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Abstract. Distributed Video-on-Demand (DVoD) systems are proposed as a
solution to the limited streaming capacity and null scalability of centralized
systems. In a previous work, we proposed a fully distributed large-scale VoD
architecture, called Double P-Tree, which has shown itself to be a good ap-
proach to the design of flexible and scalable DVoD systems. In this paper, we
present relevant design aspects related to video mapping and traffic balancing in
order to improve Double P-Tree architecture performance. Our simulation re-
sults demonstrate that these techniques yield a more efficient system and con-
siderably increase its streaming capacity. The results also show the crucial im-
portance of topology connectivity in improving multicasting performance in
DVoD systems. Finally, a comparison among several DVoD architectures was
performed using simulation, and the results show that the Double P-Tree archi-
tecture incorporating mapping and load balancing policies outperforms similar
DVoD architectures.

1   Introduction

Video on Demand (VoD) has been gaining popularity over recent years with the pro-
liferation of high-speed networks. Distributed continuous media applications, are
expected to provide service to a large number of clients often geographically dispersed
over a metropolitan, country-wide or even global area. Employing only one large
centralized continuous media server to support these distributed clients results in a
high cost and non-scalable system with inefficient  resource allocations.

To address this problem, researchers have proposed distribution of the service in
order to manage client dispersal. Systems based on this approach are termed Distrib-
uted VoD systems and they have demonstrated the ability to provide minimum com-
munication-storage cost for distributed continuous media streaming applications [1].
   A DVoD system requires the arrangement of those servers that offer the video re-
trieval and playback services in a distributed system, in order to support a large num-
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ber of concurrent streams. In the literature, these approaches range from: 1) the use of
Independent servers, 2) one level proxies,  to  3) hierarchical distributed systems. The
initial approach is based on replicating VoD servers close to clients’ networks so that
these users do not need to access the main server [2]. One-level proxies try to reduce
the size of local servers in such a way that they only store those videos with a higher
access frequency; these servers are managed as main-server caches and are called
proxies [9]. Hierarchical DVoD systems are based on a network with a hierarchical
topology, with individual servers on the nodes and network links on the edge of the
hierarchy. The nodes at the leaves of the hierarchy, termed head-ends, are points of
access to the system where clients are usually connected [3][9][12][14].

 In [6] we proposed an architecture for a fully distributed VoD system (called Dou-
ble P-Tree) which, in addition to supporting a large number of concurrent streams,
allows for the distribution of network traffic in order to minimize the network’s band-
width requirements. This is achieved by distributing both the servers as well as the
clients throughout the topology, avoiding the concentration of communication traffic
on the last level of the hierarchy (head-end). It is demonstrated through an analytical
study that this distributed architecture is fault-tolerant and guarantees unlimited and
low-cost growth for a large-scale VoD system.

In this paper, we focus on the design aspects of the Double P-Tree architecture with
the view to optimizing its performance and to supporting a greater streaming capacity.
We concentrate particularly on two aspects: incorporating a video-mapping mecha-
nism to minimize service distance, and the proposal of traffic-balancing policies that
allow a reduction in network bandwidth requirements for the system. These proposed
policies have been evaluated through several simulation experiments and the results
have shown significant improvement in the Double P-Tree architecture’s performance.
In addition, on the one hand we study the influence of the architecture’s connectivity
in improving the efficiency of multicast policies in distributed systems, and on the
other hand we analyze the proxy storage capacity.
The remainder of this paper is organized as follows: in section 2, we first give an
overview of the Double P-Tree architecture and we describe some topics related to its
implementation. In section 3, we propose some techniques related to video placement
and traffic balancing. Performance evaluation is shown in section 4 and, finally, in the
last section, we indicate the main conclusions to be drawn from our results.

2   Distributed VoD Architecture

Fig.1a depicts the architecture of the proposed DVoD system. This architecture is
designed as a network with a tree topology, with individual small servers (proxies) as
the nodes, and network links as the edges of the hierarchy.  Nodes are assumed to be
able to store a limited number of videos and stream a finite number of videos. Mean-
while, networks links are expected to guaranteed the specific QoS requirements of
video communications. A brief description of the system architecture is given below.
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Fig. 1. Double P-Tree Architecture

2.1 Network Topology

For the network topology we have selected a fully distributed topology based on
proxies. The structure of this topology consists of a series of levels, in accordance with
the number of local networks and the order of the tree. Each hierarchy level is made
up of a series of local networks with its local-proxy and clients that forms the follow-
ing tree level. To improve topology connectivity, several local networks (named
brothers networks) from the same level are interconnected, increasing the number of
adjacent local networks without changing the topology size or last level width.  This
new architecture is named Double P-Tree because the brother networks are joined in a
second tree within the original tree topology [6].

In order to reduce network bandwidth requirements the network infrastructure is
designed using segmented switches in local networks. Fig 1b, shows network band-
width requirements for non-segmented and segmented switches. This selection is
based on the fact that in segmented switches, every port (Pi) has an Independent-
bandwidth, and therefore, it is only necessary to have enough bandwidth in order to support the
maximum traffic from all ports. Segmented switches allow the reduction of switch-
bandwidth requirements if traffic is distributed among different ports.

Double P-Tree architecture can make better use of segmented switches due to its
network traffic being distributed among different sources. A possible drawback of this
utilization is that topology-port traffic (ports used to implement the topology) and server-port
(port used to connect proxy-server) could be unbalanced when the proxy load is centralized in
one server-port. In order to solve this unbalance (increasing the bandwidth requirements), the
architecture connects the proxies to local-networks using several ports.

2.2   Proxy Server

The simple inclusion of a hierarchical system with proxies does not, in itself, obtain
improvements in the system’s scalability or efficiency: since, as all the proxies are
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caching the same videos, if a proxy cannot serve a request from its client, then it is
also very probable that none of the other proxies will be able to serve this request, and
the solution will then require accessing the main server. We therefore need to use a
new proxy organization and functionality to increase the hit probability as the request
climbs the various levels on the tree. This proposal lies in dividing the storage space
available within proxies into two parts: one of these will continue functioning as a
cache, storing the most requested videos; the other proxy space will be used for mak-
ing a distributed mirror of system videos [6].

In order to provide True VoD we have concentrated on multicast transmission
techniques [7][10]. These techniques can greatly reduce server I/O and network band-
width. But with them, it is difficult to implement VCR functions since a dedicated
channel is not allocated to each user. Whenever a user tries to play the VCR functions
he will disjoin the multicast channel, and some new resources that have not been
planned before must then be reserved and assigned to him. These resources will be
used to meet the VCR functions and/or to provide a unicast channel so that the user
can continue with the normal playback. Several ideas has been proposed to solve this
problem basically reserving some channels for these specific actions [5][11] .

Our implementation for the VCR functions does not reserve specific channels and
is based on the observation that there are periods of times during which network
bandwidth is under-utilized. During these periods, the proxy server sends more video
in advance (pre-fetching) to an appropriate client’s buffer. Whenever a user invokes a
VCR action, the resources that have been assigned before the peak time are recovered
in favor of this VCR request.

Another important element that affects the proxy performance is the proxy file
system. Proxy servers that implement conventional file systems have been designed to
reduce load on servers as well as client access time [4][13]. Nevertheless for continu-
ous media with soft real-time constraints, typical file systems based on best-effort
paradigm are inadequate for achieving this new requirement.  Proxy servers can pro-
vide performance guarantees to applications only in conjunction with an operating
system that can allocate resources in a predictable manner.

In our case, the most representative workload is the updates and removes in the
caching and mirroring subsystem; consequently, the disk broker must employ place-
ment policies that minimize fragmentation of disk space resulting from frequent writes
and deletes. In order to obtain the best performance from the disk driver, track-buffer
techniques are used. These techniques eliminate rotational delays in reads and obtain
maximum performance on write operations.

3   Architecture Design Issues

In order to implement an efficient DVoD architecture several challenging research
problems have to be solved to allow an efficient management of network and the
services. Some of these problems are related with the subjects of reducing service
distance and balancing communication traffic. In this section we propose some poli-
cies to accomplish these goals.
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3.1   Videos Mapping on Distributed Mirror

The main factor that penalizes DVoD architectures performance, measured as the
number of concurrent clients supported by the system (effective bandwidth), is the
over-bandwidth required due to requests that cannot be served locally.  In this case, a
remote service requires: local bandwidth in the remote server, bandwidth in the server-
port in the switch, bandwidth in the remote switch-topology port, bandwidth in the
local switch-topology port and finally bandwidth in the client switch-port. A good
approximation to evaluate this over-bandwidth is mean service distance (the distance
needed to reach all movies from every node in the system).

In particular, Double P-Tree mean service distance is affected by diverse factors,
such as topology connectivity, proxy storage distribution between caching and mir-
roring, and mirror-videos mapping in proxies. The first and the second issues were
analyzed in a previous paper [6], and the last one is studied below.

Given that it is too complex achieve a optimal video distribution, we have devel-
oped a heuristic to choose which videos need to be mapped in every proxy-mirror.
This heuristic consists of calculating, for each proxy within the architecture, the mini-
mum distance where we can find each of the movies of the system-repository (taking
into account videos already mapped in the previous proxies). Then, in order to mini-
mize the mean service-distance, we always choose those videos that are stored in the
proxy-mirrors furthest from this proxy. In the case of there being various videos at the
same distance, the most popular are then selected.
Table 1 shows the mean service distance and effective bandwidth obtained by the
heuristic and a sequential distribution of videos based simply on assigning a group of
videos to each one of the proxies in a sequential manner. These results use the simula-
tion parameters given in section 4, taking unicast and multicast policies into account.
As we can see, the heuristic reduces mean-service distance from 1.80 to 1.74, which
allows for an improvement in system performance (“Effective Bandwidth” column) of
7% and 14% for unicast and multicast, respectively.

3.2   Traffic Balancing Policies

In architectures using segmented switches, the bandwidth requirements for a network
depends on the maximum traffic supported by any of its ports. Therefore, it is very

Table 1.  Performance of Video-Mapping Heuristic for Double P-Tree 

Mirror Distribution Effective bandwidth Mean service distance 

sequential 11.001 Mb/s 1,80 
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heuristic 15.951 Mb/s 1,747 
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important to balance port traffic in order to reduce bandwidth requirements and to
increase system performance.

In Double P-Tree architecture, most loaded ports are of the server and topology
ports. Server ports can easily be balanced because the proxy server can choose at any
time through which port a request is attended.

On the other hand, balancing topology ports is more difficult because their load de-
pends on video placement on distributed mirrors. For example, the links connecting
proxy servers that map the most popular videos would be more overloaded than others,
producing a traffic imbalance.

To achieve traffic-load balancing, we have studied two different approximations:
• Mirror Balanced.

An initial approximation to avoid imbalance is by building the distributed mirror
in more balanced way. This objective can be achieved tuning the previous mapping
heuristic because we do not always select the most popular videos; rather, we choose a
mixture of highly and less popular videos.

• Dynamic traffic balancing.
However, balancing through mirror distribution has a very limited maneuver-

ability and cannot easily adapt to changes in traffic patterns or video access frequency.
Therefore we have proposed another more dynamic policy for traffic load balancing.
As the imbalance problem only appears with remote requests (which are the only ones
that use topology ports), when a request cannot be attended, the local proxy also re-
ceives information about traffic from all alternative sources (i.e. proxies that have a
copy of requested video and enough resources to attend the request). Using this infor-
mation, and if there are two or more alternative paths (meaning some video replica-
tion), our balancing policy always chooses the least-loaded path in order to balance
traffic.

Using the simulation parameters given in section 4, in Table 2, we show the results
obtained with these balance policies. As we can see, compared with imbalance, the
mirror balanced  policy is successful in reducing imbalance1,2, but this reduction is not
enough to compensate for the rise in service distance3,4. In contrast, the results ob-
tained with the dynamic traffic load balancing policy are much better, decreasing
imbalance significantly5,6 (without affecting service distance) and increasing perform-
ance by around 24% (15.951Mbs and 19.700Mbs as against 12.849Mbs and
15.653Mbs , for unicast and multicast respectively).

Table 2.  Performance of Traffic Balancing Policies for  Double P-Tree

Traffic Balancing Policy Effective bandwidth Mean Distance Imbalance 

Unbalance 12.849 Mb/s 1,747 56,44% 

Mirror Balanced 12.240 Mb/s 1,769 (3) 55,61% (1) 
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Unbalance 15.951 Mb/s 1,732 78,27% 

Mirror Balanced 15.630 Mb/s 1,769 (4) 71,70% (2) 
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Traffic Balancing 19.700 Mb/s 1,747 48,07% (6) 
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4 Performance Evaluation

In this section, we show the simulation results for Double P-Tree architecture and
contrast these with other distributed architectures.  We conducted several experiments
to 1) evaluate the effect of multicast, and 2) study the effect of proxy storage capacity
on system behavior.

Table 3.  Simulation Parameters

Parameter Value Parameter Value

• Number of videos 100
• Multicast tech-

nique
Patching

• Video length 90 minutes • Client buffer size 5 minutes
• Local networks 63 • Request rate (λ) 10 req/min by net
• Network band-

width
100 Mb/s

• Server bandwidth
1server port (1Sp)

100 Mb/s

• Poisson distribu-
tion
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4.1   Simulation Environment

To guide this objective, we have designed and implemented an object-oriented VoD
simulator. The main parameters of the simulation environment are summarized in
Table 3. In all studies, we use architectures with 63 local networks (6 levels in Double
P-Tree topology) using 100 Mbps segmented switches. The request inter-arrival time
is generated by the simulation of a Poisson distribution1 with a mean of  1/λ, where λ
is the request arrival rate in every local network in the VoD system. The selection of
the video is modeled with a Zipf distribution2, with a skew factor of 0.7 (z), which
models the popularity of rental movies [1].

4.2   Effect of Multicast on Distributed VoD Architectures

In this section, we evaluate DVoD system performance, using effective bandwidth
(number of users attended * 1.5Mbs) as the main metric. This study allows us to
evaluate the maximum streaming capacity for different architectures: Independent
servers, one level proxies and Double P-Tree (using heuristic mapping and dynamic
traffic balancing policy), for both unicast and multicast techniques.

In order to obtain the results, plotted in Fig 2, we have assigned an aggregate net-
work bandwidth of 6.300Mbs and an aggregate sever bandwidth of 6.300Mbs (with 1
server port) or 18.900Mbs (with 3 Server ports). To obtain the maximum system
streaming capacity, we saturated the system using a high request ratio (10 req/min by
network) and simulated the system behavior until the aggregate bandwidth is ex-
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hausted. When there is no bandwidth available, the system achieves its maximum
streaming capacity and we evaluate the system performance (effective bandwidth
using unicast and patching [12]) .

Using unicast, we can see that the Independent servers with 3Sp is the architecture
that obtains the best results, achieving the theoretical maximum stream capacity of
19Gbs (63 networks * 100Mbs * 3Sp). Meanwhile Double P-Tree with 7 brothers
(7B) and 3Sp obtains an effective bandwidth of 18.2Gbs (4% less), due to the addi-
tional bandwidth required to attend distributed requests and lower storage require-
ments (20 as against 100 videos in every proxy). However, this underperformance is
less than expected according to the criteria of mean service distance between Inde-
pendent servers (1) and Double P-Tree architectures (1,747 according to Table 2).
This result demonstrates the strength of our architecture in distributing and balancing
traffic among topology ports in order to reduce network requirements. Also, as we can
see, our architecture is better than 1-level proxies architecture (improved by 75%).

Double P-Tree architecture exploits its characteristics to realize its potential ad-
vantage when client streams are shared using a multicast technique (Patching, in our
case). In this more realistic scenario, Double P-Tree is the best solution, improving
Independent servers by 27% (38.4Gbs as against 30Gbs) and one-level proxies by
200% (38.4Gbs as against 12.7Gbs).

The principal argument for this improvement is that the Double P-Tree has a better
connectivity than the Independent server and one-level architectures. This better con-
nectivity means that, in Double P-Tree, mirror video streams can potentially be shared
among requests coming from all adjacent networks, multiplying the sharing probabil-
ity by topology connectivity. Meanwhile, in low interconnected architectures, potential
stream sharing is limited only to local requests.

Fig. 2. Performance in Distributed VoD Architectures
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4.3   Effect of Proxy Storage Capacity

In this section, we evaluate the effect of proxy storage capacity on Double P-Tree
performance. In Fig. 3, we can first see that a small proxy storage leads to low per-
formance due to large service distance being required to attend remote requests, and to
its over-bandwidth requirements.

With only storage for 15% of system videos, Double P-Tree performance (with
patching) is equivalent to Independent severs performance, but uses 6 times less stor-
age. Also, we notice that the highest performance is obtained with proxy storage of
around 25%. In this case, Double P-Tree performs Independent servers in more than
38% (41.5Gbs against 30Gbs). From this point, we can observe that in the measure
that storage capacity grows, performance decreases until reaching Independent server
performance, in which case the proxy has enough capacity to store a full video catalog
copy.

Why do more resources give less performance? The reasons for this interesting ef-
fect can be explained by the fact that, when Double P-Tree proxies have a lot of stor-
age (more than 30%), their architectural behavior is very similar to that of Independent
server systems.  In this case, proxy mirrors have enough storage to reach all videos at
distance-2 mirrors, therefore all remaining storage is assigned for caching.

Increasing proxy-cache size increases the number of requests attended locally, cre-
ating two consequences. First, server ports have more load, leading to network traffic
unbalancing and a faster network saturation. Second, there are videos with a medium
access pattern that were previously managed under mirroring scheme. Proxy-mirrors,
where these were mapped, centralized all requests coming from adjacent nodes, im-
proving stream sharing. If we now place these videos in the cache (replicating them in
all proxies), we are decreasing access frequency for every video copy, reducing both
the stream-sharing probability and system performance. This result clearly demon-
strates the goodness of distributed mirroring as against several full mirror replications.

Fig. 3. Double P-Tree Effective Bandwidth & Proxy Storage Capacity
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5   Conclusions

This paper deals with two decisive aspects for DVoD architectures performance:
video placement policies in distributed mirrors and network-traffic balancing policies.
The proposed policies attain a reduction in mean service distance and minimize net-
work requirements for the Double P-Tree architecture.

Simulation results show that proposed policies substantially increase the number of
concurrent clients who can be served by the system. The video mapping heuristic
achieves an improvement of 7%, while the dynamic traffic-balancing policy yields an
additional increase of 26%. These results clearly demonstrate the importance of net-
work-traffic balancing policies as a fundamental instrument in diminishing the net-
work bandwidth requirements in DVoD systems.

On the other hand, we have also shown the importance of topology connectivity in
DVoD systems (in particular, in the Double P-Tree) in order to improve multicasting
performance. The Double P-Tree using multicasting and similar resources clearly
outperforms classical DVoD architectures, namely, Independent servers (by 38%) and
one-level proxies (by 200%).

Finally, we have demonstrated that full mirror replication in every local network
(as in Independent servers) not only requires more storage but also achieves a poorer
performance in comparison to distributed mirroring (Double P-Tree).
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