
Improved Iterative Methods for Verifying

Markov Decision Processes

Jaber Karimpour, Ayaz Isazadeh, MohammadSadegh Mohagheghi,
and Khayyam Salehi

Department of Computer Science, University of Tabriz, Tabriz, Iran
{karimpour,isazadeh}@tabrizu.ac.ir, sadegh rk@yahoo.com,

khayyam.salehi@gmail.com

Abstract. Value and policy iteration are powerful methods for verify-
ing quantitative properties of Markov Decision Processes (MDPs). In
order to accelerate these methods many approaches have been proposed.
The performance of these methods depends on the graphical structure
of MDPs. Experimental results show that they don’t work much better
than normal value/policy iteration when the graph of the MDP is dense.
In this paper we present an algorithm which tries to reduce the number
of updates in dense MDPs. In this algorithm, instead of saving unneces-
sary updates we use graph partitioning method to have more important
updates.

Keywords: Markov decision processes, probabilistic model checking,
value iteration, policy iteration, graph partitioning, variable ordering.

1 Introduction

Markov Decision Processes (MDPs) are transition systems that can be used for
modeling both nondeterministic and stochastic behaviors of reactive systems.
In this paper we mainly focus on the quantitative verification of MDPs and
consider reachability probabilities, i.e., calculating the maximum (or minimum)
probability of reaching some goal states.

In general there are some main classic methods to solve MDPs: value iter-
ation [1], Gauss-Seidel, policy iteration, and linear programming approach [6].
Many researchers have tried to improve the performance of Value Iteration (VI)
and Policy Iteration (PI) by reducing the number of updates of states [2,4,7–9].
Although the main focus of so-called papers is on dealing with some problems in
learning, one can use those techniques for quantitative verification of MDPs [3,5].

Experimental results show that when the graph of an MDP is dense or in the
situation where all states belong to only one Strongly Connected Component
(SCC), Gauss-Seidel version of VI works better than other advanced methods. In
addition, a good variable ordering can accelerate iterative methods, but finding
the optimal variable ordering for cyclic MDPs is an NP-complete problem [9].

In this paper we concentrate on dense MDPs and consider maximum reach-
ability probability problems (as defined in [1]). We present an algorithm that

c© IFIP International Federation for Information Processing 2015
M. Dastani and M.Sirjani (Eds.): FSEN 2015, LNCS 9392, pp. 207–214, 2015.
DOI: 10.1007/978-3-319-24644-4_14



208 J. Karimpour et al.

works faster than VI (and also faster than other methods). The main contribu-
tion is to present a prioritized algorithm for accelerating verification of dense
MDPs.

The remainder of this paper is structured as follows. Section 2 formally defines
MDPs and reviews PI algorithm. In Section 3 we present heuristics for variable
reordering in both sparse and dense MDPs and then present a prioritized al-
gorithm for dense MDPs. Section 4 summarises our experimental results and
Section 5 presents conclusions and ideas for future research.

2 Preliminaries

In this section, we provide an overview of MDP and policy iteration method.
Detailed definitions and topics are available in [1, 5].

2.1 Markov Decision Processes (MDPs)

An MDP is a tuple M = (S,Act, P,AP, L), where S is a countable set of
states, Act is a finite set of actions, P : S × Act × S → [0, 1] is the tran-
sition probability function such that for each state s ∈ S and each action
α ∈ Act :

∑
s′∈S P (s, α, s′) ∈ {0, 1} , AP is a nonempty set of atomic proposi-

tions, and L : S → 2AP is a labeling function.
For the sake of simplicity, we suppose that AP = {goal, non−goal} and there

is a unique start state s0. For a state s ∈ S and an enabled action α ∈ Act, set
of successors are defined as

Post(s, α) = {s′ ∈ S|P (s, α, s′) > 0} and Post(s) = ∪α∈ActPost(s, α).

A path in an MDP is a non-empty (finite or infinite) sequence of the form:

s0
α0−→ s1

α1−→ s2
α2−→ · · · where si ∈ S and si+1 ∈ Post(si, α) for each i > 0. We

define Pathss as the set of infinite paths that start in s. To resolve nondeter-
ministic choices in an MDP we require the notion of policy. A policy π selects
an enabled action in each state based on the history of choices made so far (or
simply the last state in memory-less policies). It restricts the behavior of the
MDP to a set of paths pathsπs ⊆ pathss. One can define a probability space
Probπs over the paths Pathsπs [1]. For an MDP M we use ΠM to denote the set
of all policied of M .

MDPs can be used in the verification of systems (probabilistic verification).
In this area, properties that should be verified against MDPs can be expressed
using temporal logics such as PCTL [5]. In this paper, we concentrate on a
limited yet important class of problems: maximum reachability probabilities, i.e.
the maximum probability that a path through the MDP which starts from s0
eventually reaches a goal state.

2.2 Quantitative Verification of MDPs

Model checking of PCTL formulas can be reduced to some important questions
against MDPs. The maximum (or minimum) reachability probability is one of



Improved Iterative Methods for Verifying Markov Decision Processes 209

the most important questions against them. Given a set of goal states G ⊆ S,
the maximum and minimum reachability probability can be defined as:

pmin
s (G) = inf

π∈ΠM

pπs (G) and pmax
s (G) = sup

π∈ΠM

pπs (G),

where pπs (G) = Probπs ({ω ∈ Pathπ
s |∃i.ωi ∈ G}). As we have mentioned, there

are some methods to compute reachability probabilities in MDPs but we only
consider PI (because PI has better performance for dense MDPs).

2.3 Policy Iteration

Algorithm 1 describes the policy iteration method to calculate the values of
pmax
s . This algorithm uses an array P to save the value pmax

si for each state si.
It first estimates a good policy (Line 8) and computes the value of states itera-
tively according to this policy (Lines 15-25). After reaching the threshold if the
estimated policy is not optimal it will be improved and the iterative method
continues. Act[si] saves the best estimated action for each state si.

Algorithm1: Policy Iteration

1. Set initial values: P [si] = 1 if {si ∈ G} and o.w. P [si] = 0.
2. diff1 := 1

3. while diff1 > epsilon do

4. diff1 := 0; temp := 0; diff2 := 1

5. for i := 1 to number_of_states do

6. if P [si] < 1 then

7. temp := max
α∈enabled(si)

∑
s′∈S p(si, α, s

′)× P [s′]

8. Act[si] := arg max
α∈enabled(si)

∑
s′∈S p(si, α, s

′)× P [s′]

9. if temp − P [si] > diff1 then

10. diff1 := temp − P [si] end if

11. end if

12. end for

13. if diff1 < epsilon then

14. return P [s1] end if

15. while diff2 > epsilon do

16. diff2 := 0

17. temp := 0

18. for i:= 1 to number of states do

19. if P [si] < 1 then

20. temp :=
∑

s′∈S p(si, Act[si], s
′)× P [s′]

21. if temp − P [si] > diff2 then

22. diff2 := temp − P [si] end if

23. end if

24. end for

25. end while

26. end while



210 J. Karimpour et al.

3 Accelerating VI and PI Algorithms

One of the main drawbacks of VI (and also PI) is that in every iteration it
updates the values of all (nontrivial) states. Researchers proposed a range of
methods to avoid unnecessary updates and speed up this algorithm. Some of
these methods [4, 9] try to split the MDP to some SCCs and in every iteration
only compute the new value for states in some SCCs. Another approach for
accelerating iterative methods is to consider a better variable ordering [4, 5, 9].

We review the idea of variable reordering and propose a heuristic algorithm
for variable reordering in dense MDPs.

3.1 Variable Ordering

The PI algorithm in Section 2 tries to use the update of states as soon as pos-
sible. In this case the order of updated states can influence the performance of
algorithm. Let StatesOrder[si] be the array that determines the (static) order
of states for update. When the value of a state is updated the new value can be
propagated to next computation if the values of next states depend on the value
of the current state. There are some heuristics for variable ordering in previous
works [3–5, 9], but none of them are useful for dense MDPs.

Here we propose an algorithm for variable reordering whose time complexity
is linear in the size of the MDP. The idea of this algorithm is to select a state s
for update where the most of states of Post(s) have been updated before. The
for loop in line 5 is used to guarantee the selection of all states.

Algorithm2: VariableReordering

1. for i := 0 to n - 1

2. Selected[i] := false;

3. end for

4. left := right := 0;

5. for i := 0 to n - 1

6. if Selected[i] = false then

7. Selected[i] := true; StateOrder[left] := i;

8. while left <= right and right < n do

9. j := StateOrder[left++];

10. for each sk ∈ Post(sj)
11. if Selected[k] = false then

12. Selected[k] := true;

13. StateOrder[right ++] = k;

14. end if

15. end for

16. end while

17. end if

18. end for



Improved Iterative Methods for Verifying Markov Decision Processes 211

Policy iteration algorithm should call this function before the beginning of
inner while loop (line 15 of Algorithm 1). In this case the VariableReordering
function uses Post(sj , Act[sj ]) (line 10 of algorithm 2). The for loop of line 18
(of algorithm 1) should be in reverse order and the state si could be selected
according to the StateOrder array:

for i := number_of_states down to 1

si = StateOrder[i];

This algorithm is useful for sparse MDPs but in order to deal with dense
MDPs we modify the Post set in line 10. Given t < 1 as a threshold, we define
Post(si, α, t) = {sj |P (si, α, sj) ≥ t}. The experimental results show that the
good value for t is between 0.3 and 0.5. It causes the algorithm to consider more
important transitions. Algorithm 2 is used as a precomputation for every policy
modification and doesn’t affect the correctness of the PI algorithm.

3.2 Prioritized Algorithm for PI

Prioritized algorithms [9] in general try to focus on regions of the problem space
that are more important and have the maximum effect on the whole problem.
In this section we propose an algorithm that uses a simple graph partitioning
method for prioritizing state updates.

Inspiring from the idea of SCC-based methods [5] we propose an algorithm
which uses a good heuristic to split the state space to some partitions and up-
dates these states according to this partitioning. Let B be a partition. Define

AverageT rans(si, B) =

∑
Sj∈B P (si,Act(si),sj)

sizeof(B) . Our method tries to make parti-

tionswhere for each state si and eachpartitionB the value ofAverageT rans(si, B)
is high if si ∈ B and this value is low otherwise. In this case the partition that con-
tains goal states is the most important and the frequency of updates for states
of this partition should be more than the other two. We use this partitioning
algorithm in the PI because for dense MDPs the performance of PI is usually
better than the performance of VI.

We use an O(n2) heuristic for graph partitioning of the MDP because its
overhead in the case of dense MDPs is negligible for most case studies. There
are some options for the size of partitions. In this paper we define 3 partitions
and suppose that the size of the first partition is 25% and the second partition
is 35% of all state space. Algorithm 3 describes this partitioning method and
because of page limitation, we only present the code for the first partition (with
25% of states).

Algorithm3: Graph Partitioning

1. for i := 1 to number_of_states do

2. Distance [i] := 0;

3. end for

4. for i := 1 to number_of_states do

5. if si is a goal state then

6. Selected[i] := true;



212 J. Karimpour et al.

7. for j := 1 to number_of_states do

8. Distance[j] += P (sj , Act[sj ], si);
9. end for

10. end if

11. end for

12. for i := 1 to 0.25×number_of_states do

13. k := the index of non -selected state for which

Distance[k] is maximum;

14. Selected [k] := true;

15. for j := 1 to number_of_states do

16. if Selected[j] = false then

17. Distance [j] += P (sk, Act[sk], sj) + P (sj , Act[sj ], sk);
18. end if

19. end for

20. end for

This algorithm should be called before the second while loop (Line 15) in
Algorithm 1. In order to use the result of this algorithm we modify Algorithm 1
and add the following statements after Line 18:

if i % 7 = 0

update states of partition #3

else if i % 7 = 2 or i % 7 = 5

update states of partition #2

else

update states of partition #1

end if

end if

4 Experiments

We implemented the proposed and original iterative algorithms in C++ using
MS Visual Studio 2010 and ran it on an Intel Core i3 processor with 4GB
memory. In the sections that follow we first consider the proposed algorithm of
Section 3.1 and then consider the algorithm of Section 3.2.

4.1 Results for the Variable Ordering Algorithm

We tested our modified ordering algorithm on some dense MDPs. These models
are randomly generated problems with 100 states and 3 actions per state and a
parameter λ. We created these MDPs such that for each state si, the average
of maximum value of P (si, α, si+1) is λ with standard deviation of 0.1. Table 1
shows results of running Policy Iteration with best and worst variable ordering
and also a random variable ordering. For simplicity we only present number of
iterations for the execution of PI with ε = 10−6.

The impact of variable ordering for these case studies is considerable where
the λ parameter is more than 30%.



Improved Iterative Methods for Verifying Markov Decision Processes 213

Table 1. Results of Variable Ordering for Some Dense MDPs

λ 0.9 0.7 0.5 0.3 0.2 0.1

Random ordering 11.6K 5.5K 3.7K 2.9K 2.6K 2.5K

Best ordering 1.7K 1.9K 2K 2.1K 2.2K 2.2K

Worst ordering 20.5K 9.2K 5.6K 3.8K 3.2K 2.9K

Best/random 0.147 0.364 0.568 0.758 0.846 0.88

4.2 Results for Partitioning-Based Algorithms

SysAdmin problem [9] is a good example of real problems that have dense MDPs.
Because of relatively high number of actions per state, the performance of PI
algorithm is better than VI and Gauss-Seidel. We used an implementation for
the MDP of this problem that is developed by the authors of [9].

We also defined one other MDP: M1 is a model that the probability of reaching
to 20% of its states is about 8 times more than the probability of reaching other
80% of states. This model has 400 states where average number of actions per
state is 3.

It has been shown that the performance of SCC-based methods is lower than
standard iterative method for dense MDPs [9]. Hence, we don’t compare our
algorithm with SCC-based methods. To compare it with learning based ones, we
use the implementation of learning algorithms that the authors of [3] proposed.

Table 2 shows the results of running normal VI and PI methods and, our
prioritized algorithm (PI with algorithm 3). We called our algorithm Prioritized
PI (PPI). Because of high average number of actions per state, the running time
of PI is less than VI. The results show that our prioritized algorithm reduces the
running time for all models. While prioritized methods of [9] could not improve
the performance of iterative methods for SysAdmin, our algorithm accelerates
iterative computations for these models.

Table 2. Results for our prioritized algorithm

Model Number of
States

Time in
VI

Time in
PI

Time in
Learning-
based

Time in
PPI

SysAdmin6 64 < 0.1 < 0.1 2.6 < 0.1

SysAdmin8 256 0.7 0.19 11.5 0.16

SysAdmin9 512 4.5 0.76 24.3 0.63

SysAdmin10 1023 27.2 2.45 49 1.96

M1 410 1.11 0.95 8.5 0.49

The main reason that the performance of learning based algorithms for dense
MDP’s is so low is that these methods doesnt usually propose good variable
ordering for this class of MDPs.



214 J. Karimpour et al.

5 Conclusions and Future Research

The main contribution of this paper is that we present a prioritized algorithm for
dense MDPs and show that it can reduce the running time of iterative methods
for solving probabilistic reachability problems of this class of MDPs.

An approach for future works is to use a good variable ordering in each par-
tition in our prioritized algorithm. In addition, one can propose a better priori-
tized algorithm that outperforms other prioritized ones in both dense and sparse
models.

While many of previous works focus on VI, we believe that variable reordering
can improve the performance when it is used in PI. One can also improve the
performance of PI for both dense and sparse MDPs and outperform the VI
approach by using advanced methods for selection of good policies (like action
elimination.)

References

1. Baier, C., Katoen, J.P.: Principles of model checking. MIT press Cambridge (2008)
2. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic

programming. Artificial Intelligence 72(1), 81–138 (1995)
3. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,

M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Heidelberg (2014)

4. Dai, P., Mausam, J.G., Weld, D.S., Goldsmith, J.: Topological value iteration algo-
rithms. J. Artif. Intell. Res(JAIR) 42, 181–209 (2011)

5. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
markov decision processes. In: 2011 IEEE/IFIP 41st International Conference on
Dependable Systems & Networks (DSN), pp. 359–370. IEEE (2011)

6. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons (1994)

7. Sanner, S., Goetschalckx, R., Driessens, K., Shani, G.: Bayesian real-time dynamic
programming. In: IJCAI, pp. 1784–1789. Citeseer (2009)

8. Smith, T., Simmons, R.: Focused real-time dynamic programming for mdps: Squeez-
ing more out of a heuristic. In: AAAI, pp. 1227–1232 (2006)

9. Wingate, D., Seppi, K.D.: Prioritization methods for accelerating mdp solvers. Jour-
nal of Machine Learning Research, 851–881 (2005)


	Improved Iterative Methods for Verifying Markov Decision Processes
	1. Introduction
	2. Preliminaries
	2.1. Markov Decision Processes (MDPs)
	2.2. Quantitative Verification of MDPs
	2.3. Policy Iteration

	3. Accelerating VI and PI Algorithms
	3.1. Variable Ordering
	3.2. Prioritized Algorithm for PI

	4. Experiments
	4.1. Results for the Variable Ordering Algorithm
	4.2. Results for Partitioning-Based Algorithms

	5. Conclusions and Future Research
	References




