by jk the value
H(Rk) of the hash function and we denote by εk = αek the automorphism which
gives the representative of the equivalence class of Rk ⊕ T (jk). Thus we have
Rk+1 = [εk](Rk ⊕ T (jk)). See figure 4 for a description of the cycle.

We can now derive an expression of Rt+1 in terms of R1 and our parameters
jk and εk:

[1/εt]Rt+1 = [εt−1 · · · ε1]R1 ⊕ τ

with τ = [εt−1 · · · ε1]T (j1) ⊕ [εt−1 · · · ε2]T (j2) ⊕ · · · ⊕ [εt−1]T (jt−1) ⊕ T (jt). We
have a useless t-cycle if τ = 0. Indeed, when ε1, . . . , εt−1 and j1, . . . , jt are
chosen such that τ = 0, then Rt+1 is in the class of R1, which does not impose
any restriction on εt. The fact that the T (j) are randomly chosen implies that
(very likely) there is no simple relation between them2. In that case, a necessary
2 If there is one, then we have found the discrete log!

Speeding up the Discrete Log Computation 109

R2

R1

Rt−1

Rt

❄

✻

✛

✕

j1 ε1 jt−1 εt−1

jt

εt

Fig. 4. A typical useless t-cycle.

condition for having τ = 0 is that for all k ∈ {1, 2, . . . , t} there exists a l �= k
such that jk = jl.

Now, we can summarize the following results on the expected number of
useless t-cycles.

Proposition 31 Suppose there is an automorphism α of order m acting on a
group G with n elements and that the T (j) are not related by relations involving
powers of α. We can estimate the probability P(t) of useless t-cycles for small
t when iterating an additive function with r branches (the expected number of
t-cycles being P(t)(n/m/t)).

We have

P(t) ≤
min(r,t/2)∑

k=1

1
mk

min
(

1,
r!kt

(r − k)!rt

)
.

Moreover, for small values of t we have the following bounds:

t pattern P(t)
2 j1 = j2 1/(mr)
3 ≤ 2/(mr)2 3 | m

0 3 � m
4 j1 = j2 = j3 = j4 ≤ (1 − 1/m)2/(mr3)

j1 = j3, j2 = j4 (1 − 1/r)/(mr)2

The proof of this proposition is given as an appendix. This proposition shows
that when t and r are large enough, the probability to find a t-cycle is very small,
and we likely do not encounter one.

Taking Care of Useless Cycles. Using Proposition 31, it is clear that an easy
way of solving the problem is to force a large value of r, which is not really a
problem in practice. In the rare cases where a cycle appears, we can get out of it
by collapsing it as suggested in [13]. If the cycle is R1 �→ R2 �→ · · · �→ Rt, we want
to get out of it in a symmetric way, that is reach the same point, whichever Ri

was the point at which we entered the cycle. Our version is to sort the points Ri

to obtain S1, S2, . . ., St and start again, say, from R =
⊕t

i=1[ii +1]Si. Anything
that breaks linearity would be convenient.

110 I. Duursma et al.

From a practical point of view, we count the number of distinguished points
we obtain along the path. If this number does not evolve as prescribed by the
theory, that is 1 among 1/θ points, then we decide to inspect the cycle and check
out if it comes from a useless one or not. The more frequent case of 2-cycles can
be handled with a look-ahead technique (see [52]) that is somewhat simpler.

3.3 A Multiplicative Random Walk

Let us explain the situation for ABC curves [22]. In this case, K = F2� and E
is defined over F2. Then λ : (x, y) �→ (x2, y2) is an automorphism of order '. If
' is odd3, the equivalence relation is: S ∼ T ⇐⇒ ∃i, S = [±λi]T with m = 2'
classes. This relation has been exploited in [13] and [52] as well as in real life
computations by R. Harley (see http://www.certicom.com/chal/).

Gallant et al. have suggested to use a multiplicative random walk with a
function f defined by f(R) = [µR]R, where µR is a multiplier depending on the
class of R. This walk is well defined, since f commutes with λ:

f(R′) = [µR′]R′ = [µR]R′ = [µR]([±λi]R) = [±λi]([µR]R) ∈ f(R).

In order to make the method efficient, the multiples must be computed very
quickly. In that case, µR is taken to be 1 + λH(R) where H is a hash-function
sending the equivalence classes to {0, 1, . . . ,m− 1}. As noted in section 2.3, the
number of such multipliers should be large. For the CM examples given below
this will prove not to be the case.

4 Finding New Examples

Our idea is to find new examples of curves with non-trivial automorphisms. We
will concentrate on algebraic curves defined over finite fields of characteristic p.
We will first summarize the results concerning the number of automorphisms of
(the Jacobian of) a curve.

4.1 Theoretical Results

For g = 1, we know that we can obtain automorphisms of order 4 or 6 for
some CM curves (details for both cases follow in Section 4.2) and powers of the
Frobenius for ABC curves [22].

We obtain examples for g > 1 by considering CM hyperelliptic curves and
curves defined over finite fields fixed by powers of the Frobenius, as well as curves
defined over Q having non-trivial automorphisms.

For genus g > 1, we need a priori distinguish between automorphisms of a
curve and automorphisms of its Jacobian. Automorphisms of a curve naturally
define automorphisms on its Jacobian. By Torelli’s theorem [29], all automor-
phisms of the Jacobian (for a fixed projective embedding and a chosen zero
3 If � is even, we obtain a relation with � classes only.

Speeding up the Discrete Log Computation 111

element) arise in this way (except for multiplication by minus one on the Jaco-
bian of non-hyperelliptic curves). And we may identify the automorphisms of a
curve and those of its Jacobian.

If g > 1, the number of geometric automorphisms (not considering powers
of the Frobenius) does not exceed 84(g − 1) provided that p > g + 1, with the
exception of the curve y2 = xp−x (see [36]). Without the restriction p > g+1, the
upper bound becomes 16g4, with again a single explicit exception: yq −y = xq+1

or a quotient thereof, for q a power of p (see [48]). Under the assumption that
the Jacobian has maximal p-rank g, the upper bound 84g(g − 1) holds [32].

The exceptions are of no interest to us as the Jacobians of these curves con-
tain no large cyclic components. To some extent this occurs more generally for
curves with many automorphisms. Automorphisms induce invariant subgroups
in the Jacobian. When these subgroups are non-trivial for many different auto-
morphisms, the Jacobian does not admit cyclic components of large prime order.
For such a large component would itself have invariant subgroups. It follows that
the selection of curves with automorphisms suitable for cryptosystems requires
some care. For the decomposition of a Jacobian with given automorphism group,
see [1,16].

Examples of curves with automorphisms that have large cyclic components
in their Jacobian are the curves y2 = xp − x + 1 in odd characteristic p [9].
The automorphism x �→ x + 1 of prime order p induces as invariant subgroup
the trivial group and the Jacobian itself is often of prime order. Other examples
are described in Section 4.3. In this paper we will always consider that the
automorphism on the Jacobian can be restricted to an automorphism of the
cyclic subgroup we are working in. This will be the case for all practical examples
where the group is almost prime. Indeed, assume that we are dealing with a cyclic
subgroup of prime cardinality n generated by P . Then n2 does not divide the
cardinality of the whole group, and the only elements of order n in the group are
precisely those which constitute the subgroup < P >. Then the image of P by
the automorphism is a of order n, and is in < P >, and the subgroup is stable
under the action of the automorphism.

4.2 New Examples with Elliptic Curves

We can find the proofs for what follows in [42, Chapter 2]. It is well known that
the only elliptic curves having non-trivial automorphisms (over Q) have CM by
Z[i] (resp. Z[ρ]) where i2 = −1 (resp. ρ3 = 1). They are: Ea,0 : Y 2 = X3 + aX
for a �= 0 and E0,b : Y 2 = X3 + b with b �= 0. On Ea,0, multiplication by i is
an automorphism sending a point (x, y) to (−x, iy); on E0,b, ρ sends (x, y) to
(ρx, y).

Over Q, this is all the story, an elliptic curve having in general automorphism
group {±1}. Over finite fields, Frobenius automorphisms enter the game as seen
with ABC curves. It is easy to see how to generalize the automorphism attack
to curves suggested by Müller [30] and Smart [45].

112 I. Duursma et al.

The reductions of the curves Ea,0 and E0,b are supersingular for p = 2, 3, so
that we will consider them interesting only in the case p > 3. For the sake of
simplicity, we suppose that K = Fp, p odd prime > 3.

The Case Ea,0. We suppose that a �≡ 0 mod p and p ≡ 1 mod 4 (if p ≡
3 mod 4, then Ea,0 is supersingular and the MOV reduction applies [26]). Again,
we suppose that we are looking for a discrete log on the group < P > with prime
order n. Let I2

p ≡ −1 mod p and I2
n = −1 mod n such that [In](x, y) = (−x, Ipy)

(this is possible since p and n are ≡ 1 mod 4 by the theory of reduction of CM
curves). Then the automorphism is α(x, y) = [In](x, y) and the class ofR = (x, y)
consists of {(x, y), (−x, Ipy), (x,−y), (−x,−Ipy)}. We decide that R is the point
with minimal ordinate in absolute value.

The “obvious” choice would be to use a generalization of the ABC approach
and use µR = 1 + αH(R) where H sends the classes to {0, 1, 2, 3}. However, this
does not work, due to the fact that α2 = −1 and (1 + α)(1 − α) = 2. A random
walk would compute multiples of the form (1 +α)u(1−α)v which is not random
enough (compare with [39]). Using other multiples would be too costly.

So, we must use the additive random walk, with the modifications described
in the preceding section. This gives us a speed up of

√
4 = 2. In the case of Fp�

(' odd), we can use the Frobenius (x, y) �→ (xp, yp) to obtain a speedup of
√

4'.

The Case E0,b. We suppose b �≡ 0 mod p and p ≡ 1 mod 3 (the case p ≡
2 mod 3 yields a supersingular curve). We let ρp (resp. ρn) denote a primitive
third root of unity modulo p (resp. modulo n) such that [ρn](x, y) = (ρpx, y).
The automorphism is α(x, y) = [−ρn](x, y) and the class of R = (x, y) consists of
{(x,±y), (ρpx,±y), (ρ2

px,±y)}. We take the representative with smallest x and
smallest y.

Here again, the multiplicative choice using multipliers of the form (1 +αi) is
disastrous due to the fact that 1 +α2 = −α and 1 +α = −α2 and we come back
to the additive version, thus yielding a speedup of

√
6 and more generally

√
6'

over Fp� , ' odd.

4.3 Examples of Hyperelliptic Curves

We will consider curves of equation Y 2 = F (X) = X2g+1 + · · · when p > 2
(resp. Y 2 + H(X)Y = F (X) = X2g+1 + · · · for p = 2) where g > 1 is the
genus of the curve. There is no group law on the curve, but there is one on
its Jacobian, noted Jac(C). The only result we need says that every element
of Jac(C) can be uniquely represented by a so-called reduced divisor with at
most g points. For more precise statements about those things, one can refer
to Mumford [31]. In [4] (see also [20]), Cantor gives an algorithm for computing
with the reduced divisors: we can add them in polynomial time. We do not recall
his method here, but we give the representation of a reduced divisor: it is a pair
of polynomials [u(z), v(z)], where u is monic of degree at most g and greater than

Speeding up the Discrete Log Computation 113

the degree of v. The opposite of such a reduced divisor (for the Jacobian group
law) is just the divisor represented by [u(z),−v(z)]. The hyperelliptic involution
is [u(z), v(z)] �→ [u(z),−v(z)].

From a practical point of view, it is not as easy to compute the cardinality
of a Jacobian over finite fields as it is for elliptic curves using the so-called SEA
algorithm [25,24]. So various researchers have suggested some special form of
curves for which this computation is easy [21], [9], [5], [46], [37], [3].

Automorphisms. We suppose α is an automorphism on the curve of the form
α : (x, y) �→ (α1(x), α2(y)). We restrict ourself to the study of two classes of
automorphisms: in case 1, the coordinate-functions α1 and α2 are identical and
are also automorphisms (a typical example is the Frobenius action), and in case
2, α1 and α2 are multiplication maps in the finite field (this occurs for CM
curves).

In both cases the automorphism can be extended to the Jacobian of the
curve, and we still denote α the extended automorphism. With the polynomial
representation of reduced divisors, we can derive simple expressions for the action
of α: for h ≤ g, we have

α : [zh + uh−1z
h−1 + · · · + u0, vh−1z

h−1 + · · · + v0]
�→ [zh + α1(uh−1)zh−1 + · · · + α1(u0), α1(vh−1)zh−1 + · · · + α1(v0)]

for case 1, and

α : [zh + uh−1z
h−1 + · · · + u0, vh−1z

h−1 + · · · + v0]

�→ [zh + α1uh−1z
h−1 + · · · + αh

1u0, α2α
−(h−1)
1 vh−1z

h−1 + · · · + α2v0]

for case 2.
Thus, provided that the computation of the action of α1 and α2 is easy we

can obtain the image of a divisor quite quickly.

Examples. In the literature we find many examples of hyperelliptic curves
which come with an automorphism. Some of them are obvious (such as Frobenius
endomorphism), but some others were probably not known to the authors (see
the curve of Sakai and Sakurai [37]). We summarize in table 1 some examples for
which we give the non-trivial automorphisms, and the order m that we obtain
when combining them together with the hyperelliptic involution.

The curves marked by (∗) can be broken by the reduction method of [11]
which is much faster than the ρ method, even with the use of automorphisms.
For high genus curves in the examples marked by (†), a faster attack is given by
the index-calculus method of [2].

For each curve in the table, we can improve the parallel collision search by
a factor

√
m. For example, if one wants to break the cryptosystem proposed by

Sakai and Sakurai, which uses a divisor of prime order around 2171, we have
to perform about 286 operations on the Jacobian, and using the Frobenius, the

114 I. Duursma et al.

Author Equation of curve Field Automorphisms m

Koblitz [20], [21] Y 2 + Y = X5 + X3 (∗) F2n Frob +

�
X �→ X + 1
Y �→ Y + X2 4n

Y 2 + Y = X5 + X3 + X (∗) F2n Frobenius 2n

Y 2 + Y = X2g+1 + X F2n Frobenius 2n

Y 2 + Y = X2g+1
F2n Frobenius 2n

Buhler Koblitz [3] Y 2 + Y = X2g+1 (†) Fp with mult. by ζ2g+1 2(2g + 1)
Chao et al. [5] (and twists) p ≡ 1 (2g + 1)

Sakai Sakurai [37] Y 2 + Y = X13 + X11+ F229 Frobenius & 4 × 29

X9 + X5 + 1 (†)
8<
:

X �→ X + 1
Y �→ Y + X6 + X5

+ X4 + X3 + X2

Duursma & Y 2 = Xp − X + 1 (†) Fpn Frobenius & 2np
Sakurai [9] (X, Y) �→ (X + 1, Y)

Table 1. Examples of curves

involution and the new automorphism, we have only to perform about 282 op-
erations. Note that the authors took into account the use of Frobenius in their
evaluation of the security, but not the other automorphism (however it still does
not break the system).

The Curve Y 2 = X5 − 1 and Generalizations. The Jacobian of the curve
Y 2 = X5 − 1 admits complex multiplication by the field Q(ζ5) where ζ5 is a
5-th root of unity. Combining it with the hyperelliptic involution, we obtain an
automorphism of order 10. The formulae for the action on reduced divisors are:

α : [z2 + u1z + u0, v1z + v0] �→ [z2 + ζ5u1z + ζ2
5u0, −ζ−1

5 v1z − v0]
[z + u0, v0] �→ [z + ζ5u0,−v0]

0 �→ 0.

This case may be generalized to the curves of equations Y 2 = X2g+1 − 1 (or
Y 2 + Y = X2g+1 as suggested in [3]), which admit complex multiplication by
the ring of integers of Q(ζ2g+1), providing an automorphism of order 2g+1 (and
even 4g + 2 combined with the trivial involution).

In this case, we could also dream of using a multiplicative random walk with
multipliers 1 + αi. However, we have to be careful, due to the many algebraic
relations between 5-th roots of unity. Apart from 1 − α+ α2 − α3 + α4 = 0, we
have among others 1 + α5 = 0, (1 + α2)(1 + α4) = α3, (1 + α4)(1 + α8) = α,
(1+α6)(1+α8) = −α2, (1+α3)(1+α8) = 1+α, etc. If during the random walk
we do a couple of consecutive steps corresponding to one of these relations, then
we obtain a cycle of length 2 which is useless. So, we come back to the additive
one to get our speedup of

√
10.

5 Numerical Experimentations

In order to validate our findings, we made several experiments on random graphs
of reasonable size as well as some real discrete log computations on small exam-

Speeding up the Discrete Log Computation 115

ples. The hash function used was H((x, y)) = y mod r in each case. All examples
were done using the computer algebra system MAGMA.

5.1 Elliptic Examples

We built functional graphs for the case of E : Y 2 = X3 + 2X over K = F1000037.
We chose P = (301864, 331917) of prime order n = 500153. We made two series
of experiments on 50 random mappings with r branches. The following table
contains the number of useless t-cycles found:

r #2 − cycles #4 − cycles
20 772(781) 5(5)

1000 16(15) 0(0)

These values are close to those prescribed by Proposition 31 that are given in
parentheses.

We did the same for the curve E : Y 2 = X3 + 2 over K = F1000381 on which
P = (1, 696906) is a point of prime order n = 998839. Again we tried 50 random
walks.

r #2 − cycles #4 − cycles #3 − cycles
20 694(693) 7(7) 2(3)

1000 13(14) 0(0) 0(0)

We also did 100 real discrete log computations for the curves given be-
low. We give the average gain obtained, that is the ratio θ

√
πn/2 divided by

the number of distinguished points computed. For E : Y 2 = X3 + 2X over
F10000003021 with P = (9166669436, 170163551) of prime order n = 5000068261,
Q = (1314815213, 7654067643) (with κ = 2153613198), we got a speed up of
1.88 for r = 20 (resp. 1.82 for r = 1000) and for E : Y 2 = X3 + 2 over
F10000000963, P = (2, 5825971627), n = 9999804109, Q = (4, 6715313768) (thus
κ = 8959085671), we got 2.23 for r = 1000.

5.2 Hyperelliptic Examples

We built the functional graphs of 50 random mappings for the Jacobian of the
curve Y 2 = X5−1 over K = F313 , which has a divisor of prime order n = 778201.
We found 201 components on average, with 196 2-cycles and 0.8 4-cycles, which
is closed to the expected theoretical values (194 and 0.7).

We did the same for the first example given by Koblitz in [20]: the curve is
Y 2 + Y = X5 +X3 +X over K = F211 , with a divisor of order n = 599479. We
tried 50 different pseudo-random walks obtaining on average 31.5 2-cycles (the
theory predicts 30.9), and almost no 4-cycles (0.07 expected). With the modified
walk, we have 5.6 components on average (5.1 for pure random walk).

We also did some experiments of discrete log computations. For each of the
curves, we did 1000 tests, the r parameter was fixed to 50. The first curve was
Y 2 = X5−1 over F317 , with a divisor of order n = 1440181261. We got an average
gain of 3.13 for the number of iterations (to be compared with

√
10 ≈ 3.16). The

116 I. Duursma et al.

second test was done for the curve Y 2 + Y = X5 + X3 + X over F237 , with a
divisor of order n = 319020217. The average gain obtained was 8.83 (theory says√

74 ≈ 8.60).

6 Conclusions

We have described a general framework speeding up discrete logarithm compu-
tations on curves with large automorphism groups, including in particular some
elliptic and hyperelliptic curves with complex multiplication. One could raise
the question to find curves having automorphisms which are not of Frobenius or
CM type.

Note that for high genus hyperelliptic curves, we can speed up the Adleman–
DeMarrais–Huang discrete log algorithm [2] using all these automorphisms (see
[14]). This suggests that the use of such curves in cryptosystems requires great
care.

For the genus > 2, most of the curves in the literature for which the car-
dinality of the Jacobian can be computed have a non-trivial automorphism. It
would be interesting to build new curves having no automorphisms. For genus 2,
examples are given by the CM construction of Spallek [46], see also [51]. See also
[47] for some examples of high genus random curves and [12] for superelliptic
curves.

Acknowledgments. We are grateful to Projet CODES at INRIA, and partic-
ularly Daniel Augot, for having given the authors the opportunity to meet and
work together. We also to thank E. Thomé for helpful discussions concerning
this work, as well as R. Harley for his careful reading of an intermediate version
of the article. Also, we are very happy to receive constructive reports from the
referees, a phenomemon which is so rare that we want to emphasize it.

A Proof of Proposition 31

Remember that α is an automorphism of order m and that we use an additive
function with r branches.

A.1 2-cycles

How many useless 2-cycles do we expect? We first evaluate the probability for
a random point R1 to be in a useless 2-cycle. Let R2 be the point computed
by the pseudo-random walk, and j1 = H(R1). We have R2 = R1 ⊕ T (j1). The
useless cycle can be produced when the class of R1 ⊕ T (j1) is �R1 � T (j1),
which occurs with probability 1/m. If this first condition is satisfied, the cycle
is produced when H(R2) equals j1, which occurs with probability 1/r. Finally,
the probability for a point to be in a useless 2-cycle is 1/(rm).

Speeding up the Discrete Log Computation 117

A.2 3-cycles

For 3-cycles, the expression of τ is

τ = [ε1ε2R1 + ε1ε2]T (j1) ⊕ [ε2]T (j2) ⊕ T (j3).

The condition on the jk’s implies that j1 = j2 = j3. Then τ = 0 = [ε1ε2 + ε2 +
1]T (j1), and we have ε2(1 + ε1) = −1. We study ”true” 3-cycles, so we do not
want R3 = R1, so we can suppose ε1 �= −1. Then ε2 = −1/(1 + ε1).

If we suppose that the automorphism α is a root of unity4, the last equation
gives |1 + ε1| = |ε1| = 1, and then ε1 is a third root of unity. Thus, if the order
m of α is not a multiple of 3, we cannot have a useless 3-cycle; otherwise we can
give an upper bound for the probability for a point to be in a useless 3-cycle by
2/(mr)2 (ε1 can take 2 values, and then ε2 is unique).

A.3 4-cycles

We have three different patterns for the jk’s.
First case: j1 = j2 = j3 = j4. Then we have τ = [ε1ε2ε3 + ε2ε3 + ε3 + 1]T (j1),

and we have a cycle if

ε3 = − 1
1 + ε2(1 + ε1)

.

The properties ε1 �= −1 and ε2 �= −1/(1 + ε1) are necessary to have a true 4-
cycle, and guarantee that the expression makes sense. However, for some values
of ε1 and ε2, there is no ε3 satisfying this equation. For example, if α4 = 1, then
the only triples of solutions are (ε1, ε2, ε3) = (α, α, α) or (−α,−α,−α).

We can bound the probability of a 4-cycle with this pattern. The probability
that the jk’s are equal is 1/r3; the probability that ε1 �= −1 is 1 − 1/m, the
probability that ε2 �= −1 and ε2 �= −1/(1 + ε1) is bounded by (1 − 1/m),
and finally we have at most one choice for ε3, i.e. probability 1/m. Finally, the
probability for a point to belong to such a 4-cycle is less than (1 − 1/m)2/mr3.

Second case: j1 = j2 and j3 = j4. We want to have a true 4-cycle, so R1 �= R3,
which implies that ε1 �= −1. In that case, the equation τ = 0 becomes

[ε2ε3(1 + ε1)]T (j1) ⊕ [1 + ε3]T (j3) = 0,

with T (j1) �= T (j3), so this equation has no solution with ε1 �= −1 if the points
T (j) are sufficiently randomly chosen. Hence such a pattern cannot occur with
significant probability.

The same result holds for the case: j1 = j4 and j2 = j3.
Third case: j1 = j3 and j2 = j4. In that case, the equation τ = 0 becomes

[ε3(ε1ε2 + 1)]T (j1) ⊕ [ε2ε3 + 1]T (j2) = 0, which reduces to the system
{
ε1ε2 = −1,
ε2ε3 = −1,

4 This is always the case for an automorphism of a cyclic group.

118 I. Duursma et al.

or ε3 = ε1 = −1/ε2. If we assume that the automorphism is a root of unity, then
for any given ε1, there is a unique solution of the system for ε2 and ε3.

The probability that j1 = j3 is 1/r, idem for j2 = j3, and moreover we impose
j1 �= j2, which occurs with probability (1 − 1/r); the probability of finding the
good values for ε2 and ε3 is 1/m2. Finally the probability for a point to belong
in a 4-cycle with such a pattern is (1 − 1/r)/(rm)2;

Putting together these results, we can bound the probability for a point to
be in a useless 4-cycle by (1 − 1/r)/(rm)2 + (1 − 1/m)2/mr3.

A.4 The Case of t-cycles

For a t-cycle, we rewrite the cancellation of τ as a system of k equations, one
for each ji which actually occurs. We evaluate the probability of (τ = 0) for
every value of k, and then collect the results. Note that k has to be at most t/2,
because there has to be at least two terms in each equation, and of course k is
at most r. Now let S be the set of the ji which actually occur in τ . Then

Pr(τ = 0) =
min(r,t/2)∑

k=1

Pr(τ = 0 |#S = k).Pr(#S = k).

First step: Pr(#S = k) ≤ min(r!kt

(r−k)!rt , 1).
This problem can be expressed as follows: what is the probability to get

exactly k distinct elements, when one takes randomly t elements in a set of r
elements (we put the element back in the set after each step). This probability
is classically (see [8])

(
r
k

)
S2(t, k)/rt, where S2(t, k) is the Stirling number of the

second kind. Then we bound S2(t, k) by k!kt, and obtain the formula.
Second step: Pr(τ = 0 |#S = k).
Let us make the change of variables




ε∗1 = εt−1 · · · ε1
ε∗2 = εt−1 · · · ε2

...
ε∗t−1 = εt−1

This transformation is invertible since the εi are invertible. The expression for τ
becomes τ = [εt−1 · · · ε1]T (j1)⊕· · ·⊕T (jt) = [ε∗1]T (j1)⊕· · ·⊕[ε∗t−1]T (jt−1)⊕T (jt) =⊕k

l=1[El]T (jil
), where the El are linear expressions in the ε∗i . When the ε∗i are

randomly chosen among m values, for each l the probability that El is verified
is bounded by 1/m. Thus the probability to have a good (t − 1)-uple of εi is
bounded by 1/mk, and the result follows.

Note that we used the fact that we have a true t-cycle, because we supposed
that the εi were randomly chosen, which is not the case if for example we have
a 2-cycle (ε2 has an imposed value in that case).

Speeding up the Discrete Log Computation 119

References

1. R. D. Accola. Two theorems on Riemann surfaces with noncyclic automorphism
groups. Proc. Amer. Math. Soc., 25:598–602, 1970. 111

2. L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the jacobians of large genus
hyperelliptic curves over finite fields. In L. Adleman and M.-D. Huang, editors,
ANTS-I, volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer-
Verlag, 1994. 1st Algorithmic Number Theory Symposium - Cornell University,
May 6-9, 1994. 113, 116

3. J. Buhler and N. Koblitz. Lattice basis reduction, Jacobi sums and hyperellitic
cryptosystems. Bull. Austral. Math. Soc., 58:147–154, 1998. 113, 114

4. D. G. Cantor. Computing in the Jacobian of an hyperelliptic curve. Math. Comp.,
48(177):95–101, 1987. 112

5. J. Chao, N. Matsuda, J. Sato, and S. Tsujii. Efficient construction of secure hy-
perelliptic discrete logarithm problems of large genera. In Proc. Symposium on
Cryptography and Information Security, 1997. Fukuoka, Japan. 113, 114

6. Y.-M. J. Chen. On the elliptic curve discrete logarithm problem. Preprint, June
1999. 103

7. J. H. Cheon, D. H. Lee, and S. G. Hahn. Elliptic curve discrete logarithms and
Wieferich primes. Preprint, September 1998. 103

8. L. Comtet. Analyse combinatoire. Presses Universitaires de France, 1970. 118
9. I. Duursma and K. Sakurai. Efficient algorithms for the jacobian variety of hy-
perelliptic curves y2 = xp − x + 1 over a finite field of odd characteristic p. In
H. Tapia-Recillas, editor, Proceedings of the ”International Conference on Coding
Theory, Cryptography and Related Areas”, volume yyy of Lecture Notes in Comput.
Sci., 1999. Guanajuato, Mexico on April, 1998. 111, 113, 114

10. P. Flajolet and A. M. Odlyzko. Random mapping statistics. In J.-J. Quisquater,
editor, Advances in Cryptology, volume 434 of Lecture Notes in Comput. Sci., pages
329–354. Springer-Verlag, 1990. Proc. Eurocrypt ’89, Houthalen, April 10–13. 105

11. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
April 1994. 103, 113

12. S. D. Galbraith, S. Paulus, and N. P. Smart. Arithmetic on superelliptic curves.
Preprint, 1999. 116

13. R. Gallant, R. Lambert, and S. Vanstone. Improving the par-
allelized Pollard lambda search on binary anomalous curves.
http://www.certicom.com/chal/download/paper.ps, 1998. 104, 107, 109,
110

14. P. Gaudry. A variant of the Adleman-DeMarrais-Huang algorithm and its applica-
tion to small genera. Research Report LIX/RR/99/04, LIX, June 1999. Available
at http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/. 116

15. M. J. Jacobson, N. Koblitz, J. H. Silverman, A. Stein, and E. Teske. Analysis of
the Xedni calculus attack. Preprint, February 1999. 103

16. E. Kani and M. Rosen. Idempotent relations and factors of Jacobians. Math. Ann.,
298:307–327, 1989. 111

17. H. J. Kim, J. Cheon, and S. Hahn. Elliptic logarithm over a finite field and the
lifting to Q. Preprint, September 1998. 103

18. N. Koblitz. A course in number theory and cryptography, volume 114 of Graduate
Texts in Mathematics. Springer–Verlag, 1987. 103

120 I. Duursma et al.

19. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, January
1987. 103

20. N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology, 1:139–150, 1989. 103,
112, 114, 115

21. N. Koblitz. A family of jacobians suitable for discrete log cryptosystems. In
S. Goldwasser, editor, Advances in Cryptology – CRYPTO ’88, volume 403 of
Lecture Notes in Comput. Sci., pages 94–99. Springer–Verlag, 1990. Proceedings
of a conference on the theory and application of cryptography held at the University
of California, Santa Barbara, August 21-25, 1988. 113, 114

22. N. Koblitz. CM-curves with good cryptographic properties. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in
Comput. Sci., pages 279–287. Springer-Verlag, 1992. Santa Barbara, August 12–15.
110

23. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2),
126:649–673, 1987. 103

24. R. Lercier. Finding good random elliptic curves for cryptosystems defined over F2n .
In W. Fumy, editor, Advances in Cryptology – EUROCRYPT ’97, volume 1233 of
Lecture Notes in Comput. Sci., pages 379–392. Springer-Verlag, 1997. International
Conference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 1997, Proceedings. 113

25. R. Lercier and F. Morain. Counting the number of points on elliptic curves over
finite fields: strategies and performances. In L. C. Guillou and J.-J. Quisquater,
editors, Advances in Cryptology – EUROCRYPT ’95, volume 921 of Lecture Notes
in Comput. Sci., pages 79–94, 1995. International Conference on the Theory and
Application of Cryptographic Techniques, Saint-Malo, France, May 1995, Proceed-
ings. 113

26. A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves logarithms
to logarithms in a finite field. IEEE Trans. Inform. Theory, IT–39(5):1639–1646,
September 1993. 103, 112

27. A. J. Menezes. Elliptic curve public key cryptosystems. Kluwer Academic Publish-
ers, 1993. 103

28. V. Miller. Use of elliptic curves in cryptography. In A. M. Odlyzko, editor, Advances
in Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Comput. Sci., pages
417–426. Springer-Verlag, 1987. Proceedings, Santa Barbara (USA), August 11–15,
1986. 103

29. J. S. Milne. Jacobian varieties. In G. Cornell and J. H. Silverman, editors, Arith-
metic Geometry, pages 167–212. Springer-Verlag, 1986. 110

30. V. Müller. Fast multiplication on elliptic curves over small fields of characteristic
two. J. of Cryptology, 11(4):219–234, 1998. 104, 111

31. D. Mumford. Tata lectures on theta II. Birkhauser, 1984. 112
32. S. Nakajima. p-ranks and automorphism groups of algebraic curves. Trans. Amer.

Math. Soc., 303(2):595–607, October 1987. 111
33. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over

GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory, IT–24:106–
110, 1978. 104

34. J. M. Pollard. Monte Carlo methods for index computation (mod p). Math.
Comp., 32(143):918–924, July 1978. 104

35. J.-J. Quisquater and J.-P. Delescaille. How easy is collision search? application to
DES. In J.-J. Quisquater, editor, Advances in Cryptology, volume 434 of Lecture
Notes in Comput. Sci., pages 429–434. Springer-Verlag, 1990. Proc. Eurocrypt ’89,
Houthalen, April 10–13. 105

Speeding up the Discrete Log Computation 121

36. P. Roquette. Abschätzung der Automorphismenanzahl von Funktionenkörpern bei
Primzahlcharakteristik. Math. Z., 117:157–163, 1970. 111

37. Y. Sakai and K. Sakurai. Design of hyperelliptic cryptosystems in small charatc-
teristic and a software implementation over F2n . In K. Ohta and D. Pei, editors,
Advances in Cryptology, volume 1514 of Lecture Notes in Comput. Sci., pages 80–
94. Springer-Verlag, 1998. Proc. Asiacrypt ’98, Beijing, October, 1998. 113, 114

38. T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. Comment. Math. Helv., 47(1):81–92, 1998.
103

39. J. Sattler and C. P. Schnorr. Generating random walks in groups. Ann. Univ. Sci.
Budapest. Sect. Comput., 6:65–79, 1985. 106, 112

40. I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an
elliptic curves in characteristic p. Math. Comp., 67(221):353–356, January 1998.
103

41. D. Shanks. Class number, a theory of factorization, and genera. In Proc. Symp.
Pure Math. vol. 20, pages 415–440. AMS, 1971. 104

42. J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151
of Grad. Texts in Math. Springer-Verlag, 1994. 111

43. J. H. Silverman. The XEDNI calculus and the elliptic curve discrete logarithm
problem. Preprint, August 1998. 103

44. N. Smart. The discrete logarithm problem on elliptic curves of trace one. Preprint
HP-LABS Technical Report (Number HPL-97-128). To appear in J. Cryptology,
1997. 103

45. N. P. Smart. Elliptic curve cryptosystems over small fields of odd characteristic.
J. of Cryptology, 12(2):141–151, 1999. 104, 111

46. A.-M. Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-
Kryptosystemen. PhD thesis, Universität Gesamthochschule Essen, July 1994. 113,
116

47. A. Stein and E. Teske. Catching kangaroos in function fields. Preprint, March
1999. 116

48. H. Stichtenoth. Über die Automorphismengruppe eines algebraischen Funktio-
nenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Au-
tomorphismengruppe. Arch. Math. (Basel), 24:527–544, 1973. 111

49. E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In
J. P. Buhler, editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in
Comput. Sci., pages 541–554. Springer-Verlag, 1998. Third International Sympo-
sium, ANTS-III, Portland, Oregon, june 1998, Proceedings. 106

50. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. J. of Cryptology, 12:1–28, 1999. 103, 105

51. P. van Wamelen. Examples of genus two CM curves defined over the rationals.
Math. Comp., 68(225):307–320, January 1999. 116

52. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosys-
tems. In S. Tavares and H. Meijer, editors, Selected Areas in Cryptography ’98,
volume 1556 of Lecture Notes in Comput. Sci.. Springer-Verlag, 1999. 5th Annual
International Workshop, SAC’98, Kingston, Ontario, Canada, August 17-18, 1998,
Proceedings. 104, 107, 110

	Introduction
	Parallel Collision Search
	Pollard's Rho Method
	Using Distinguished Points
	Choosing the Function f
	An Additive Random Walk.
	A Multiplicative Random Walk.
	Mixed Walks.

	Random Mappings on Equivalence Classes
	Well Defined Mappings
	Useless Cycles for Additive Walks
	Taking Care of Useless Cycles.

	A Multiplicative Random Walk

	Finding New Examples
	Theoretical Results
	New Examples with Elliptic Curves
	The Case Ea,0.
	The Case E0,b.

	Examples of Hyperelliptic Curves
	Automorphisms.
	Examples.
	The Curve Y2 = X5-1 and Generalizations.

	Numerical Experimentations
	Elliptic Examples
	Hyperelliptic Examples

	Conclusions
	Proof of Proposition 31
	2-cycles
	3-cycles
	4-cycles
	The Case of t-cycles

	References

