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Abstract. The movement of the common carotid artery (CCA) vessel
wall has been well accepted as one important indicator of atherosclerosis,
but it is still one challenge to estimate the motion of vessel wall from
ultrasound images. In this paper, a robust H∞ filter was incorporated
with block matching (BM) method to estimate the motion of carotid
arterial wall. The performance of our method was compared with the
standard BM method, Kalman filter, and manual traced method respec-
tively on carotid artery ultrasound images from 50 subjects. Our results
showed that the proposed method has a small estimation error (96 μm
for the longitudinal motion and 46 μm for the radial motion), and good
agreement (94.03% results fall within 95% confidence interval for the
longitudinal motion and 95.53% for the radial motion) with the man-
ual traced method. These results demonstrated the effectiveness of our
method in the motion estimation of carotid wall in ultrasound images.

Keywords: vessel wall motion, carotid ultrasound, H∞ filter, block
matching.

1 Introduction

Stiffness of carotid artery has been considered as an important risk marker of
severe atherosclerosis [1], which is the main cause of morbidity and mortality re-
lated to cardiovascular diseases. A number of studies have attempted to charac-
terize the arterial stiffness from the motion of carotid artery [2]. In particular, the
longitudinal motion of carotid wall have recently been recognized in an Editorial
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Fig. 1. Example of the ultrasound image of the CCA. The enlarged region (right),
corresponding to the yellow rectangle (left), represents the ROI for tracking the motion
of carotid vessel. The green arrow is the displacement vector of ROI.

in American Journal of Physiology for its potential importance for the develop-
ment process of atherosclerosis and recognized at the Royal Swedish Academy
of Engineering Sciences annual meeting 2012 [3,4]. Most of these attempts uti-
lized the block matching (BM) method to estimate radial and longitudinal tissue
motion of carotid artery from ultrasound image sequences [5]. There are four im-
portant issues in the BM method: 1) the size of reference block, 2) the searching
range, 3) the distortion function, and 4) the estimation strategy.

The size of reference block always plays an important role in BM method [6].
The influence from the size of reference block on the motion estimation of carotid
artery was investigated in [5] by comparing longitudinal and radial displacements
generated by different reference blocks. The searching range is another factor to
determine the accuracy of BM method. However, the large search range would
lead to high computation cost. The tradeoff between the computational cost
and the accuracy has been carefully evaluated in the motion estimation from
the ultrasound image of carotid artery [7]. The distortion function is used to
measure the similarity between the reference block and the candidate block [8],
and the cross correlation is one frequently used distortion function in the mo-
tion tracking of carotid artery [9]. However, the cross correlation can be easily
influenced by the time-variant speckle noise in the ultrasound images. There-
fore, normalized cross correlation was proposed to compress the speckle noise in
the motion estimation in carotid artery ultrasound images [5]. The estimation
strategy is to determine the location of the block from frame to frame in the
ultrasound image sequences. Most recent works adopted the adaptive schemes,
such as the Kalman filter [2] and the Hilbert transform [10], for estimating the
motion of carotid artery. The main problem of Kalman filter is under the Gaus-
sian statistics assumptions. However, uncertainties, such as image noise, sparse
image data, and model uncertainty often encountered in practical cases might
not be Gaussian statistics. Furthermore, the Kalman filter always performs well
only if the filter parameters are reasonably set. In practice, it is very difficult to
obtain proper filter parameters because of complexity of the problem. Thus, the
issue of robust estimation becomes paramountly important.

In this paper, we introduce a modified BM method using the H∞ filter to
estimate longitudinal and radial motion of CCA. This algorithm differs from the
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Fig. 2. The flowcharts of HBM1 and HBM2, that can be generalized to the same
flowcharts HBM.

previous Kalman approach mainly in the following two aspects: 1) no a priori
knowledge of noise statistics is required; and 2) the worst possible effects of the
image noises can be minimized because H∞ filter is a minimax estimator [11],
which will ensure that if the disturbances are small, the estimation errors will
be as small as possible [12,13]. The performance of our method is evaluated us-
ing a set of 50 ultrasound image sequences from 50 subjects by comparing to
the manual traced results by one ultrasound physician and three other meth-
ods: standard BM method (BM), Kalman-based BM (KBM), update of BM’s
estimation applying Kalman filter during tracking (KDBM).

2 Methodology

The proposed H∞-based Block Matching (HBM) for motion estimation of carotid
vessel from frame to frame can be divided into two steps: 1) prediction step and
2) updating step. In the prediction step, the best-matched block Bbest is esti-
mated from the reference block Bref in the same frame. In the updating step,
the reference block B′

ref in the next frame is estimated from Bbest in the cur-
rent frame. Before HBM, the ultrasound sequence should be preprocessed as
follows: 1) inhomogeneity of intensity distributions across frames can influence
the subsequent block matching method. It leads to the different dynamic ranges
in frames, and moreover makes the same tissues in frames have different range
of the pixel value. Thus, every frame in the ultrasound sequence should be nor-
malized into [0, 255] [14]. It can also improve the image quality by changing
image contrast; 2) considering the tradeoff between the tracking accuracy and
the computational cost, the ultrasound sequence is spatially interpolated using
the bilinear method for tracking the sub-pixel motion of carotid artery, which
magnifies the image by 3 times and 3) an user-defined reference block (ROI) on
the carotid arterial wall in the first frame of the ultrasound sequence is selected
with size 0.36 mm × 0.18 mm. And then the search range can be located, which
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Fig. 3. The mean error of the longitudinal (el), radial (er) and total displacement (et)
in μm of the proposed method (HBM1 in the top row and HBM2 in the bottom row).

is a rectangle region with size 1.08 mm × 0.36 mm, and its center is same with
its corresponding ROI. Figure 1 shows the example of ROI.

Prediction Step. In the prediction step, the reference block B′
ref in the next

frame is estimated from the reference block Bref and the best-matched block
Bbest in the current frame by H∞ filter. H∞ filter can generate the best estimate
of the state of a dynamic system by minimizing the worst-case estimation error,
and the variation of the reference block Bref can be modeled as a time-invariant
discrete dynamic system:

xn+1 = xn +wn,

yn = xn + vn,

zn = xn,

(1)

where n is the frame index, wn and vn are noise terms, xn and yn are matrices
corresponding to the reference block Bref and the best-matched block Bbest.
xn+1 corresponds to the reference block B′

ref in the next frame.
In order to find an optimal estimate ẑn of zn, we need to minimize the cost

function J [11], Because the direct minimization of J is not tractable, a strategy
for generating the best estimation of x̂n+1 is developed by making the cost
function J satisfying an upper bound. Let θ be the reciprocal of the upper
bound. This strategy can be formulated as follows [11]:

Kn = Pn[I− θSnPn +R−1
n Pn]

−1R−1
n ,

Pn+1 = Pn[I− θSnPn +R−1
n Pn]

−1 +Qn,

x̂n+1 = x̂n +Kn(yn − x̂n),

(2)

where Qn and Rn are the covariance matrices of the noise terms wn and vn

respectively, Sn is the user-specified symmetric positive definite matrix, Pn is
the covariance of the estimation error in the frame index n, and I is the identity
matrix. In our method, we set Qn = Rn = Sn = I, and x1 corresponds to the
ROI selected in the first frame. In addition, in order to obtain the steady-state
solution of Equation (2), we set Pn+1 = Pn and Kn+1 = Kn.
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Fig. 4. The Bland-Altman analysis between HBM and manual method. (a) and (b)
represent the longitudinal displacements and radial displacements for HBM1 respec-
tively. (c) and (d) represent the longitudinal displacements and radial displacements
for HBM2 respectively.

Updating Step. In the updating step, the best-matched block Bbest is esti-
mated from the reference block Bref by the block matching method with nor-
malized cross correlation [5].

Two Implementations. We execute the HBM through two indenpendent im-
plementations: HBM1 and HBM2. In HBM1, xn is the vector of the pixel inten-
sity cn in the reference block Bref , that is for ∀i ∈ {1, 2, ...,M}, the value of
the ith element in xn equals to the gray value of the ith pixel in the reference
block, and M is number of elements in xn. Similarly, yn is the vector of pixel
intensity c∗n in the best-matched block Bbest, computed from Bref by the block
matching algorithm. Then, the pixel intensity cn+1 of the reference block B′

ref

in the next frame is estimated by xn and yn using Equation (2). In HBM2, xn

is the center location of the reference block Bref , that is xn = (an, bn), where an
and bn are x-coordinate value and y-coordinate value, respectively. Similarly, yn

is the center location (a∗n, b
∗
n) of the best-matched block Bbest, computed from

Bref by the block matching algorithm. Then the center location (an+1, bn+1)
of the reference block B′

ref in the next frame is estimated by xn and yn using
Equation (2). Figure 2 illustrates the flowcharts of HBM1 and HBM2 and shows
that the two flowcharts are equivalent.
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Table 1. The comparison between BM, KBM, KDBM, HBM1(θ=0.4) and
HBM2(θ=0.6) in μm.

Error BM KBM KDBM HBM1 HBM2

el 150.42±148.24 100.00±100.37 151.81±147.18 96.37±85.93 150.22±148.86
er 57.16±39.83 50.76±41.52 57.96±39.46 46.22±38.26 57.12±39.92
et 164.25±149.83 112.81±106.08 165.91±148.57 109.25±91.24 164.06±150.13

3 Results

One ultrasound physician with more than 10-year experiences collected all the ul-
trasound data on CCA using a high-resolution ultrasound system (iU22, Philips
Ultrasound, Bothell, WA, USA) and a 7.5MHz liner array transducer. All the
imaging data then were saved as DICOM format into CDs for off-line analy-
sis. During the collection, the subjects were supine in the bed, with the head
turned 45◦ away from the examined side. In the end, a total of 50 ultrasound
image sequences from 50 subjects are used in this study. The study protocol
was designed according to the principles of the Declaration of Helsinki and then
approved by the Ethics Committee of the Second People’s Hospital of Shenzhen
in China. Each participant was informed of the purpose and procedure of this
study. Informed consent was obtained from each participant. We implement all
the codes using Matlab R2012a on a desktop computer with Intel(R) Xeon(R)
CPU E5-2650(2.00 GHz) and 32GB DDR2 memory. In the experiments, the
motion of carotid artery estimated by our method were compared to the man-
ual traced results by the same ultrasound physician, which is considered as the
ground truth.

In order to evaluate the performance of our method quantitatively, we cal-
culated the radial displacement Dr and the longitudinal displacement Dl with
respect to the first frame in the ultrasound image sequence. Then the longitudi-
nal error el and the radial error er of the displacement were computed to analyze
the difference between our method and manual traced results,

el =

√
√
√
√ 1

N

N∑

n=1

(Dm
l (n)−Dh

l (n))
2, er =

√
√
√
√ 1

N

N∑

n=1

(Dm
r (n)−Dh

r (n))
2, (3)

where Dm
l (n) and Dm

r (n) are measured by manual, Dh
l (n) and Dh

r (n) are esti-

mated by our method. Then the total error can be computed by et =
√

e2l + e2r.
Through el, er and et, we can determine the value of θ. In Figure 3, we can see
that the θ = 0.4 is better than other values of θ in HBM1. Similarly, θ = 0.6
in HBM2 is better than other values. Moreover, HBM1 is better than HBM2

because all the minimum errors in HBM1 are less than those in HBM2. Addi-
tionally, we used the Bland-Altman method to analyze the agreement between
our method and the manual method. As seen in Figure 4. For the longitudi-
nal displacement and the radial displacement in HBM1, 94.03% and 95.53% of
points fall within the 95% confidence interval in the Student t-test, respectively.
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In HBM2, the results are 93.47% and 92.38%. At last, our method was com-
pared with three other methods using manual traced results as ground truth:
the standard BM method [5], Kalman-based BM (KBM) [7], update of BM’s
estimation applying Kalman filter during tracking (KDBM) [7]. Table 1 shows
the comparative results of these methods.

4 Discussion and Conclusion

We developed a H∞ filter based BM method to estimate the motion of carotid
artery wall from the ultrasound image sequences. In each imaging frame, we
compute the best-matched block by the reference block using the block match-
ing method. Then, the reference block in the next frame can be estimated by
the reference block and the best-matched block in the current frame using a
H∞ filter. Additionally, we used two independent strategies (HBM1 and HBM2)
to implement the proposed method. And the two implementations are based
on the pixel intensity and center location of the reference block, respectively.
In the experiments, the results generated by our H∞ filter based BM method
with different values of θ were evaluated using 50 ultrasound image sequences
and compared to manual traced results by one experienced ultrasound physi-
cian. Based on these experiments, the optimal values of θ for HBM1 (= 0.4) and
HBM2 (= 0.6) can be obtained according to minimum error shown in Table 1.
In addition, we can see that the proposed H∞ filter with θ � 0.9 is unstable as
the error is significantly in Figure 3. Moreover, our method were also compared
to three recent methods using manual traced results as the ground truth: BM,
KBM and KDBM. Table 1 shows that the motion trajectory computed by our
H∞ filter based BM method (HBM1 with θ = 0.4 and HBM2 with θ = 0.6) are
more accurate than three other methods. These experiments can demonstrate
the effectiveness of our method in the motion estimation of carotid artery wall
from ultrasound image sequences. Using the motion tracking of carotid vessel,
we will focus on the investigation of the properties of vessel wall (especially the
longitudinal motion) and its relationship with physiological parameters related
to cardiovascular disease (such as wall shear strain and pulse wave velocity) in
the future.
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